1
|
Tew HX, Subramani P, Chan YY, Nik Mohd Noor NZ, Guruswamy P. Challenges and Considerations in Selecting Animal Models for Evaluating a Live, Cold-Chain-Free, Dual-Use Vaccine (MyChol) for Diarrhoeal Diseases: A Comprehensive Review. Malays J Med Sci 2024; 31:41-55. [PMID: 39416734 PMCID: PMC11477463 DOI: 10.21315/mjms2024.31.5.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/07/2024] [Indexed: 10/19/2024] Open
Abstract
Diarrhoeal diseases are the second leading cause of death for children under 5 years old in 69 low- and middle-income countries, with an annual economic burden of US$ 4 billion and over 525,000 lives lost. Cholera and enterotoxigenic Escherichia coli (ETEC) traveller's diarrhoea are major diarrhoeal diseases caused by Vibrio cholerae (O1 and O139 serogroups) and ETEC, which have similar pathogeneses and can co-infect. There is no exclusive vaccine for ETEC, but cholera vaccines containing the cholera toxin B (CT-B) component offer short-term cross-protection. However, licensed oral cholera vaccines are expensive due to cold-chain supplies and the need for multiple doses. A cost-effective, dual-protection, live, cold-chain-free vaccine is, therefore, required for vaccination campaigns in low-resource settings, and MyChol - a prototype cold-chain-free live attenuated cholera vaccine, targeting V. cholerae O139 and ETEC H10407 - was developed in this context. The vaccine was evaluated in three animal models (Sprague Dawley [SD] rats, BALB/c mice and New Zealand white rabbits) for safety, colonisation capacity, reactogenicity and immunogenicity against challenge strains. In suckling mice, MyChol displayed high colonisation potential compared to unformulated VCUSM14P (the vaccine candidate) and wild-type O139. In the acute toxicity assessment, the SD rats with the highest MyChol dose (1 × 107 colony-forming unit [CFU]/kg) demonstrated no adverse effects or mortality. Mice vaccinated with MyChol exhibited elevated antibody levels, including anti-CT, anti-heat-labile enterotoxin (LT), anti-CT-B and anti-LT-B. Anti-CT antibodies neutralised LT toxin in ETEC H10407 in challenge studies and cross-protected against ETEC H10407 in both mice and rabbits, preventing weight loss and diarrhoea. Ileal loop experiments in rabbits and BALB/c mice showed no reactogenicity. This review, based on our previous research, therefore provides valuable insights into improving the selection of animal models to advance preclinical evaluations of diarrhoeal vaccines.
Collapse
Affiliation(s)
- Hui Xian Tew
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | | | - Yean Yean Chan
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nik Zuraina Nik Mohd Noor
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Prabhakaran Guruswamy
- Centre of Excellence for Vaccine Development (CoEVD), AIMST University, Kedah, Malaysia
| |
Collapse
|
2
|
Ho N, Tang K, Ngo V, Livits I, Morrel A, Noor B, Tseng K, Chung EJ. Nanoparticles-based technologies for cholera detection and therapy. SLAS Technol 2023; 28:384-392. [PMID: 37925157 DOI: 10.1016/j.slast.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/25/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
Cholera is a waterborne disease caused by Vibrio cholerae bacteria generally transmitted through contaminated food or water sources. Although it has been eradicated in most Western countries, cholera continues to be a highly transmitted and lethal disease in several African and Southeast Asian countries. Unfortunately, current diagnostic methods for cholera have challenges including high cost or delayed diagnoses that can lead to increased disease transmission during pandemics, while current treatments such as therapeutic drugs and vaccines have limited efficacy against drug-resistant serogroups of Vibrio cholerae. As such, new solutions that can treat cholera in an efficient manner that avoids Vibrio cholerae's adaptive immunity are needed. Nanoparticles (NPs) are a suitable platform for enhancing current theranostic tools because of their biocompatibility and ability to improve drug circulation and targeting. Nanoparticle surfaces can also be modified with various protein receptors targeting cholera toxins produced by Vibrio cholerae. This review will address recent developments in diagnostics, therapeutics, and prevention against cholera particularly focusing on the use of metal-based nanoparticles and organic nanoparticles. We will then discuss future directions regarding nanoparticle research for cholera.
Collapse
Affiliation(s)
- Nathan Ho
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, United States
| | - Kaitlyn Tang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, United States
| | - Vy Ngo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, United States
| | - Isabella Livits
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, United States
| | - Alayne Morrel
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, United States
| | - Bari Noor
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, United States
| | - Kaylee Tseng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, United States
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, United States; Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, United States; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States; Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, United States.
| |
Collapse
|
3
|
Dual-Use Vaccine for Diarrhoeal Diseases: Cross-Protective Immunogenicity of a Cold-Chain-Free, Live-Attenuated, Oral Cholera Vaccine against Enterotoxigenic Escherichia coli (ETEC) Challenge in BALB/c Mice. Vaccines (Basel) 2022; 10:vaccines10122161. [PMID: 36560571 PMCID: PMC9787504 DOI: 10.3390/vaccines10122161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
In low- and middle-income countries, diarrhoeal diseases are the second most common cause of mortality in children, mainly caused by enterotoxin-producing bacteria, such as Shigella, Vibrio, Salmonella, and Escherichia coli. Cholera and traveller's diarrhoea are caused by Vibrio cholerae (O1 and O139 serogroups) and enterotoxigenic Escherichia coli (ETEC), respectively. The cholera toxin (CT) produced by V. cholerae and the heat-labile enterotoxin (LT) of ETEC are closely related by structure, function, and the immunological response to them. There is no exclusive vaccine for ETEC; however, cholera vaccines based on the CT-B component elicit a short-term cross-protection against ETEC infection. In this context, the cross-protective efficacy of MyCholTM, a prototype cold-chain-free, live-attenuated, oral cholera vaccine against V. cholerae O139 was evaluated in BALB/c mice. The 100% lethal dose (LD100) of 109 CFU/mL of the ETEC H10407 strain was used for the challenge studies. The mice immunised with MyChol™ survived the challenge by producing anti-CT antibodies, which cross-neutralised the LT toxin with no body weight loss and no sign of diarrhoea. Compared to unimmunised mice, the immunised mice elicited the neutralising antitoxin that markedly decreased ETEC colonisation and fluid accumulation caused by ETEC H10407 in the intestines. The immunised mice recorded higher antibody titres, including anti-CT IgG, anti-LT IgG, anti-CT-B IgG, and anti-LTB IgG. Only a two-fold rise in anti-CT/CT-B/LT/LT-B IgA was recorded in serum samples from immunised mice. No bactericidal antibodies against ETEC H10407 were detected. This investigation demonstrates the safety, immunogenicity, and cross-protective efficacy of MyCholTM against the ETEC H10407 challenge in BALB/c mice.
Collapse
|
4
|
Sheweita SA, Amara AA, Gamal H, Ghazy AA, Hussein A, Bahey-El-Din M. Bacterial Ghosts of Pseudomonas aeruginosa as a Promising Candidate Vaccine and Its Application in Diabetic Rats. Vaccines (Basel) 2022; 10:vaccines10060910. [PMID: 35746518 PMCID: PMC9228170 DOI: 10.3390/vaccines10060910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023] Open
Abstract
Infections with Pseudomonas aeruginosa (PA) pose a major clinical threat worldwide especially to immunocompromised patients. As a novel vaccine network for many kinds of bacteria, bacterial ghosts (BGs) have recently been introduced. In the present research, using Sponge-Like Reduced Protocol, P. aeruginosa ghosts (PAGs) were prepared to maintain surface antigens and immunogenicity. This is the first study, to our knowledge, on the production of chemically induced well-structured bacterial ghosts for PA using concentrations of different chemicals. The research was carried out using diabetic rats who were orally immunized at two-week intervals with three doses of PAGs. Rats were subsequently challenged either by the oral route or by the model of ulcer infection with PA. In challenged rats, in addition to other immunological parameters, organ bioburden and wound healing were determined, respectively. Examination of the scanning and transmission electron microscope (EM) proved that PAGs with a proper three-dimensional structure were obtained. In contrast to control groups, oral PAGs promoted the generation of agglutinating antibodies, the development of IFN-γ, and the increase in phagocytic activity in vaccinated groups. Antibodies of the elicited PAGs were reactive to PA proteins and lipopolysaccharides. The defense against the PA challenge was observed in PAGs-immunized diabetic rats. The resulting PAGs in orally vaccinated diabetic rats were able to evoke unique humoral and cell-mediated immune responses and to defend them from the threat of skin wound infection. These results have positive implications for future studies on the PA vaccine.
Collapse
Affiliation(s)
- Salah A. Sheweita
- Department of Clinical Biochemistry, Faculty of Medicine, King Khalid University, Abha 62529, Saudi Arabia
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, Alexandria 21568, Egypt; (H.G.); (A.H.)
- Correspondence:
| | - Amro A. Amara
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab, Alexandria 21934, Egypt;
| | - Heba Gamal
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, Alexandria 21568, Egypt; (H.G.); (A.H.)
| | - Amany A. Ghazy
- Department of Microbiology & Medical Immunology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Ahmed Hussein
- Department of Biotechnology, Institute of Graduate Studies & Research, Alexandria University, Alexandria 21568, Egypt; (H.G.); (A.H.)
| | - Mohammed Bahey-El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria 21568, Egypt;
| |
Collapse
|
5
|
Ravichandran M, Tew HX, Prabhakaran G, Parasuraman S, Norazmi MN. Live, Genetically Attenuated, Cold-Chain-Free Cholera Vaccine-A Research and Development Journey: Light at the End of a Long Tunnel. Malays J Med Sci 2022; 29:1-7. [PMID: 35528817 PMCID: PMC9036929 DOI: 10.21315/mjms2022.29.2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 10/25/2022] Open
Abstract
Cholera, a diarrheal disease caused by Vibrio cholerae (V. cholerae) O139 and O1 strains, remains a public health problem. The existing World Health Organization (WHO)-licenced, killed, multiple-dose oral cholera vaccines demand 'cold-chain supply' at 2 °C-8 °C. Therefore, a live, single-dose, cold-chain-free vaccine would relieve significant bottlenecks and costs of cholera vaccination campaigns. Our cholera vaccine development journey started in 2000 at Universiti Sains Malaysia with isolation of the hemA gene from V. cholerae, followed by development of a gene mutant vaccine candidate VCUSM2 against V. cholerae O139 in 2006. In 2010, VCUSM2 reactogenicity was reduced by replacing its two wild-type ctxA gene copies with mutated ctxA to produce strain VCUSM14. Introducing the hemA gene into VCUSM14 created VCUSM14P, a strain with the 5-aminolaevulinic acid (ALA) prototrophic trait and excellent colonisation and immunological properties (100% protection to wild-type challenged rabbits). It was further refined in Asian Institute of Medicine, Science and Technology (AIMST University), with completion of single- and repeated-dose toxicity evaluations in 2019 in Sprague Dawley (SD) rats, followed by development of a novel cold-chain-free VCUSM14P formulation in 2020. VCUSM14P is unique for its intact cholera toxin B, a known mucosal adjuvant. The built-in adjuvant makes VCUSM14P an ideal vaccine delivery platform for emerging diseases (e.g. severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2] and tuberculosis). Our vaccine formulation mimics natural infection, remains non-reactogenic and immunogenic in vivo, and protects against infection and disease. It will also cost less and be less cumbersome to distribute due to its stability at room temperature. These features could revolutionise the outreach of this and other vaccines to meet global immunisation programmes, particularly in low-resourced areas. The next stage of our journey will be meeting the requisite regulatory requirements to produce the vaccine for rollout to countries where it is most needed.
Collapse
Affiliation(s)
- Manickam Ravichandran
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Hui Xian Tew
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Guruswamy Prabhakaran
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Subramani Parasuraman
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Pharmacy, AIMST University, Kedah, Malaysia
| | - Mohd Nor Norazmi
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
6
|
Abstract
A correlate of protection (CoP) is a measured adaptive immune response to vaccination or infection that is associated with protection against disease. However, the degree to which a CoP can serve as a surrogate end point for vaccine efficacy should depend on the robustness of this association. While cholera toxin is a dominant target of the human antibody response to Vibrio cholerae infection, antitoxin responses are not associated with long-term immunity, and are not effective CoPs for cholera. Instead, protection appears to be mediated by functional antibodies that target the O-polysaccharide coated V. cholerae outer membrane. Vibriocidal antibodies, which are complement-dependent bactericidal antibodies, remain the most accepted CoP for cholera and are used as surrogate end points in some vaccine studies. However, the association between vibriocidal antibody titers and immunity is not absolute, and they are unlikely to reflect a mechanistic correlate of protection against cholera.
Collapse
Affiliation(s)
- Anita S Iyer
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA
| | - Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA.,Department of Pediatrics, Harvard Medical School, Boston, MA
| |
Collapse
|