1
|
Shah RK, Cygan E, Kozlik T, Colina A, Zamora AE. Utilizing immunogenomic approaches to prioritize targetable neoantigens for personalized cancer immunotherapy. Front Immunol 2023; 14:1301100. [PMID: 38149253 PMCID: PMC10749952 DOI: 10.3389/fimmu.2023.1301100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023] Open
Abstract
Advancements in sequencing technologies and bioinformatics algorithms have expanded our ability to identify tumor-specific somatic mutation-derived antigens (neoantigens). While recent studies have shown neoantigens to be compelling targets for cancer immunotherapy due to their foreign nature and high immunogenicity, the need for increasingly accurate and cost-effective approaches to rapidly identify neoantigens remains a challenging task, but essential for successful cancer immunotherapy. Currently, gene expression analysis and algorithms for variant calling can be used to generate lists of mutational profiles across patients, but more care is needed to curate these lists and prioritize the candidate neoantigens most capable of inducing an immune response. A growing amount of evidence suggests that only a handful of somatic mutations predicted by mutational profiling approaches act as immunogenic neoantigens. Hence, unbiased screening of all candidate neoantigens predicted by Whole Genome Sequencing/Whole Exome Sequencing may be necessary to more comprehensively access the full spectrum of immunogenic neoepitopes. Once putative cancer neoantigens are identified, one of the largest bottlenecks in translating these neoantigens into actionable targets for cell-based therapies is identifying the cognate T cell receptors (TCRs) capable of recognizing these neoantigens. While many TCR-directed screening and validation assays have utilized bulk samples in the past, there has been a recent surge in the number of single-cell assays that provide a more granular understanding of the factors governing TCR-pMHC interactions. The goal of this review is to provide an overview of existing strategies to identify candidate neoantigens using genomics-based approaches and methods for assessing neoantigen immunogenicity. Additionally, applications, prospects, and limitations of some of the current single-cell technologies will be discussed. Finally, we will briefly summarize some of the recent models that have been used to predict TCR antigen specificity and analyze the TCR receptor repertoire.
Collapse
Affiliation(s)
- Ravi K. Shah
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Erin Cygan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tanya Kozlik
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alfredo Colina
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anthony E. Zamora
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
2
|
Hong CH, Pyo HS, Baek IC, Kim TG. Rapid identification of CMV-specific TCRs via reverse TCR cloning system based on bulk TCR repertoire data. Front Immunol 2022; 13:1021067. [PMID: 36466875 PMCID: PMC9716090 DOI: 10.3389/fimmu.2022.1021067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/31/2022] [Indexed: 08/11/2023] Open
Abstract
Advances in next-generation sequencing (NGS) have improved the resolution of T-cell receptor (TCR) repertoire analysis, and recent single-cell sequencing has made it possible to obtain information about TCR pairs. In our previous study, cytomegalovirus (CMV) pp65-specific T-cell response restricted by a single human leukocyte antigen (HLA) class I allotype was observed in an individual. Therefore, to effectively clone an antigen-specific TCR from these T cells, we developed a TCR cloning system that does not require a single cell level. First, we established the improved Jurkat reporter cell line, which was TCRαβ double knock-out and expressed CD8αβ molecules. Furthermore, functional TCRs were directly obtained by reverse TCR cloning using unique CDR3-specific PCR primers after bulk TCR sequencing of activation marker-positive CD8 T cells by NGS. A total of 15 TCRα and 14 TCRβ strands were successfully amplified by PCR from cDNA of 4-1BB-positive CD8 T cells restricted by HLA-A*02:01, HLA-A*02:06, HLA-B*07:02, and HLA-B*40:06. The panels with combinations of TCRα and TCRβ genes were investigated using Jurkat reporter cell line and artificial antigen-presenting cells (APCs). In two TCR pairs restricted by HLA-A*02:01, one TCR pair by HLA-A*02:06, four TCR pairs by HLA-B*07:02, and one TCR pair by HLA-B*40:06, their specificity and affinity were confirmed. The TCR pair of A*02:01/1-1 showed alloreactivity to HLA-A*02:06. The one TCR pair showed a higher response to the naturally processed antigen than that of the peptide pool. This reverse TCR cloning system will not only provide functional information to TCR repertoire analysis by NGS but also help in the development of TCR-T therapy.
Collapse
Affiliation(s)
- Cheol-Hwa Hong
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hong-Seon Pyo
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
3
|
Bai K, Norberg SM, Sievers C, Meyer T, Friedman J, Hinrichs C, Allen CT. Durable response in a patient with recurrent respiratory papillomatosis treated with immune checkpoint blockade. Head Neck 2022; 44:E31-E37. [PMID: 35815785 PMCID: PMC9452466 DOI: 10.1002/hed.27144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Immune checkpoint blockade can provide clinical benefit for patients with advanced cancer. Here, we report durable disease control over many years following PD-L1 blockade through induction of a viral antigen-specific T cell response in an adult patient with recurrent respiratory papillomatosis. METHODS Antigen-specific T cell response assays, single cell RNA-sequencing, and RNA-scope was used to study clinical tissues. RESULTS An HPV6 E2-specific T cell clone restricted to HLA-B*55, present at low frequency in the pre-treatment papilloma, significantly expanded after six doses of PD-L1 blockade and remained present and functional at the site of initial response in the larynx as a tissue resident memory T cell for 4 years. An associated reduction in E2 target gene was observed following treatment. CONCLUSIONS Although demonstrated in a single exceptional responder, these results highlight that immune checkpoint blockade may induce durable, viral antigen-specific immunity of sufficient magnitude to control disease in patients with nonmalignant disorders.
Collapse
Affiliation(s)
- Ke Bai
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Scott M Norberg
- Genitourinary Malignancies Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Cem Sievers
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Tanya Meyer
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Jay Friedman
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Clint T Allen
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Redman JM, Friedman J, Robbins Y, Sievers C, Yang X, Lassoued W, Sinkoe A, Papanicolau-Sengos A, Lee CC, Marte JL, Turkbey E, Mydlarz W, Joshi A, London NR, Pierce M, Taylor R, Hong S, Nguyen A, Soon-Shiong P, Schlom J, Gulley JL, Allen CT. Enhanced neoepitope-specific immunity following neoadjuvant PD-L1 and TGF-β blockade in HPV-unrelated head and neck cancer. J Clin Invest 2022; 132:e161400. [PMID: 35727629 PMCID: PMC9479764 DOI: 10.1172/jci161400] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUNDHead and neck squamous cell carcinoma not associated with HPV (HPV-unrelated HNSCC) is associated with a high rate of recurrence and poor survival.METHODSWe conducted a clinical trial in 14 patients with newly diagnosed HPV-unrelated HNSCC to evaluate the safety and efficacy of neoadjuvant bintrafusp alfa, a bifunctional fusion protein that blocks programmed death ligand 1 (PD-L1) and neutralizes TGF-β.RESULTSBintrafusp alfa was well tolerated, and no treatment-associated surgical delays or complications occurred. Objective pathologic responses (PRs) were observed, and 12 of the 14 (86%) patients were alive and disease free at 1 year. Alterations in Treg infiltration and spatial distribution relative to proliferating CD8+ T cells indicated a reversal of Treg immunosuppression in the primary tumor. Detection of neoepitope-specific tumor T cell responses, but not virus-specific responses, correlated with the development of a PR. Detection of neoepitope-specific responses and PRs in tumors was not correlated with genomic features or tumor antigenicity but was associated with reduced pretreatment myeloid cell tumor infiltration. These results indicate that dual PD-L1 and TGF-β blockade can safely enhance tumor antigen-specific immunity and highlight the feasibility of multimechanism neoadjuvant immunotherapy for patients with HPV-unrelated HNSCC.CONCLUSIONOur studies provide insight into the ability of neoadjuvant immunotherapy to induce polyclonal neoadjuvant-specific T cell responses in tumors and suggest that features of the tumor microenvironment, such as myeloid cell infiltration, may be a major determinant of enhanced antitumor immunity following such treatment.TRIAL REGISTRATIONClinicalTrials.gov NCT04247282.FUNDINGThis work was funded by the Center for Cancer Research, the NCI, and the Intramural Research Program of the NIDCD, NIH. Bintrafusp alfa was provided by the health care business of Merck KGaA (Darmstadt, Germany), through a Cooperative Research and Development Agreement with the NCI. Additional funding was provided by ImmunityBio through a Cooperative Research and Development Agreement with the NIDCD.
Collapse
Affiliation(s)
- Jason M. Redman
- Genitourinary Malignancy Branch and
- Laboratory of Tumor Immunology and Biology, National Cancer Institute (NCI), Center for Cancer Research, NIH, Bethesda, Maryland, USA
| | - Jay Friedman
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Yvette Robbins
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Cem Sievers
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Xinping Yang
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Wiem Lassoued
- Tumor Immune Microenvironment Laboratory, Genitourinary Malignancy Branch, NCI, and
| | | | | | - Chyi-Chia Lee
- Laboratory of Pathology, Center for Cancer Research, NIH, Bethesda, Maryland, USA
| | | | - Evrim Turkbey
- Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, Maryland, USA
| | - Wojtek Mydlarz
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Arjun Joshi
- Division of Otolaryngology–Head and Neck Surgery, Department of Surgery, George Washington University, Washington, DC, USA
| | - Nyall R. London
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Matthew Pierce
- Department of Otolaryngology–Head and Neck Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Rodney Taylor
- Department of Otolaryngology–Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Steven Hong
- Department of Otolaryngology–Head and Neck Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | | | | | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, National Cancer Institute (NCI), Center for Cancer Research, NIH, Bethesda, Maryland, USA
| | | | - Clint T. Allen
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| |
Collapse
|