1
|
Rajan S, Shalygin A, Gudermann T, Chubanov V, Dietrich A. TRPM2 channels are essential for regulation of cytokine production in lung interstitial macrophages. J Cell Physiol 2024; 239:e31322. [PMID: 38785126 DOI: 10.1002/jcp.31322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Interstitial macrophages (IMs) are essential for organ homeostasis, inflammation, and autonomous immune response in lung tissues, which are achieved through polarization to a pro-inflammatory M1 and an M2 state for tissue repair. Their remote parenchymal localization and low counts, however, are limiting factors for their isolation and molecular characterization of their specific role during tissue inflammation. We isolated viable murine IMs in sufficient quantities by coculturing them with stromal cells and analyzed mRNA expression patterns of transient receptor potential (TRP) channels in naïve and M1 polarized IMs after application of lipopolysaccharide (LPS) and interferon γ. M-RNAs for the second member of the melastatin family of TRP channels, TRPM2, were upregulated in the M1 state and functional channels were identified by their characteristic currents induced by ADP-ribose, its specific activator. Most interestingly, cytokine production and secretion of interleukin-1α (IL-1α), IL-6 and tumor necrosis factor-α in M1 polarized but TRPM2-deficient IMs was significantly enhanced compared to WT cells. Activation of TRPM2 channels by ADP-ribose (ADPR) released from mitochondria by ROS-produced H2O2 significantly increases plasma membrane depolarization, which inhibits production of reactive oxygen species by NADPH oxidases and reduces cytokine production and secretion in a negative feedback loop. Therefore, TRPM2 channels are essential for the regulation of cytokine production in M1-polarized murine IMs. Specific activation of these channels may promote an anti-inflammatory phenotype and prevent a harmful cytokine storm often observed in COVID-19 patients.
Collapse
Affiliation(s)
- Suhasini Rajan
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU-Munich, Munich, Germany
| | - Alexey Shalygin
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU-Munich, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU-Munich, Munich, Germany
| | - Vladimir Chubanov
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU-Munich, Munich, Germany
| | - Alexander Dietrich
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU-Munich, Munich, Germany
| |
Collapse
|
2
|
Arlat A, Renoud ML, Nakhle J, Thomas M, Fontaine J, Arnaud E, Dray C, Authier H, Monsarrat P, Coste A, Casteilla L, Ousset M, Cousin B. Generation of functionally active resident macrophages from adipose tissue by 3D cultures. Front Immunol 2024; 15:1356397. [PMID: 38975341 PMCID: PMC11224291 DOI: 10.3389/fimmu.2024.1356397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/31/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction Within adipose tissue (AT), different macrophage subsets have been described, which played pivotal and specific roles in upholding tissue homeostasis under both physiological and pathological conditions. Nonetheless, studying resident macrophages in-vitro poses challenges, as the isolation process and the culture for extended periods can alter their inherent properties. Methods Stroma-vascular cells isolated from murine subcutaneous AT were seeded on ultra-low adherent plates in the presence of macrophage colony-stimulating factor. After 4 days of culture, the cells spontaneously aggregate to form spheroids. A week later, macrophages begin to spread out of the spheroid and adhere to the culture plate. Results This innovative three-dimensional (3D) culture method enables the generation of functional mature macrophages that present distinct genic and phenotypic characteristics compared to bone marrow-derived macrophages. They also show specific metabolic activity and polarization in response to stimulation, but similar phagocytic capacity. Additionally, based on single-cell analysis, AT-macrophages generated in 3D culture mirror the phenotypic and functional traits of in-vivo AT resident macrophages. Discussion Our study describes a 3D in-vitro system for generating and culturing functional AT-resident macrophages, without the need for cell sorting. This system thus stands as a valuable resource for exploring the differentiation and function of AT-macrophages in vitro in diverse physiological and pathological contexts.
Collapse
Affiliation(s)
- Adèle Arlat
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Marie-Laure Renoud
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Jean Nakhle
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Miguel Thomas
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Jessica Fontaine
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Emmanuelle Arnaud
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Cédric Dray
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Hélène Authier
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Paul Monsarrat
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
- Dental Faculty and Hospital of Toulouse – Toulouse Institute of Oral Medicine and Science, CHU de Toulouse, Toulouse, France
- Artificial and Natural Intelligence Toulouse Institute (ANITI), Toulouse, France
| | - Agnès Coste
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Louis Casteilla
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Marielle Ousset
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| | - Béatrice Cousin
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, Etablissement Français du Sang (EFS), Ecole Nationale Vétérinaire de Touloue (ENVT), Toulouse, France
| |
Collapse
|
3
|
Hiramatsu K, Ikeda R, Kawaji S, Ueno Y, Nagata R, Hayashi KG, Iga K, Yoshioka M, Takenouchi T. Isolation and propagation of bovine blood-derived macrophages using a mixed culture with bovine endothelial B46 cells. Cell Biol Int 2024; 48:76-83. [PMID: 37920877 DOI: 10.1002/cbin.12102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/01/2023] [Accepted: 10/14/2023] [Indexed: 11/04/2023]
Abstract
Macrophages are innate immune cells with multiple functions such as phagocytosis, cytokine production, and antigen presentation. Since macrophages play critical roles in some bacterial infectious diseases in cattle, including tuberculosis, paratuberculosis, and brucellosis, the in vitro culturing of bovine macrophages is useful for evaluating host-pathogen interactions at the cellular and molecular levels. We have previously reported the establishment of two immortalized bovine liver sinusoidal cell lines, endothelial B46 cells and myofibroblast-like A26 cells (Cell Biology International, 40, 1372-1379, 2016). In this study, we investigated the use of these cell lines as feeder cells that support the proliferation of bovine blood-derived macrophages (BBMs). Notably, the B46 cell line efficiently acts as feeder cells for the propagation of BBMs. Compared with primary cultured vascular endothelial cells, the infinite proliferation ability of B46 cells is more beneficial for preparing confluent feeder layers. In conclusion, this study provides a simple and efficient protocol for the isolation and propagation of BBMs using a primary mixed culture of bovine whole blood with B46 feeder cells. Isolated BBMs are expected to be useful for developing in vitro models for studying the interactions between bovine pathogens and host immune cells.
Collapse
Affiliation(s)
- Kanae Hiramatsu
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Rina Ikeda
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Satoko Kawaji
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Yuichi Ueno
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Reiko Nagata
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Ken-Go Hayashi
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Kosuke Iga
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Miyako Yoshioka
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Ogawa K, Isaji O. Testosterone upregulates progesterone production in mouse testicular interstitial macrophages, whose niche likely provides properties of progesterone production to tissue-resident macrophages. Reprod Biol 2023; 23:100767. [PMID: 37201477 DOI: 10.1016/j.repbio.2023.100767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/20/2023]
Abstract
The niche of the macrophages (Mø) residence concept is now accepted; Mø colonize tissue/organ-specific microenvironments (niches) that shape Mø to perform tissue/organ-specific functions. Recently, we developed a simple propagation method for tissue-resident Mø by mixed culture with the respective tissue/organ-residing cells acting as the niche and demonstrated that testicular interstitial Mø propagated by mixed culture with testicular interstitial cells showing properties of Leydig cells in culture (we termed them "testicular Mø niche cells") produce progesterone (P4) de novo. Based on previous evidence of testosterone production downregulation in Leydig cells by P4 and androgen receptor expression in testicular Mø, we proposed a local feedback loop of testosterone production between Leydig cells and testicular interstitial Mø. To verify this hypothesis, we further examined P4 de novo production in propagated testicular interstitial Mø treated with testosterone using ELISA and found that exogenous testosterone upregulates P4 production in testicular interstitial Mø. Thus, testosterone production, which is controlled by the local feedback loop, likely becomes more reliable. Moreover, we examined whether tissue-resident Mø other than testicular interstitial Mø can be transformed into P4-producing cells by mixed culture with testicular Mø niche cells: using RT-PCR and ELISA we found that splenic Mø newly acquired P4 production properties by mixed-culturing with testicular Mø niche cells for 7 days. This likely indicates the substantiative in vitro evidence on the niche concept and possibly opens the door to using P4-secreting Mø as a transplantation tool for clinical application due to the migratory property of Mø into inflammatory sites.
Collapse
Affiliation(s)
- Kazushige Ogawa
- Laboratory of Veterinary Anatomy, Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan.
| | - Outa Isaji
- Laboratory of Veterinary Anatomy, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
5
|
Ogawa K, Tanida T. Mixed-Culture Propagation of Uterine-Tissue-Resident Macrophages and Their Expression Properties of Steroidogenic Molecules. Biomedicines 2023; 11:biomedicines11030985. [PMID: 36979964 PMCID: PMC10046189 DOI: 10.3390/biomedicines11030985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Tissue-resident macrophages (Mø) play tissue/organ-specific roles, and the physiological/pathological implications of uterine Mø in fertility and infertility are not yet fully understood. Herein, we report a simple propagation method for tissue-resident Mø by mixed culture with the respective tissue/organ-residing cells as the niche. We successfully propagated mouse uterine Mø by mixed culture with fibroblastic cells that exhibited properties of endometrial stromal cells. Propagated mouse uterine Mø were CD206- and arginase-1-positive; iNOS- and MHC-II-negative, indicating M2 polarization; and highly phagocytic, similar to endometrial Mø. Furthermore, uterine Mø were observed to express steroidogenic molecules including SRD5A1 and exhibited gap junction formation, likely with endometrial stromal cells. Accordingly, uterine Mø propagated by mixed culture may provide a new tool for studying immune-endocrine interactions related to fertility and infertility, particularly androgen's intracrine actions in preparing the uterine tissue environment to support implantation and pregnancy as well as in the etiology of endometriosis.
Collapse
Affiliation(s)
- Kazushige Ogawa
- Laboratory of Veterinary Anatomy, Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Takashi Tanida
- Laboratory of Veterinary Anatomy, Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
6
|
Kohara S, Ogawa K. Eph/Ephrin Promotes the Adhesion of Liver Tissue-Resident Macrophages to a Mimicked Surface of Liver Sinusoidal Endothelial Cells. Biomedicines 2022; 10:biomedicines10123234. [PMID: 36551990 PMCID: PMC9775184 DOI: 10.3390/biomedicines10123234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Kupffer cells are maintained via self-renewal in specific microenvironmental niches, primarily the liver sinusoidal endothelial cells (LSECs). In this study, we propagated tissue-resident macrophages (Mø) from mouse liver using mixed culture with hepatic fibroblastic cells. Propagated liver Mø express Id3, Lxra and Spic transcription factors, which are required for Kupffer cell characterization. Thus, Kupffer cell properties are likely to be maintained in liver Mø propagated using mixed culture with fibroblastic cells. We revealed (i) gene expression of certain Eph receptors and ephrin ligands including EphA2, ephrin-A1, EphB4, and ephrin-B1 in propagated liver Mø and primary LSECs, (ii) immunohistochemical localization of these Eph/ephrin member molecules indicating common expression in Kupffer cells and LSECs, and (iii) surface expression of several integrin α and β subunits, including α4β1, αLβ2, αMβ2, and αXβ2 integrin in propagated liver Mø and that of the corresponding ligands ICAM-1 and VCAM-1 in primary LSECs. Moreover, EphA/ephrin-A and EphB/ephrin-B interactions promoted liver Mø adhesion to the ICAM-1-adsorbed surface, which mimicked that of LSECs and may be implicated in the residence of Kupffer cells in the liver sinusoid. Further studies on regulating the residence and regeneration of Kupffer cells in related hepatic disorders are required to validate our findings.
Collapse
Affiliation(s)
- Sho Kohara
- Laboratory of Veterinary Anatomy, College of Life, Environment and Advanced Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Kazushige Ogawa
- Laboratory of Veterinary Anatomy, Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan
- Correspondence:
| |
Collapse
|
7
|
Abstract
Understanding how macrophages promote myocardial repair can help create new therapies for infarct repair. We aimed to determine what mechanisms underlie the reparative properties of macrophages. Cytokine arrays revealed that neonatal cardiac macrophages from the injured neonatal heart secreted high amounts of osteopontin (OPN). In vitro, recombinant OPN stimulated cardiac cell outgrowth, cardiomyocyte (CM) cell-cycle re-entry, and CM migration. In addition, OPN induced nuclear translocation of the cytoplasmatic yes-associated protein 1 (YAP1) and upregulated transcriptional factors and cell-cycle genes. Significantly, by blocking the OPN receptor CD44, we eliminated the effects of OPN on CMs. OPN also activated the proliferation and migration of non-CM cells: endothelial cells and cardiac mesenchymal stromal cells in vitro. Notably, the significant role of OPN in myocardial healing was demonstrated by impaired healing in OPN-deficient neonatal hearts. Finally, in the adult mice, a single injection of OPN into the border of the ischemic zone induced CM cell-cycle re-entry, improved scar formation, local and global cardiac function, and LV remodelling 30 days after MI. In summary, we have shown, for the first time, that recombinant OPN activates cell-cycle re-entry in CMs. In addition, recombinant OPN stimulates multiple cardiac cells and improves scar formation, LV remodelling, and regional and global function after MI. Therefore, we propose OPN as a new cell-free therapy to optimize infarct repair.
Collapse
|
8
|
Takenouchi T, Masujin K, Miyazaki A, Suzuki S, Takagi M, Kokuho T, Uenishi H. Isolation and immortalization of macrophages derived from fetal porcine small intestine and their susceptibility to porcine viral pathogen infections. Front Vet Sci 2022; 9:919077. [PMID: 35923820 PMCID: PMC9339801 DOI: 10.3389/fvets.2022.919077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Macrophages are a heterogeneous population of cells that are present in all vertebrate tissues. They play a key role in the innate immune system, and thus, in vitro cultures of macrophages provide a valuable model for exploring their tissue-specific functions and interactions with pathogens. Porcine macrophage cultures are often used for the identification and characterization of porcine viral pathogens. Recently, we have developed a simple and efficient method for isolating primary macrophages from the kidneys and livers of swine. Here, we applied this protocol to fetal porcine intestinal tissues and demonstrated that porcine intestinal macrophages (PIM) can be isolated from mixed primary cultures of porcine small intestine-derived cells. Since the proliferative capacity of primary PIM is limited, we attempted to immortalize them by transferring the SV40 large T antigen and porcine telomerase reverse transcriptase genes using lentiviral vectors. Consequently, immortalized PIM (IPIM) were successfully generated and confirmed to retain various features of primary PIM. We further revealed that IPIM are susceptible to infection by the African swine fever virus and the porcine reproductive and respiratory syndrome virus and support their replication. These findings suggest that the IPIM cell line is a useful tool for developing in vitro models that mimic the intestinal mucosal microenvironments of swine, and for studying the interactions between porcine pathogens and host immune cells.
Collapse
Affiliation(s)
- Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
- *Correspondence: Takato Takenouchi
| | - Kentaro Masujin
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Japan
- Kentaro Masujin
| | - Ayako Miyazaki
- Division of Infectious Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
- Ayako Miyazaki
| | - Shunichi Suzuki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Michihiro Takagi
- Division of Infectious Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Takehiro Kokuho
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Japan
| | - Hirohide Uenishi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
9
|
Yamauchi S, Yamamoto K, Ogawa K. Testicular Macrophages Produce Progesterone De Novo Promoted by cAMP and Inhibited by M1 Polarization Inducers. Biomedicines 2022; 10:biomedicines10020487. [PMID: 35203696 PMCID: PMC8962427 DOI: 10.3390/biomedicines10020487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
Tissue-resident macrophages (Mø) originating from fetal precursors are maintained via self-renewal under tissue-/organ-specific microenvironments. Herein, we developed a propagation method of testicular tissue-resident Mø in mixed primary culture with interstitial cells composed of Leydig cells from the mouse testis. We examined Mø/monocyte marker expression in propagated testicular Mø using flow cytometry; gene expression involved in testosterone production as well as spermatogenesis in testicular Mø and interstitial cells propagated by mixed culture via RT-PCR; and progesterone (P4) de novo production in propagated testicular Mø treated with cyclic adenosine monophosphate, isoproterenol, and M1 polarization inducers using ELISA. Mø marker expression patterns in the propagated Mø were identical to those in testicular interstitial Mø with a CD206-positive/major histocompatibility complex (MHC) II-negative M2 phenotype. We identified the genes involved in P4 production, transcription factors essential for steroidogenesis, and androgen receptors, and showed that P4 production de novo was upregulated by cyclic adenosine monophosphate and β2-adrenergic stimulation and was downregulated by M1 polarization stimulation in Mø. We also demonstrated the formation of gap junctions between Leydig cells and interstitial Mø. This is the first study to demonstrate de novo P4 production in tissue-resident Mø. Based on previous studies revealing inhibition of testosterone production by P4, we propose that local feedback machinery between Leydig cells and adjacent interstitial Mø regulates testosterone production. The results presented in this study can facilitate future studies on immune-endocrine interactions in gonads that are related to infertility and hormonal disorders.
Collapse
Affiliation(s)
- Sawako Yamauchi
- Laboratory of Veterinary Anatomy, College of Life, Environment and Advanced Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano 598-8531, Osaka, Japan; (S.Y.); (K.Y.)
| | - Kousuke Yamamoto
- Laboratory of Veterinary Anatomy, College of Life, Environment and Advanced Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano 598-8531, Osaka, Japan; (S.Y.); (K.Y.)
| | - Kazushige Ogawa
- Laboratory of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano 598-8531, Osaka, Japan
- Correspondence:
| |
Collapse
|
10
|
Waleczek FJG, Sansonetti M, Xiao K, Jung M, Mitzka S, Dendorfer A, Weber N, Perbellini F, Thum T. Chemical and mechanical activation of resident cardiac macrophages in the living myocardial slice ex vivo model. Basic Res Cardiol 2022; 117:63. [PMID: 36449104 PMCID: PMC9712328 DOI: 10.1007/s00395-022-00971-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022]
Abstract
Resident cardiac macrophages (rcMACs) are among the most abundant immune cells in the heart. Plasticity and activation are hallmarks of rcMACs in response to changes in the microenvironment, which is essential for in vitro experimentation. The in vivo investigation is confounded by the infiltration of other cells hindering direct studies of rcMACs. As a tool to investigate rcMACs, we applied the ex vivo model of living myocardial slices (LMS). LMS are ultrathin ex vivo multicellular cardiac preparations in which the circulatory network is interrupted. The absence of infiltration in this model enables the investigation of the rcMACs response to immunomodulatory and mechanical stimulations. Such conditions were generated by applying interferon-gamma (IFN-γ) or interleukine-4 (IL-4) and altering the preload of cultured LMS, respectively. The immunomodulatory stimulation of the LMS induced alterations of the gene expression pattern without affecting tissue contractility. Following 24 h culture, low input RNA sequencing of rcMACs isolated from LMS was used for gene ontology analysis. Reducing the tissue stretch (unloading) of LMS altered the gene ontology clusters of isolated rcMACs with intermediate semantic similarity to IFN-γ triggered reaction. Through the overlap of genes affected by IFN-γ and unloading, we identified Allograft inflammatory factor 1 (AIF-1) as a potential marker gene for inflammation of rcMACs as significantly altered in whole immunomodulated LMS. MicroRNAs associated with the transcriptomic changes of rcMACs in unloaded LMS were identified in silico. Here, we demonstrate the approach of LMS to understand load-triggered cardiac inflammation and, thus, identify potential translationally important therapeutic targets.
Collapse
Affiliation(s)
- F. J. G. Waleczek
- grid.10423.340000 0000 9529 9877Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - M. Sansonetti
- grid.10423.340000 0000 9529 9877Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - K. Xiao
- grid.10423.340000 0000 9529 9877Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany ,grid.4561.60000 0000 9261 3939Fraunhofer Institute ITEM, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - M. Jung
- grid.10423.340000 0000 9529 9877Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - S. Mitzka
- grid.10423.340000 0000 9529 9877Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany ,grid.4561.60000 0000 9261 3939Fraunhofer Institute ITEM, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - A. Dendorfer
- grid.5252.00000 0004 1936 973XWalter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University München, Marchioninistraße 27, 81377 Munich, Germany
| | - N. Weber
- grid.10423.340000 0000 9529 9877Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - F. Perbellini
- grid.10423.340000 0000 9529 9877Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - T. Thum
- grid.10423.340000 0000 9529 9877Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany ,grid.4561.60000 0000 9261 3939Fraunhofer Institute ITEM, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
11
|
Understanding and improving cellular immunotherapies against cancer: From cell-manufacturing to tumor-immune models. Adv Drug Deliv Rev 2021; 179:114003. [PMID: 34653533 DOI: 10.1016/j.addr.2021.114003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022]
Abstract
The tumor microenvironment (TME) is shaped by dynamic metabolic and immune interactions between precancerous and cancerous tumor cells and stromal cells like epithelial cells, fibroblasts, endothelial cells, and hematopoietically-derived immune cells. The metabolic states of the TME, including the hypoxic and acidic niches, influence the immunosuppressive phenotypes of the stromal and immune cells, which confers resistance to both host-mediated tumor killing and therapeutics. Numerous in vitro TME platforms for studying immunotherapies, including cell therapies, are being developed. However, we do not yet understand which immune and stromal components are most critical and how much model complexity is needed to answer specific questions. In addition, scalable sourcing and quality-control of appropriate TME cells for reproducibly manufacturing these platforms remain challenging. In this regard, lessons from the manufacturing of immunomodulatory cell therapies could provide helpful guidance. Although immune cell therapies have shown unprecedented results in hematological cancers and hold promise in solid tumors, their manufacture poses significant scale, cost, and quality control challenges. This review first provides an overview of the in vivo TME, discussing the most influential cell populations in the tumor-immune landscape. Next, we summarize current approaches for cell therapies against cancers and the relevant manufacturing platforms. We then evaluate current immune-tumor models of the TME and immunotherapies, highlighting the complexity, architecture, function, and cell sources. Finally, we present the technical and fundamental knowledge gaps in both cell manufacturing systems and immune-TME models that must be addressed to elucidate the interactions between endogenous tumor immunity and exogenous engineered immunity.
Collapse
|
12
|
Tsurutani M, Horie H, Ogawa K. Cell Properties of Lung Tissue-Resident Macrophages Propagated by Co-Culture with Lung Fibroblastic Cells from C57BL/6 and BALB/c Mice. Biomedicines 2021; 9:1241. [PMID: 34572425 PMCID: PMC8468995 DOI: 10.3390/biomedicines9091241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 12/23/2022] Open
Abstract
Tissue-resident macrophages (Mø) originating from foetal precursors are maintained by self-renewal under tissue/organ-specific microenvironments (niches). We recently developed a simple propagation method applicable to tissue-resident Mø by co-culturing. Here, we examined the properties of lung tissue-resident Mø propagated by co-culturing with lung interstitial cells. The intracardially and intratracheally perfused lung from BALB/c and C57BL/6 mice could minimise the contamination of alveolar Mø and lung monocytes. Lung tissue-resident Mø could be largely propagated under standard culture media along with the propagation of lung interstitial cells demonstrating a fibroblastic morphology. Propagated lung Mø showed characteristic expression properties for Mø/monocyte markers: high expressions of CD11b, CD64 and CD206; substantial expressions of Mertk; and negative expressions of Ly6C, MHC II and Siglec-F. These properties fit with those of lung interstitial Mø of a certain population that can undergo self-renewal. Propagated fibroblastic cells by co-culturing with lung Mø possessed niche properties such as Csf1 and Tgfb1 expression. Propagated lung Mø from both the mouse types were polarised to an M2 phenotype highly expressing arginase 1 without M2 inducer treatment, whereas the M1 inducers significantly increased the iNOS-positive cell percentages in C57BL/6 mice relative to those in BALB/c mice. This is the first study to demonstrate fundamental properties of lung tissue-resident Mø propagated by co-culturing. Propagated lung Mø showing features of lung interstitial Mø can serve as an indispensable tool for investigating SARS-CoV-2 diseases, although lung interstitial Mø have gained little attention in terms of their involvement in SARS-CoV-2 disease pathology, in contrast to alveolar and recruited Mø.
Collapse
Affiliation(s)
- Mayu Tsurutani
- Laboratory of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan;
| | - Haruka Horie
- Laboratory of Veterinary Anatomy, College of Life, Environment and Advanced Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan;
| | - Kazushige Ogawa
- Laboratory of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan;
| |
Collapse
|
13
|
Tang LJW, Zaseela A, Toh CCM, Adine C, Aydar AO, Iyer NG, Fong ELS. Engineering stromal heterogeneity in cancer. Adv Drug Deliv Rev 2021; 175:113817. [PMID: 34087326 DOI: 10.1016/j.addr.2021.05.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/19/2021] [Accepted: 05/29/2021] [Indexed: 02/09/2023]
Abstract
Based on our exponentially increasing knowledge of stromal heterogeneity from advances in single-cell technologies, the notion that stromal cell types exist as a spectrum of unique subpopulations that have specific functions and spatial distributions in the tumor microenvironment has significant impact on tumor modeling for drug development and personalized drug testing. In this Review, we discuss the importance of incorporating stromal heterogeneity and tumor architecture, and propose an overall approach to guide the reconstruction of stromal heterogeneity in vitro for tumor modeling. These next-generation tumor models may support the development of more precise drugs targeting specific stromal cell subpopulations, as well as enable improved recapitulation of patient tumors in vitro for personalized drug testing.
Collapse
Affiliation(s)
- Leon Jia Wei Tang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Ayshath Zaseela
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | | | - Christabella Adine
- Department of Biomedical Engineering, National University of Singapore, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore
| | - Abdullah Omer Aydar
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - N Gopalakrishna Iyer
- National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Singapore.
| | - Eliza Li Shan Fong
- Department of Biomedical Engineering, National University of Singapore, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore.
| |
Collapse
|
14
|
Saeki N, Imai Y. Reprogramming of synovial macrophage metabolism by synovial fibroblasts under inflammatory conditions. Cell Commun Signal 2020; 18:188. [PMID: 33256735 PMCID: PMC7708128 DOI: 10.1186/s12964-020-00678-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background Macrophages adapt to microenvironments, and change metabolic status and functions to regulate inflammation and/or maintain homeostasis. In joint cavities, synovial macrophages (SM) and synovial fibroblasts (SF) maintain homeostasis. However, under inflammatory conditions such as rheumatoid arthritis (RA), crosstalk between SM and SF remains largely unclear. Methods Immunofluorescent staining was performed to identify localization of SM and SF in synovium of collagen antibody induced arthritis (CAIA) model mice and normal mice. Murine arthritis tissue-derived SM (ADSM), arthritis tissue-derived SF (ADSF) and normal tissue-derived SF (NDSF) were isolated and the purity of isolated cells was examined by RT-qPCR and flow cytometry analysis. RNA-seq was conducted to reveal gene expression profile in ADSM, NDSF and ADSF. Cellular metabolic status and expression levels of metabolic genes and inflammatory genes were analyzed in ADSM treated with ADSM-conditioned medium (ADSM-CM), NDSF-CM and ADSF-CM.
Results SM and SF were dispersed in murine hyperplastic synovium. Isolations of ADSM, NDSF and ADSF to analyze the crosstalk were successful with high purity. From gene expression profiles by RNA-seq, we focused on secretory factors in ADSF-CM, which can affect metabolism and inflammatory activity of ADSM. ADSM exposed to ADSF-CM showed significantly upregulated glycolysis and mitochondrial respiration as well as glucose and glutamine uptake relative to ADSM exposed to ADSM-CM and NDSF-CM. Furthermore, mRNA expression levels of metabolic genes, such as Slc2a1, Slc1a5, CD36, Pfkfb1, Pfkfb3 and Irg1, were significantly upregulated in ADSM treated with ADSF-CM. Inflammation marker genes, including Nos2, Tnf, Il-1b and CD86, and the anti-inflammatory marker gene, Il-10, were also substantially upregulated by ADSF-CM. On the other hand, NDSF-CM did not affect metabolism and gene expression in ADSM. Conclusions These findings suggest that crosstalk between SM and SF under inflammatory conditions can induce metabolic reprogramming and extend SM viability that together can contribute to chronic inflammation in RA. Video Abstract
Collapse
Affiliation(s)
- Noritaka Saeki
- Division of Laboratory Animal Research, Advanced Research Support Center, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan. .,Division of Integrative Pathophysiology, Proteo-Science Center, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Yuuki Imai
- Division of Laboratory Animal Research, Advanced Research Support Center, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan. .,Division of Integrative Pathophysiology, Proteo-Science Center, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan. .,Department of Pathophysiology, Graduate School of Medicine, Ehime University, Ehime, Japan.
| |
Collapse
|