1
|
Sánchez Ramírez J, Morera Díaz Y, Bequet-Romero M, Ayala Ávila M. Potential mechanisms involved on how systemic IgG antibodies specific to vascular endothelial growth factor (VEGF) and induced by active immunotherapy decrease platelet derived free-VEGF. Platelets 2022; 33:964-968. [DOI: 10.1080/09537104.2022.2042235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Javier Sánchez Ramírez
- Department of Pharmaceuticals, Center of Genetic Engineering and Biotechnology (CIGB), Playa, Cuba
| | - Yanelys Morera Díaz
- Department of Pharmaceuticals, Center of Genetic Engineering and Biotechnology (CIGB), Playa, Cuba
| | - Mónica Bequet-Romero
- Department of Pharmaceuticals, Center of Genetic Engineering and Biotechnology (CIGB), Playa, Cuba
| | - Marta Ayala Ávila
- Department of Pharmaceuticals, Center of Genetic Engineering and Biotechnology (CIGB), Playa, Cuba
| |
Collapse
|
2
|
Bellinger DL, Dulcich MS, Molinaro C, Gifford P, Lorton D, Gridley DS, Hartman RE. Psychosocial Stress and Age Influence Depression and Anxiety-Related Behavior, Drive Tumor Inflammatory Cytokines and Accelerate Prostate Cancer Growth in Mice. Front Oncol 2021; 11:703848. [PMID: 34604038 PMCID: PMC8481826 DOI: 10.3389/fonc.2021.703848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/09/2021] [Indexed: 01/20/2023] Open
Abstract
Prostate cancer (PCa) prevalence is higher in older men and poorer coping with psychosocial stressors effect prognosis. Yet, interactions between age, stress and PCa progression are underexplored. Therefore, we characterized the effects of age and isolation combined with restraint (2 h/day) for 14 days post-tumor inoculation on behavior, tumor growth and host defense in the immunocompetent, orthotopic RM-9 murine PCa model. All mice were tumor inoculated. Isolation/restraint increased sympathetic and hypothalamic-pituitary-adrenal cortical activation, based on elevated serum 3-methoxy-4-hydroxyphenylglycol/norepinephrine ratios and corticosterone levels, respectively. Elevated zero maze testing revealed age-related differences in naïve C57Bl/6 mice, and increased anxiety-like behavior in tumor-bearing mice. In open field testing, old stressed mice were less active throughout the 30-min test than young non-stressed and stressed, and old non-stressed mice, suggesting greater anxiety in old stressed mice. Old (18 month) mice demonstrated more depression-like behavior than young mice with tail suspension testing, without effects of isolation/restraint stress. Old mice developed larger tumors, despite similar tumor expression of tumor vascular endothelial growth factor or transforming growth factor-beta1 across age. Tumor chemokine/cytokine expression, commonly prognostic for poorer outcomes, were uniquely age- and stress-dependent, underscoring the need for PCa research in old animals. Macrophages predominated in RM-9 tumors. Macrophages, and CD4+ and CD4+FoxP3+ T-cell tumor infiltration were greater in young mice than in old mice. Stress increased macrophage infiltration in old mice. Conversely, stress reduced intratumoral CD4+ and CD4+FoxP3+ T-cell numbers in young mice. CD8+ T-cell infiltration was similar across treatment groups. Our findings support that age- and psychological stress interacts to affect PCa outcomes by interfering with neural-immune mechanisms and affecting behavioral responses.
Collapse
Affiliation(s)
- Denise L Bellinger
- Department of Pathology & Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Melissa S Dulcich
- Department of Psychology, School of Behavioral Health, Loma Linda University, Loma Linda, CA, United States
| | - Christine Molinaro
- Department of Pathology & Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Peter Gifford
- Department of Pathology & Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Dianne Lorton
- Department of Psychology, Kent State University and the Kent Summa Initiative for Clinical and Translational Research, Summa Health System, Akron, OH, United States
| | - Daila S Gridley
- Departments of Radiation Medicine and Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Richard E Hartman
- Department of Psychology, School of Behavioral Health, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
3
|
Liu Y, Tang L, Gao N, Diao Y, Zhong J, Deng Y, Wang Z, Jin G, Wang X. Synthetic MUC1 breast cancer vaccine containing a Toll-like receptor 7 agonist exerts antitumor effects. Oncol Lett 2020; 20:2369-2377. [PMID: 32782554 PMCID: PMC7400475 DOI: 10.3892/ol.2020.11762] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Adjuvant immunotherapy has recently emerged as a potential treatment strategy for breast cancer. The tumor-associated protein mucin 1 (MUC1) has received increasing attention due to its high expression in numerous types of common tumors, in which MUC1 acts as a cancer antigen. However, the simple mixed composition of an adjuvant and a peptide is not a sufficient rationale for a MUC1 peptide-based vaccine. The present study developed a novel Toll-like receptor 7 (TLR7) agonist-conjugated MUC1 peptide vaccine (T7-MUC1), which elicited an effective immune response and a robust antitumor effect in a mouse breast cancer model. In vitro, T7-MUC1 significantly increased the release of cytokines in mouse bone marrow dendritic cells and spleen lymphocytes, and induced the dendritic cell-cytokine-induced killer response against tumor cells with high MUC1 expression. In vivo, it was observed that the 4T1 tumor weights in mice immunized with the T7-MUC1 conjugate were reduced by ≥70% compared with those in the control group. Furthermore, the therapeutic responses in vivo were attributed to the increase in specific humoral and cellular immunity, including high antibody titers, antibody-dependent cell-mediated cytotoxicity and cytotoxic T-lymphocyte activity. The percentages of CD3+/CD8+ T-cells were significantly higher in the T7-MUC1 treatment group compared with those in the control group. Therefore, the results of the present study suggested that the T7-MUC1 vaccine inhibited tumor growth in mice and thus may have potential as a therapeutic candidate in clinical trials for breast cancer immunotherapy.
Collapse
Affiliation(s)
- Yu Liu
- International Cancer Center, National-Regional Engineering Lab for Synthetic Biology of Medicine, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong 518055, P.R. China.,Department of Research and Education, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518001, P.R. China
| | - Li Tang
- International Cancer Center, National-Regional Engineering Lab for Synthetic Biology of Medicine, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong 518055, P.R. China.,College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of The Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Ningning Gao
- International Cancer Center, National-Regional Engineering Lab for Synthetic Biology of Medicine, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong 518055, P.R. China
| | - Yuwen Diao
- International Cancer Center, National-Regional Engineering Lab for Synthetic Biology of Medicine, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong 518055, P.R. China
| | - Jingjing Zhong
- International Cancer Center, National-Regional Engineering Lab for Synthetic Biology of Medicine, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong 518055, P.R. China
| | - Yongqiang Deng
- Department of Oral and Maxillofacial Surgery, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen, Guangdong 518055, P.R. China
| | - Zhulin Wang
- International Cancer Center, National-Regional Engineering Lab for Synthetic Biology of Medicine, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong 518055, P.R. China
| | - Guangyi Jin
- International Cancer Center, National-Regional Engineering Lab for Synthetic Biology of Medicine, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong 518055, P.R. China
| | - Xiaodong Wang
- International Cancer Center, National-Regional Engineering Lab for Synthetic Biology of Medicine, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
4
|
Sánchez Ramírez J, Morera Díaz Y, Bequet-Romero M, Hernández-Bernal F, Martín Bauta Y, Selman-Housein Bernal KH, de la Torre Santos AV, Pérez de la Iglesia M, Trimiño Lorenzo L, Ayala Avila M. Specific humoral response in cancer patients treated with a VEGF-specific active immunotherapy procedure within a compassionate use program. BMC Immunol 2020; 21:12. [PMID: 32171254 PMCID: PMC7071683 DOI: 10.1186/s12865-020-0338-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/14/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND CIGB-247 is a cancer therapeutic vaccine that uses as antigen a variant of human vascular endothelial growth factor (VEGF) mixed with the bacterially-derived adjuvant VSSP. CIGB-247 has been already evaluated in two phase I clinical trials (CENTAURO and CENTAURO-2), showing to be safe and immunogenic in advanced cancer patients selected under well-defined and controlled clinical conditions. Surviving patients were submitted to monthly re-immunizations and some of them showed objective clinical benefits. Based on these results, a compassionate use program (CUP) with CIGB-247 was initiated for patients that did not meet the strict entry criteria applied for the CENTAURO and CENTAURO-2 clinical trials, but could potentially benefit from the application of this cancer therapeutic vaccine. RESULTS Polyclonal IgM, IgA and IgG antibodies specific for VEGF were detected by ELISA in serum samples from patients vaccinated with 400 μg of antigen combined with 200 μg of VSSP. Polyclonal antibody response showed no cross reactivity for other VEGF family member molecules like VEGF-C and VEGF-D. Serum from immunized individuals was able to block the binding of VEGF to its receptors VEGFR2 and VEGFR1. IgG fraction purified from immune sera shared the aforementioned characteristics and also inhibited the interaction between VEGF and the therapeutic recombinant antibody bevacizumab, an anti-angiogenic drug approved for the treatment of different tumors. No serious adverse events attributable to CIGB-247 have been documented yet in participants of the CIGB-247 CUP. The present paper is a first report of our findings concerning the humoral response and safety characteristics in treated CIGB-247 CUP cancer patients. The study has provided the unique opportunity of not only testing CIGB-247 in a broader clinical spectrum sample of Cuban cancer patients, but also within the context of the day-to-day clinical practice and treatment settings for these diseases in Cuban medical institutions. CONCLUSIONS The CIGB-247 CUP has demonstrated that immunization and follow-up of a variety of cancer patients, under day-to-day clinical practice conditions in several Cuban medical institutions, replicate our previous findings in clinical trials: CIGB-247 is safe and immunogenic.
Collapse
Affiliation(s)
- Javier Sánchez Ramírez
- Department of Pharmaceuticals, Center of Genetic Engineering and Biotechnology (CIGB), Playa, 10600 Havana, Cuba
| | - Yanelys Morera Díaz
- Department of Pharmaceuticals, Center of Genetic Engineering and Biotechnology (CIGB), Playa, 10600 Havana, Cuba
| | - Mónica Bequet-Romero
- Department of Pharmaceuticals, Center of Genetic Engineering and Biotechnology (CIGB), Playa, 10600 Havana, Cuba
| | | | | | | | | | | | | | - Marta Ayala Avila
- Department of Pharmaceuticals, Center of Genetic Engineering and Biotechnology (CIGB), Playa, 10600 Havana, Cuba
| |
Collapse
|
5
|
Sánchez Ramírez J, Bequet-Romero M, Morera Díaz Y, Hernández-Bernal F, Ayala Avila M. Does VEGF-targeted active immunotherapy induce complete abrogation of platelet VEGF levels? BMC Res Notes 2019; 12:323. [PMID: 31182141 PMCID: PMC6558718 DOI: 10.1186/s13104-019-4368-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/05/2019] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Vascular endothelial growth factor (VEGF) is involved in physiological angiogenesis, but also is considered one of the key factors that promotes tumor angiogenesis. CIGB-247 is a VEGF-based vaccine that has been evaluated in phase I clinical trial patients with advanced solid tumors. This specific active immunotherapy is able to reduce platelet VEGF levels; however it is unknown whether this effect leads to a decrease in VEGF below the levels that can be observed in healthy individuals. The objective of the present study is to investigate platelet VEGF levels in cancer patients vaccinated with CIGB-247, and then compare these values with those obtained in healthy individuals. To achieve this, platelet VEGF levels of 62 cancer patients and 93 healthy individuals were compared. Cancer patients were those individuals recruited in CENTAURO and CENTAURO-2 clinical trials. RESULTS Before vaccination, platelets of cancer patients carried more VEGF than the levels seen in platelet of healthy individuals. However, after vaccination, cancer patients had platelet VEGF values within the range established by healthy individuals, indicating that the antibody response elicited by CIGB-247 is not able to induce a complete suppression of VEGF. Vaccination with CIGB-247 helps to normalize VEGF levels within platelets.
Collapse
Affiliation(s)
- Javier Sánchez Ramírez
- Department of Pharmaceuticals, Center for Genetic Engineering and Biotechnology, Ave 31 e/158 y 190, Playa, P.O. Box 6162, Havana, Cuba.
| | - Mónica Bequet-Romero
- Department of Pharmaceuticals, Center for Genetic Engineering and Biotechnology, Ave 31 e/158 y 190, Playa, P.O. Box 6162, Havana, Cuba
| | - Yanelys Morera Díaz
- Department of Pharmaceuticals, Center for Genetic Engineering and Biotechnology, Ave 31 e/158 y 190, Playa, P.O. Box 6162, Havana, Cuba
| | - Francisco Hernández-Bernal
- Department of Clinical Research, Center for Genetic Engineering and Biotechnology, Ave 31 e/158 y 190, Playa, P.O. Box 6162, Havana, Cuba
| | - Marta Ayala Avila
- Department of Pharmaceuticals, Center for Genetic Engineering and Biotechnology, Ave 31 e/158 y 190, Playa, P.O. Box 6162, Havana, Cuba
| |
Collapse
|
6
|
Sánchez Ramírez J, Bequet-Romero M, Morera Díaz Y, Hernández-Bernal F, de la Torre Santos A, Selman-Housein Bernal KH, Martín Bauta Y, Bermúdez Badell CH, Limonta Fernández M, Ayala Avila M. Evaluation of methodologies to determine the effect of specific active immunotherapy on VEGF levels in phase I clinical trial patients with advanced solid tumors. Heliyon 2018; 4:e00906. [PMID: 30426104 PMCID: PMC6223189 DOI: 10.1016/j.heliyon.2018.e00906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/16/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023] Open
Abstract
Two phase I clinical trials were conducted to evaluate, among other parameters, the humoral response elicited by a vascular endothelial growth factor (VEGF)-based therapeutic vaccine in cancer patients with advanced solid tumors. VEGF reduction was studied using an indirect methodology named as “Platelet VEGF”. This methodology is based on the estimation of VEGF within platelets by subtracting the plasma VEGF level from the serum level and dividing this by the platelet count, and then this latter expression is additionally corrected by the hematocrit. However, there is broad debate, whether serum or plasma VEGF or platelet-derived VEGF measurements is the most appropriate strategy to study the changes that occur on ligand bioavailability when patients are submitted to a VEGF-based immunotherapy. The current research is a retrospective study evaluating the changes on VEGF levels in serum and plasma as well as platelet-derived measurements. Changes in VEGF levels were related with the humoral response seen in cancer patients after an active immunotherapy with a VEGF-based vaccine. The present study indicates that “Platelet VEGF” is the most reliable methodology to investigate the effect of VEGF-based immunotherapies on ligand bioavailability. “Platelet VEGF” was associated with those groups of individuals that exhibited the best specific humoral response and the variation of “Platelet VEGF” showed the strongest negative correlation with VEGF-specific IgG antibody levels. This methodology will be very useful for the investigation of this VEGF-based vaccine in phase II clinical trials and could be applied to immunotherapies directed to other growth factors that are actively sequestered by platelets.
Collapse
Affiliation(s)
- Javier Sánchez Ramírez
- Department of Pharmaceuticals, Center for Genetic Engineering and Biotechnology, Playa, Havana, Cuba
| | - Mónica Bequet-Romero
- Department of Pharmaceuticals, Center for Genetic Engineering and Biotechnology, Playa, Havana, Cuba
| | - Yanelys Morera Díaz
- Department of Pharmaceuticals, Center for Genetic Engineering and Biotechnology, Playa, Havana, Cuba
| | | | | | | | - Yenima Martín Bauta
- Department of Clinical Research, Center for Genetic Engineering and Biotechnology, Playa, Havana, Cuba
| | - Cimara H Bermúdez Badell
- Department of Clinical Research, Center for Genetic Engineering and Biotechnology, Playa, Havana, Cuba
| | - Miladys Limonta Fernández
- Department of Pharmaceuticals, Center for Genetic Engineering and Biotechnology, Playa, Havana, Cuba
| | - Marta Ayala Avila
- Department of Pharmaceuticals, Center for Genetic Engineering and Biotechnology, Playa, Havana, Cuba
| |
Collapse
|
7
|
Wentink MQ, Verheul HM, Griffioen AW, Schafer KA, McPherson S, Early RJ, van der Vliet HJ, de Gruijl TD. A safety and immunogenicity study of immunization with hVEGF 26-104 /RFASE in cynomolgus monkeys. Vaccine 2018. [DOI: 10.1016/j.vaccine.2018.02.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Morera-Díaz Y, Gavilondo JV, Bequet-Romero M, Sánchez Ramírez J, Hernández-Bernal F, Selman-Housein KH, Perez L, Ayala-Ávila M. Specific active immunotherapy with the HEBERSaVax VEGF-based cancer vaccine: From bench to bedside. Semin Oncol 2018; 45:68-74. [DOI: 10.1053/j.seminoncol.2018.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/12/2018] [Accepted: 03/18/2018] [Indexed: 12/31/2022]
|