1
|
Uthanumallian K, Del Cortona A, Coelho SM, De Clerck O, Duchene S, Verbruggen H. Genome-wide patterns of selection-drift variation strongly associate with organismal traits across the green plant lineage. Genome Res 2024; 34:1130-1139. [PMID: 39209552 PMCID: PMC11444171 DOI: 10.1101/gr.279002.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
There are many gaps in our knowledge of how life cycle variation and organismal body architecture associate with molecular evolution. Using the diverse range of green algal body architectures and life cycle types as a test case, we hypothesize that increases in cytomorphological complexity are likely to be associated with a decrease in the effective population size, because larger-bodied organisms typically have smaller populations, resulting in increased drift. For life cycles, we expect haploid-dominant lineages to evolve under stronger selection intensity relative to diploid-dominant life cycles owing to masking of deleterious alleles in heterozygotes. We use a genome-scale data set spanning the phylogenetic diversity of green algae and phylogenetic comparative approaches to measure the relative selection intensity across different trait categories. We show stronger signatures of drift in lineages with more complex body architectures compared with unicellular lineages, which we consider to be a consequence of smaller effective population sizes of the more complex algae. Significantly higher rates of synonymous as well as nonsynonymous substitutions relative to other algal body architectures highlight that siphonous and siphonocladous body architectures, characteristic of many green seaweeds, form an interesting test case to study the potential impacts of genome redundancy on molecular evolution. Contrary to expectations, we show that levels of selection efficacy do not show a strong association with life cycle types in green algae. Taken together, our results underline the prominent impact of body architecture on the molecular evolution of green algal genomes.
Collapse
Affiliation(s)
- Kavitha Uthanumallian
- Melbourne Integrative Genomics, School of BioSciences, University of Melbourne, Parkville VIC 3010, Australia;
| | - Andrea Del Cortona
- Department of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Olivier De Clerck
- Department of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium
| | - Sebastian Duchene
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville VIC 3010, Australia
- Department of Computational Biology, Institut Pasteur, 75015 Paris, France
| | - Heroen Verbruggen
- Melbourne Integrative Genomics, School of BioSciences, University of Melbourne, Parkville VIC 3010, Australia;
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| |
Collapse
|
2
|
Shi C, Xie Y, Guan D, Qin G. Transcriptomic Analysis Reveals Adaptive Evolution and Conservation Implications for the Endangered Magnolia lotungensis. Genes (Basel) 2024; 15:787. [PMID: 38927723 PMCID: PMC11203017 DOI: 10.3390/genes15060787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Magnolia lotungensis is an extremely endangered endemic tree in China. To elucidate the genetic basis of M. lotungensis, we performed a comprehensive transcriptome analysis using a sample integrating the plant's bark, leaves, and flowers. De novo transcriptome assembly yielded 177,046 transcripts and 42,518 coding sequences. Notably, we identified 796 species-specific genes enriched in organelle gene regulation and defense responses. A codon usage bias analysis revealed that mutation bias appears to be the primary driver of selection in shaping the species' genetic architecture. An evolutionary analysis based on dN/dS values of paralogous and orthologous gene pairs indicated a predominance of purifying selection, suggesting strong evolutionary constraints on most genes. A comparative transcriptomic analysis with Magnolia sinica identified approximately 1000 ultra-conserved genes, enriched in essential cellular processes such as transcriptional regulation, protein synthesis, and genome stability. Interestingly, only a limited number of 511 rapidly evolving genes under positive selection were detected compared to M. sinica and Magnolia kuangsiensis. These genes were enriched in metabolic processes associated with adaptation to specific environments, potentially limiting the species' ability to expand its range. Our findings contribute to understanding the genetic architecture of M. lotungensis and suggest that an insufficient number of adaptive genes contribute to its endangered status.
Collapse
Affiliation(s)
- Chenyu Shi
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (C.S.); (Y.X.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China
| | - Yanjun Xie
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (C.S.); (Y.X.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China
| | - Delong Guan
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China
- School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| | - Guole Qin
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (C.S.); (Y.X.)
- Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China
| |
Collapse
|
3
|
Shao M, Feng Y, Yang S, Feng T, Zeng F, Lu S, Ma Z, Chen B, Mao J. Molecular evolution of Phytocyanin gene and analysis of expression at different coloring periods in apple (Malus domestica). BMC PLANT BIOLOGY 2024; 24:374. [PMID: 38714922 PMCID: PMC11077699 DOI: 10.1186/s12870-024-05069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND PC (phytocyanin) is a class of copper-containing electron transfer proteins closely related to plant photosynthesis, abiotic stress responses growth and development in plants, and regulation of the expression of some flavonoids and phenylpropanoids, etc., however, compared with other plants, the PC gene family has not been systematically characterized in apple. RESULTS A total of 59 MdPC gene members unevenly distributed across 12 chromosomes were identified at the genome-wide level. The proteins of the MdPC family were classified into four subfamilies based on differences in copper binding sites and glycosylation sites: Apple Early nodulin-like proteins (MdENODLs), Apple Uclacyanin-like proteins (MdUCLs), Apple Stellacyanin-like proteins (MdSCLs), and Apple Plantacyanin-like proteins (MdPLCLs). Some MdPC members with similar gene structures and conserved motifs belong to the same group or subfamily. The internal collinearity analysis revealed 14 collinearity gene pairs among members of the apple MdPC gene. Interspecific collinearity analysis showed that apple had 31 and 35 homologous gene pairs with strawberry and grape, respectively. Selection pressure analysis indicated that the MdPC gene was under purifying selection. Prediction of protein interactions showed that MdPC family members interacted strongly with the Nad3 protein. GO annotation results indicated that the MdPC gene also regulated the biosynthesis of phenylpropanoids. Chip data analysis showed that (MdSCL3, MdSCL7 and MdENODL27) were highly expressed in mature fruits and peels. Many cis-regulatory elements related to light response, phytohormones, abiotic stresses and flavonoid biosynthetic genes regulation were identified 2000 bp upstream of the promoter of the MdPC gene, and qRT-PCR results showed that gene members in Group IV (MdSCL1/3, MdENODL27) were up-regulated at all five stages of apple coloring, but the highest expression was observed at the DAF13 (day after fruit bag removal) stage. The gene members in Group II (MdUCL9, MdPLCL3) showed down-regulated or lower expression in the first four stages of apple coloring but up-regulated and highest expression in the DAF 21 stage. CONCLUSION Herein, one objective of these findings is to provide valuable information for understanding the structure, molecular evolution, and expression pattern of the MdPC gene, another major objective in this study was designed to lay the groundwork for further research on the molecular mechanism of PC gene regulation of apple fruit coloration.
Collapse
Affiliation(s)
- Miao Shao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Yongqing Feng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Shangwen Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Tong Feng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Fanwei Zeng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China.
| |
Collapse
|
4
|
Li T, Ma Z, Ding T, Yang Y, Wang F, Wan X, Liang F, Chen X, Yao H. Codon usage bias and phylogenetic analysis of chloroplast genome in 36 gracilariaceae species. Funct Integr Genomics 2024; 24:45. [PMID: 38429550 DOI: 10.1007/s10142-024-01316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/03/2024]
Abstract
Gracilariaceae is a group of marine large red algae and main source of agar with important economic and ecological value. The codon usage patterns of chloroplast genomes in 36 species from Graciliaceae show that GC range from 0.284 to 0.335, the average GC3 range from 0.135 to 0.243 and the value of ENC range from 35.098 to 42.327, which indicates these genomes are rich in AT and prefer to use codons ending with AT in these species. Nc plot, PR2 plot, neutrality plot analyses and correlation analysis indicate that these biases may be caused by multiple factors, such as natural selection and mutation pressure, but prolonged natural selection is the main driving force influencing codon usage preference. The cluster analysis and phylogenetic analysis show that the differentiation relationship of them is different and indicate that codons with weak or unbiased preferences may also play an irreplaceable role in these species' evolution. In addition, we identified 26 common high-frequency codons and 8-18 optimal codons all ending in A/U in these 36 species. Our results will not only contribute to carrying out transgenic work in Gracilariaceae species to maximize the protein yield in the future, but also lay a theoretical foundation for further exploring systematic classification of them.
Collapse
Affiliation(s)
- Tingting Li
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Zheng Ma
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Tiemei Ding
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Yanxin Yang
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Fei Wang
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Xinjing Wan
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Fangyun Liang
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Xi Chen
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Huipeng Yao
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China.
| |
Collapse
|
5
|
Zhao K, Luo X, Shen M, Lei W, Lin S, Lin Y, Sun H, Ahmad S, Wang G, Liu ZJ. The bZIP Transcription Factors in Current Jasmine Genomes: Identification, Characterization, Evolution and Expressions. Int J Mol Sci 2023; 25:488. [PMID: 38203660 PMCID: PMC10779407 DOI: 10.3390/ijms25010488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Jasmine, a recently domesticated shrub, is renowned for its use as a key ingredient in floral tea and its captivating fragrance, showcasing significant ornamental and economic value. When cultivated to subtropical zone, a significant abiotic stress adaptability occurs among different jasmine varieties, leading to huge flower production changes and plantlet survival. The bZIP transcription factors (TFs) are reported to play indispensable roles in abiotic stress tolerance. Here, we performed a genome-level comparison of bZIPs using three-type jasmine genomes. Based on their physicochemical properties, conserved motif analysis and phylogenetic analysis, about 63 bZIP genes were identified and clustered in jasmine genomes, noting a difference of one member compared to the other two types of jasmines. The HTbZIP genes were categorized into 12 subfamilies compared with A. thaliana. In cis-acting element analysis, all genes contained light-responsive elements. The abscisic acid response element (ABRE) was the most abundant in HTbZIP62 promoter, followed by HTbZIP33. Tissue-specific genes of the bZIPs may play a crucial role in regulating the development of jasmine organs and tissues, with HTbZIP36 showing the most significant expressions in roots. Combined with complicated protein interactions, HTbZIP62 and HTbZIP33 might play a crucial role in the ABA signaling pathway and stress tolerance. Combined with RT-qPCR analysis, SJbZIP37/57/62 were more sensitive to ABA response genes compared with other bZIPs in DJ amd HT genomes. Our findings provide a useful resource for further research on the regulation of key genes to improve abiotic stress tolerance in jasmine.
Collapse
Affiliation(s)
- Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (K.Z.); (X.L.); (M.S.); (W.L.); (S.L.); (Y.L.); (H.S.)
| | - Xianmei Luo
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (K.Z.); (X.L.); (M.S.); (W.L.); (S.L.); (Y.L.); (H.S.)
| | - Mingli Shen
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (K.Z.); (X.L.); (M.S.); (W.L.); (S.L.); (Y.L.); (H.S.)
| | - Wen Lei
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (K.Z.); (X.L.); (M.S.); (W.L.); (S.L.); (Y.L.); (H.S.)
| | - Siqing Lin
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (K.Z.); (X.L.); (M.S.); (W.L.); (S.L.); (Y.L.); (H.S.)
| | - Yingxuan Lin
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (K.Z.); (X.L.); (M.S.); (W.L.); (S.L.); (Y.L.); (H.S.)
| | - Hongyan Sun
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (K.Z.); (X.L.); (M.S.); (W.L.); (S.L.); (Y.L.); (H.S.)
| | - Sagheer Ahmad
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Guohong Wang
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (K.Z.); (X.L.); (M.S.); (W.L.); (S.L.); (Y.L.); (H.S.)
| | - Zhong-Jian Liu
- Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|