1
|
Zhou Q, Zhan Z, Huang F, Zhao M, Huang D, Xu J, Huang L, Xie L, Zhang A. Case report: A rare multidrug-resistant Escherichia coli causes fatal neonatal meningoencephalitis. Front Public Health 2023; 11:1174536. [PMID: 37575122 PMCID: PMC10420072 DOI: 10.3389/fpubh.2023.1174536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Neonatal meningitis is rare but devastating disease. Multidrug-resistant (MDR, multi-drug resistant) bacteria are a major global health risk. We report an Escherichia coli meningitis isolate with multiple resistance patterns and unusual serotype (O75) that caused sudden neonatal death. The isolate was resistant to antibiotics other than cefoperazone/sulbactam and imipenem, challenging the combination of antibiotics commonly used in the empirical treatment of neonatal sepsis. Despite aggressive symptomatic and supportive treatment of the infant based on laboratory tests and clinical practice, the infant eventually died. This is the first case of meningoencephalitis due to serotype O75 reported in China. The presence of highly pathogenic multidrug-resistant microorganisms isolated in neonates underscores the need to implement rapid resistance diagnostic methods and should prompt consideration of alternatives to empiric treatment of neonatal bacterial meningitis.
Collapse
Affiliation(s)
- Qingyun Zhou
- The First-Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Zhifei Zhan
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Furong Huang
- The First-Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Menghua Zhao
- The First-Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Daosheng Huang
- The First-Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Jun Xu
- The First-Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Li Huang
- The First-Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Liangyi Xie
- The First-Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Aimin Zhang
- The First-Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, Hunan, China
| |
Collapse
|
2
|
F Plasmid Lineages in Escherichia coli ST95: Implications for Host Range, Antibiotic Resistance, and Zoonoses. mSystems 2022; 7:e0121221. [PMID: 35076267 PMCID: PMC8788324 DOI: 10.1128/msystems.01212-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Escherichia coli sequence type 95 (ST95) is an extraintestinal pathogenic E. coli (ExPEC) renowned for its ability to cause significant morbidity and mortality in humans and poultry. A core genome analysis of 668 ST95 isolates generated 10 clades (A to J), 5 of which are reported here for the first time. F plasmid replicon sequence typing showed that almost a third (178/668 [27%]) of the collection carry pUTI89 (F29:B10) and were restricted to clade A and a sublineage of clade B. In contrast, almost half (328/668 [49%]) of the collection across multiple clades harbor ColV plasmids (multiple F types). Strikingly, ST95 lineages with pUTI89 were almost exclusively from humans, while ColV+ ST95 lineages were sourced from poultry and humans. Clade I was notable because it comprises temporally and geographically matched ColV+ isolates sourced from human and retail poultry meat, suggesting interspecies transmission via food. Clade F contained ST95 isolates of bovine origin, none of which carried ColV or pUTI89 plasmids. Remarkably, an analysis of a cohort of 34,176 E. coli isolates comprising 2,570 sequence types mirrored what was observed in ST95: (i) pUTI89 was overwhelmingly linked to E. coli sourced from humans but almost entirely absent from 13,027 E. coli isolates recovered from poultry, pigs, and cattle, and (ii) E. coli isolates harboring ColV plasmids were from multiple sources, including humans, poultry, and swine. Overall, our data suggest that F plasmids influence E. coli host range, clade structure, and zoonotic potential in ST95 and ExPEC more broadly. IMPORTANCEE. coli ST95 is one of five dominant ExPEC lineages globally and noted for causing urinary tract and bloodstream infections and neonatal meningitis in humans and colibacillosis in poultry. Using high-resolution phylogenomics, we show that F replicon sequence type is linked to ST95 clade structure and zoonotic potential. Specifically, human centric ST95 clades overwhelmingly harbor F29:B10 (pUTI89) plasmids, while clades carrying both human- and poultry-sourced isolates are typically ColV+ with multiple replicon types. Importantly, several clades identified clonal ColV+ ST95 isolates from human and poultry sources, but clade I, which housed temporally and spatially matched isolates, provided the most robust evidence. Notably, patterns of association of F replicon types with E. coli host were mirrored within a diverse collection of 34,176 E. coli genomes. Our studies indicate that the role of food animals as a source of human ExPEC disease is complex and warrants further investigation.
Collapse
|
3
|
Liu CW, Wang P, Cao GN, Zou QH. Complete genome sequence and virulence characterization of a neonatal meningitis Escherichia coli isolate. Microb Pathog 2021; 160:105199. [PMID: 34560248 DOI: 10.1016/j.micpath.2021.105199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Neonatal bacterial meningitis is a life-threatening disease in newborns, and neonatal meningitis Escherichia coli (NMEC) is the second most frequent bacteria causing this disease worldwide. In order to further understand the characteristics of this pathogen, an E. coli isolate W224 N from newborns with meningitis was sequenced for detailed genetic characterization and the virulence was tested by a series of phenotypic experiments. W224 N has a circular chromosome and three plasmids. It belongs to ST95 and the serotype is O18:H7. Comparative genomic analysis showed that W224 N was closely related to E. coli neonatal meningitis isolates RS218 and NMEC O18. There are 11 genomic islands in W224 N and most of the GIs are specific to W224 N. W224 N has most of the virulence factors other neonatal meningitis isolates have. The virulence genes located both on the genome and plasmid. At the same time, we found a virulence factor cdiA only present in W224 N but absent in the other five genomes analyzed. In vitro experiment showed that W224 N has strong serum resistance ability, low biofilm formation ability and high flagellar motility. It also has a very strong toxicity to mice and amoeba. The whole genome as well as in vitro and in vivo experiments showed that W224 N is a high virulent strain. The results can help us better learn about the pathogenicity of neonatal meningitis E. coli.
Collapse
Affiliation(s)
- Cun-Wei Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ping Wang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Guang-Na Cao
- Peking University Third Hospital, Beijing, 100191, China.
| | - Qing-Hua Zou
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
4
|
Complete Genome Sequence of the Neonatal Meningitis Escherichia coli Serotype O18:K1 Strain NMEC15. Microbiol Resour Announc 2021; 10:e0083221. [PMID: 34554001 PMCID: PMC8459664 DOI: 10.1128/mra.00832-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neonatal meningitis Escherichia coli (NMEC) is the second leading cause of sepsis and meningitis in neonates worldwide. Here, we report the genome sequence of NMEC15, belonging to serotype O18:K1, isolated from the cerebrospinal fluid (CSF) of an infant with neonatal bacterial meningitis (NBM) in the Netherlands.
Collapse
|
5
|
Johnson TJ. Role of Plasmids in the Ecology and Evolution of "High-Risk" Extraintestinal Pathogenic Escherichia coli Clones. EcoSal Plus 2021; 9:eESP-0013-2020. [PMID: 33634776 PMCID: PMC11163845 DOI: 10.1128/ecosalplus.esp-0013-2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/12/2021] [Indexed: 11/20/2022]
Abstract
Bacterial plasmids have been linked to virulence in Escherichia coli and Salmonella since their initial discovery. Though the plasmid repertoire of these bacterial species is extremely diverse, virulence-associated attributes tend to be limited to a small subset of plasmid types. This is particularly true for extraintestinal pathogenic E. coli, or ExPEC, where a handful of plasmids have been recognized to confer virulence- and fitness-associated traits. The purpose of this review is to highlight the biological and genomic attributes of ExPEC virulence-associated plasmids, with an emphasis on high-risk dominant ExPEC clones. Two specific plasmid types are highlighted to illustrate the independently evolved commonalities of these clones relative to plasmid content. Furthermore, the dissemination of these plasmids within and between bacterial species is examined. These examples demonstrate the evolution of high-risk clones toward common goals, and they show that rare transfer events can shape the ecological landscape of dominant clones within a pathotype.
Collapse
Affiliation(s)
- Timothy J. Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108
| |
Collapse
|
6
|
Huang WC, Liao YJ, Hashimoto M, Chen KF, Chu C, Hsu PC, Wang S, Teng CH. cjrABC-senB hinders survival of extraintestinal pathogenic E. coli in the bloodstream through triggering complement-mediated killing. J Biomed Sci 2020; 27:86. [PMID: 32762693 PMCID: PMC7412671 DOI: 10.1186/s12929-020-00677-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 07/28/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Extraintestinal pathogenic E. coli (ExPEC) is a common gram-negative organism causing various infections, including urinary tract infections (UTIs), bacteremia, and neonatal meningitis. The cjrABC-senB gene cluster of E. coli contributes to ExPEC virulence in the mouse model of UTIs. Consistently, the distribution of cjrABC-senB is epidemiologically associated with human UTIs caused by E. coli. cjrABC-senB, which has previously been proposed to encode an iron uptake system, may facilitate ExPEC survival in the iron availability-restricted urinary tract. Given that the bloodstream is also an iron limited environment to invading bacteria, the pathogenic role of cjrABC-senB in ExPEC bacteremia, however, remains to be investigated. METHODS The ability of ExPEC RS218 strains with and without cjrABC-senB to survive in the mouse bloodstream and human serum was evaluated. Subsequently, the role of this gene cluster in the ExPEC interaction with the complement system was evaluated. Finally, the distribution of cjrABC-senB in human clinical E. coli isolates was determined by PCR. The frequency of cjrABC-senB in bacteremia isolates that were not associated with UTIs (non-UTI bacteremia isolates) was compared with that in UTI-associated isolates and fecal isolates. RESULTS Expression of cjrABC-senB attenuated the survival of RS218 in the mouse bloodstream and human serum. The cjrABC-senB-harboring strains triggered enhanced classical- and alternative-complement pathway activation and became more vulnerable to complement-mediated killing in serum. cjrA was identified as the major gene responsible for the attenuated serum survival. Expressing cjrABC-senB and cjrA increased bacterial susceptibility to detergent and induced periplasmic protein leakage, suggesting that the expression of these genes compromises the integrity of the outer membrane of ExPEC. In addition, the frequency of cjrABC-senB in non-UTI bacteremia isolates was significantly lower than that in UTI-associated isolates, while the frequencies in non-UTI bacteremia isolates and fecal isolates showed no significant difference. Consistently, this epidemiological investigation suggests that cjrABC-senB does not contribute to E. coli bacteremia in humans. CONCLUSION The contribution of cjrABC-senB to the pathogenesis of ExPEC is niche dependent and contradictory because the genes facilitate ExPEC UTIs but hinder bacteremia. The contradictory niche-dependent characteristic may benefit the development of novel strategies against E. coli-caused infections.
Collapse
Affiliation(s)
- Wen-Chun Huang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, 4th F, 367 Sheng Li Road, North District, Tainan City, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Yi-Jyun Liao
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, 4th F, 367 Sheng Li Road, North District, Tainan City, Taiwan
| | - Masayuki Hashimoto
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, 4th F, 367 Sheng Li Road, North District, Tainan City, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan City, Taiwan
| | - Kuan-Fu Chen
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, 4th F, 367 Sheng Li Road, North District, Tainan City, Taiwan
| | - Chishih Chu
- Department of Microbiology, Immunology, and Biopharmaceuticals, National Chiayi University, Chiayi City, Taiwan
| | - Po-Chuen Hsu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, 4th F, 367 Sheng Li Road, North District, Tainan City, Taiwan
| | - Shuying Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan City, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan City, Taiwan
| | - Ching-Hao Teng
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, 4th F, 367 Sheng Li Road, North District, Tainan City, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan.
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan City, Taiwan.
| |
Collapse
|
7
|
Mohsin M, Azam M, Ur Rahman S, Esposito F, Sellera FP, Monte DF, Cerdeira L, Lincopan N. Genomic background of a colistin-resistant and highly virulent MCR-1-positive Escherichia coli ST6395 from a broiler chicken in Pakistan. Pathog Dis 2020; 77:5647353. [PMID: 31782775 DOI: 10.1093/femspd/ftz064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/28/2019] [Indexed: 11/12/2022] Open
Abstract
The convergence of high virulence and multidrug resistance (MDR) in Gram-negative pathogens circulating at the human-animal interface is a critical public health issue. We hereby report the genomic characteristics and virulent behavior of a colistin-resistant Escherichia coli, serotype ONT:H26, belonging to ST6395, isolated from a healthy broiler in Pakistan. This strain harbored multiple antimicrobial resistance genes, including mcr-1.1 and blaCARB-2, besides cma (colicin M) and astA [heat-stable enterotoxin 1 (EAST1) toxin] virulence genes. In vivo experiments carried out with the Galleria mellonella infection model revealed that MCR-1-positive E. coli ST6395 killed 96.4% of the larvae at 18 hour post-infection. Interplay between resistance and virulence in clinically important pathogens could be a potential threat, representing a serious challenge to global public health.
Collapse
Affiliation(s)
- Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture, Jhang Road, Faisalabad, Zip Code 38000, Pakistan
| | - Mariya Azam
- Institute of Microbiology, University of Agriculture, Jhang Road, Faisalabad, Zip Code 38000, Pakistan
| | - Sajjad Ur Rahman
- Institute of Microbiology, University of Agriculture, Jhang Road, Faisalabad, Zip Code 38000, Pakistan
| | - Fernanda Esposito
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, São Paulo, CEP 05508-000, Brazil
| | - Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, São Paulo, CEP 05508-270, Brazil
| | - Daniel F Monte
- Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes 580, University of São Paulo, São Paulo, CEP 05508-000, Brazil
| | - Louise Cerdeira
- Institute of Microbiology, University of Agriculture, Jhang Road, Faisalabad, Zip Code 38000, Pakistan
| | - Nilton Lincopan
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, São Paulo, CEP 05508-000, Brazil.,Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, CEP 05508-000, Brazil
| |
Collapse
|
8
|
ICAM5 as a Novel Target for Treating Cognitive Impairment in Fragile X Syndrome. J Neurosci 2019; 40:1355-1365. [PMID: 31882402 PMCID: PMC7002157 DOI: 10.1523/jneurosci.2626-18.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 12/11/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability, resulted from the silencing of the Fmr1 gene and the subsequent loss of fragile X mental retardation protein (FMRP). Spine dysgenesis and cognitive impairment have been extensively characterized in FXS; however, the underlying mechanism remains poorly understood. Fragile X syndrome (FXS) is the most common inherited form of intellectual disability, resulted from the silencing of the Fmr1 gene and the subsequent loss of fragile X mental retardation protein (FMRP). Spine dysgenesis and cognitive impairment have been extensively characterized in FXS; however, the underlying mechanism remains poorly understood. As an important regulator of spine maturation, intercellular adhesion molecule 5 (ICAM5) mRNA may be one of the targets of FMRP and involved in cognitive impairment in FXS. Here we show that in Fmr1 KO male mice, ICAM5 was excessively expressed during the late developmental stage, and its expression was negatively correlated with the expression of FMRP and positively related with the morphological abnormalities of dendritic spines. While in vitro reduction of ICAM5 normalized dendritic spine abnormalities in Fmr1 KO neurons, and in vivo knockdown of ICAM5 in the dentate gyrus rescued the impaired spatial and fear memory and anxiety-like behaviors in Fmr1 KO mice, through both granule cell and mossy cell with a relative rate of 1.32 ± 0.15. Furthermore, biochemical analyses showed direct binding of FMRP with ICAM5 mRNA, to the coding sequence of ICAM5 mRNA. Together, our study suggests that ICAM5 is one of the targets of FMRP and is implicated in the molecular pathogenesis of FXS. ICAM5 could be a therapeutic target for treating cognitive impairment in FXS. SIGNIFICANCE STATEMENT Fragile X syndrome (FXS) is characterized by dendritic spine dysgenesis and cognitive dysfunctions, while one of the FMRP latent targets, ICAM5, is well established for contributing both spine maturation and learning performance. In this study, we examined the potential link between ICAM5 mRNA and FMRP in FXS, and further investigated the molecular details and pathological consequences of ICAM5 overexpression. Our results indicate a critical role of ICAM5 in spine maturation and cognitive impairment in FXS and suggest that ICAM5 is a potential molecular target for the development of medication against FXS.
Collapse
|
9
|
A Putative Microcin Amplifies Shiga Toxin 2a Production of Escherichia coli O157:H7. J Bacteriol 2019; 202:JB.00353-19. [PMID: 31611289 DOI: 10.1128/jb.00353-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/01/2019] [Indexed: 01/15/2023] Open
Abstract
Escherichia coli O157:H7 is a foodborne pathogen implicated in various multistate outbreaks. It encodes Shiga toxin on a prophage, and Shiga toxin production is linked to phage induction. An E. coli strain, designated 0.1229, that amplified Stx2a production when cocultured with E. coli O157:H7 strain PA2 was identified. Growth of PA2 in 0.1229 cell-free supernatants had a similar effect, even when supernatants were heated to 100°C for 10 min, but not after treatment with proteinase K. The secreted molecule was shown to use TolC for export and the TonB system for import. The genes sufficient for production of this molecule were localized to a 5.2-kb region of a 12.8-kb plasmid. This region was annotated, identifying hypothetical proteins, a predicted ABC transporter, and a cupin superfamily protein. These genes were identified and shown to be functional in two other E. coli strains, and bioinformatic analyses identified related gene clusters in similar and distinct bacterial species. These data collectively suggest that E. coli 0.1229 and other E. coli strains produce a microcin that induces the SOS response in target bacteria. Besides adding to the limited number of microcins known to be produced by E. coli, this study provides an additional mechanism by which stx 2a expression is increased in response to the gut microflora.IMPORTANCE How the gut microflora influences the progression of bacterial infections is only beginning to be understood. Antibiotics are counterindicated for E. coli O157:H7 infections, limiting treatment options. An increased understanding of how the gut microflora directs O157:H7 virulence gene expression may lead to additional treatment options. This work identified E. coli strains that enhance the production of Shiga toxin by O157:H7 through the secretion of a proposed microcin. Microcins are natural antimicrobial peptides that target specific species, can act as alternatives to antibiotics, and mediate microbial competition. This work demonstrates another mechanism by which non-O157 E. coli strains may increase Shiga toxin production and adds to our understanding of microcins, a group of antimicrobials less well understood than colicins.
Collapse
|
10
|
Ravenscraft A, Kish N, Peay K, Boggs C. No evidence that gut microbiota impose a net cost on their butterfly host. Mol Ecol 2019; 28:2100-2117. [PMID: 30803091 PMCID: PMC6525022 DOI: 10.1111/mec.15057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 01/01/2023]
Abstract
Gut microbes are believed to play a critical role in most animal life, yet fitness effects and cost–benefit trade‐offs incurred by the host are poorly understood. Unlike most hosts studied to date, butterflies largely acquire their nutrients from larval feeding, leaving relatively little opportunity for nutritive contributions by the adult's microbiota. This provides an opportunity to measure whether hosting gut microbiota comes at a net nutritional price. Because host and bacteria may compete for sugars, we hypothesized that gut flora would be nutritionally neutral to adult butterflies with plentiful food, but detrimental to semistarved hosts, especially when at high density. We held field‐caught adult Speyeria mormonia under abundant or restricted food conditions. Because antibiotic treatments did not generate consistent variation in their gut microbiota, we used interindividual variability in bacterial loads and operational taxonomic unit abundances to examine correlations between host fitness and the abdominal microbiota present upon natural death. We detected strikingly few relationships between microbial flora and host fitness. Neither total bacterial load nor the abundances of dominant bacterial taxa were related to butterfly fecundity, egg mass or egg chemical content. Increased abundance of a Commensalibacter species did correlate with longer host life span, while increased abundance of a Rhodococcus species correlated with shorter life span. Contrary to our expectations, these relationships were unchanged by food availability to the host and were unrelated to reproductive output. Our results suggest the butterfly microbiota comprises parasitic, commensal and beneficial taxa that together do not impose a net reproductive cost, even under caloric stress.
Collapse
Affiliation(s)
- Alison Ravenscraft
- Department of Biology, Stanford University, Stanford, California.,Rocky Mountain Biological Laboratory, Crested Butte, Colorado
| | - Nicole Kish
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado.,Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| | - Kabir Peay
- Department of Biology, Stanford University, Stanford, California
| | - Carol Boggs
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado.,Department of Biological Sciences, University of South Carolina, Columbia, South Carolina.,School of the Earth, Ocean & Environment, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
11
|
Spread and Persistence of Virulence and Antibiotic Resistance Genes: A Ride on the F Plasmid Conjugation Module. EcoSal Plus 2019; 8. [PMID: 30022749 DOI: 10.1128/ecosalplus.esp-0003-2018] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The F plasmid or F-factor is a large, 100-kbp, circular conjugative plasmid of Escherichia coli and was originally described as a vector for horizontal gene transfer and gene recombination in the late 1940s. Since then, F and related F-like plasmids have served as role models for bacterial conjugation. At present, more than 200 different F-like plasmids with highly related DNA transfer genes, including those for the assembly of a type IV secretion apparatus, are completely sequenced. They belong to the phylogenetically related MOBF12A group. F-like plasmids are present in enterobacterial hosts isolated from clinical as well as environmental samples all over the world. As conjugative plasmids, F-like plasmids carry genetic modules enabling plasmid replication, stable maintenance, and DNA transfer. In this plasmid backbone of approximately 60 kbp, the DNA transfer genes occupy the largest and mostly conserved part. Subgroups of MOBF12A plasmids can be defined based on the similarity of TraJ, a protein required for DNA transfer gene expression. In addition, F-like plasmids harbor accessory cargo genes, frequently embedded within transposons and/or integrons, which harness their host bacteria with antibiotic resistance and virulence genes, causing increasingly severe problems for the treatment of infectious diseases. Here, I focus on key genetic elements and their encoded proteins present on the F-factor and other typical F-like plasmids belonging to the MOBF12A group of conjugative plasmids.
Collapse
|
12
|
Complete Genome Sequence of the Multidrug-Resistant Neonatal Meningitis Escherichia coli Serotype O75:H5:K1 Strain mcjchv-1 (NMEC-O75). Microbiol Resour Announc 2018; 7:MRA01043-18. [PMID: 30533615 PMCID: PMC6256591 DOI: 10.1128/mra.01043-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/21/2018] [Indexed: 12/05/2022] Open
Abstract
Neonatal meningitis Escherichia coli (NMEC) is the second leading cause of neonatal bacterial meningitis worldwide. We report the genome sequence of the multidrug-resistant NMEC serotype O75:H5:K1 strain mcjchv-1, which resulted in an infant’s death. Neonatal meningitis Escherichia coli (NMEC) is the second leading cause of neonatal bacterial meningitis worldwide. We report the genome sequence of the multidrug-resistant NMEC serotype O75:H5:K1 strain mcjchv-1, which resulted in an infant’s death. The O75 serogroup is rare among NMEC isolates; therefore, this strain is considered an emergent pathogen.
Collapse
|
13
|
Russell CW, Fleming BA, Jost CA, Tran A, Stenquist AT, Wambaugh MA, Bronner MP, Mulvey MA. Context-Dependent Requirements for FimH and Other Canonical Virulence Factors in Gut Colonization by Extraintestinal Pathogenic Escherichia coli. Infect Immun 2018; 86:e00746-17. [PMID: 29311232 PMCID: PMC5820936 DOI: 10.1128/iai.00746-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/17/2017] [Indexed: 12/19/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) acts as a commensal within the mammalian gut but can induce pathology upon dissemination to other host environments such as the urinary tract and bloodstream. ExPEC genomes are likely shaped by evolutionary forces encountered within the gut, where the bacteria spend much of their time, provoking the question of how their extraintestinal virulence traits arose. The principle of coincidental evolution, in which a gene that evolved in one niche happens to be advantageous in another, has been used to argue that ExPEC virulence factors originated in response to selective pressures within the gut ecosystem. As a test of this hypothesis, the fitness of ExPEC mutants lacking canonical virulence factors was assessed within the intact murine gut in the absence of antibiotic treatment. We found that most of the tested factors, including cytotoxic necrotizing factor type 1 (CNF1), Usp, colibactin, flagella, and plasmid pUTI89, were dispensable for gut colonization. The deletion of genes encoding the adhesin PapG or the toxin HlyA had transient effects but did not interfere with longer-term persistence. In contrast, a mutant missing the type 1 pilus-associated adhesin FimH displayed somewhat reduced persistence within the gut. However, this phenotype varied dependent on the presence of specific competing strains and was partially attributable to aberrant flagellin expression in the absence of fimH These data indicate that FimH and other key ExPEC-associated factors are not strictly required for gut colonization, suggesting that the development of extraintestinal virulence traits is not driven solely by selective pressures within the gut.
Collapse
Affiliation(s)
- Colin W Russell
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Brittany A Fleming
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Courtney A Jost
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Alexander Tran
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Alan T Stenquist
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Morgan A Wambaugh
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Mary P Bronner
- Department of Pathology, ARUP Laboratories, University of Utah, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Matthew A Mulvey
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| |
Collapse
|
14
|
Abstract
Extraintestinal pathogenic E. coli (ExPEC) present a major clinical problem that has emerged in the past years. Most of the infections are hospital or community-acquired and involve patients with a compromised immune system. The infective agents belong to a large number of strains of different serotypes that do not cross react. The seriousness of the infection is due to the fact that most of the infecting bacteria are highly antibiotic resistant. Here, we discuss the bacterial factors responsible for pathogenesis and potential means to combat the infections.
Collapse
Affiliation(s)
- Dvora Biran
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, 39978, Tel Aviv, Israel
| | - Eliora Z Ron
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, 39978, Tel Aviv, Israel.
| |
Collapse
|
15
|
Cole BK, Scott E, Ilikj M, Bard D, Akins DR, Dyer DW, Chavez-Bueno S. Route of infection alters virulence of neonatal septicemia Escherichia coli clinical isolates. PLoS One 2017; 12:e0189032. [PMID: 29236742 PMCID: PMC5728477 DOI: 10.1371/journal.pone.0189032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/05/2017] [Indexed: 12/03/2022] Open
Abstract
Escherichia coli is the leading cause of Gram-negative neonatal septicemia in the United States. Invasion and passage across the neonatal gut after ingestion of maternal E. coli strains produce bacteremia. In this study, we compared the virulence properties of the neonatal E. coli bacteremia clinical isolate SCB34 with the archetypal neonatal E. coli meningitis strain RS218. Whole-genome sequencing data was used to compare the protein coding sequences among these clinical isolates and 33 other representative E. coli strains. Oral inoculation of newborn animals with either strain produced septicemia, whereas intraperitoneal injection caused septicemia only in pups infected with RS218 but not in those injected with SCB34. In addition to being virulent only through the oral route, SCB34 demonstrated significantly greater invasion and transcytosis of polarized intestinal epithelial cells in vitro as compared to RS218. Protein coding sequences comparisons highlighted the presence of known virulence factors that are shared among several of these isolates, and revealed the existence of proteins exclusively encoded in SCB34, many of which remain uncharacterized. Our study demonstrates that oral acquisition is crucial for the virulence properties of the neonatal bacteremia clinical isolate SCB34. This characteristic, along with its enhanced ability to invade and transcytose intestinal epithelium are likely determined by the specific virulence factors that predominate in this strain.
Collapse
Affiliation(s)
- Bryan K. Cole
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Edgar Scott
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Marko Ilikj
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - David Bard
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Darrin R. Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - David W. Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Susana Chavez-Bueno
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
16
|
Abstract
Escherichia coli is the most common Gram-negative bacillary organism causing meningitis, and E. coli meningitis continues to be an important cause of mortality and morbidity throughout the world. Our incomplete knowledge of its pathogenesis contributes to such mortality and morbidity. Recent reports of E. coli strains producing CTX-M-type or TEM-type extended-spectrum β-lactamases create a challenge. Studies using in vitro and in vivo models of the blood-brain barrier have shown that E. coli meningitis follows a high degree of bacteremia and invasion of the blood-brain barrier. E. coli invasion of the blood-brain barrier, the essential step in the development of E. coli meningitis, requires specific microbial and host factors as well as microbe- and host-specific signaling molecules. Blockade of such microbial and host factors contributing to E. coli invasion of the blood-brain barrier is shown to be efficient in preventing E. coli penetration into the brain. The basis for requiring a high degree of bacteremia for E. coli penetration of the blood-brain barrier, however, remains unclear. Continued investigation on the microbial and host factors contributing to a high degree of bacteremia and E. coli invasion of the blood-brain barrier is likely to identify new targets for prevention and therapy of E. coli meningitis.
Collapse
|
17
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Girones R, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Fernandez Escamez PS, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Threlfall J, Wahlström H, Cocconcelli PS, Peixe L, Maradona MP, Querol A, Suarez JE, Sundh I, Vlak J, Correia S, Herman L. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 6: suitability of taxonomic units notified to EFSA until March 2017. EFSA J 2017; 15:e04884. [PMID: 32625549 PMCID: PMC7009974 DOI: 10.2903/j.efsa.2017.4884] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The qualified presumption of safety (QPS) concept was developed to provide a harmonised generic pre‐evaluation to support safety risk assessments of biological agents performed by EFSA's scientific Panels. The identity, body of knowledge, safety concerns and antimicrobial resistance of valid taxonomic units were assessed. Safety concerns identified for a taxonomic unit are, where possible and reasonable in number, reflected as ‘qualifications’ which should be assessed at the strain level by the EFSA's scientific Panels. No new information was found that would change the previously recommended QPS taxonomic units and their qualifications. Between the end of September 2016 and March 2017, the QPS notification list was updated with 87 applications for market authorisation. From these, 32 biological agents already had a QPS status, and 37 were not included in the evaluation as they are filamentous fungi or enterococci. Streptomyces species (Streptomyces cinnamonensis, Streptomyces mobaraensis and Streptomyces violaceoruber), Bacillus circulans (three notifications) and Escherichia coli (seven notifications) were re‐confirmed not suitable for QPS. Streptomyces rubiginosus and Streptomyces netropsis, not evaluated within the previous mandate, were also not recommended for QPS. Streptomyces spp. and E. coli will be excluded from further QPS evaluations within the current QPS mandate. Hyphomicrobium denitrificans, which has never been evaluated before, was not recommended for the QPS list and for Pseudomonas amyloderamosa, the QPS assessment was not applicable because it is not a validated species. Lactobacillus animalis was a new taxonomic unit recommended to have the QPS status.
Collapse
|
18
|
Breland EJ, Eberly AR, Hadjifrangiskou M. An Overview of Two-Component Signal Transduction Systems Implicated in Extra-Intestinal Pathogenic E. coli Infections. Front Cell Infect Microbiol 2017; 7:162. [PMID: 28536675 PMCID: PMC5422438 DOI: 10.3389/fcimb.2017.00162] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/18/2017] [Indexed: 11/13/2022] Open
Abstract
Extra-intestinal pathogenic E. coli (ExPEC) infections are common in mammals and birds. The predominant ExPEC types are avian pathogenic E. coli (APEC), neonatal meningitis causing E. coli/meningitis associated E. coli (NMEC/MAEC), and uropathogenic E. coli (UPEC). Many reviews have described current knowledge on ExPEC infection strategies and virulence factors, especially for UPEC. However, surprisingly little has been reported on the regulatory modules that have been identified as critical in ExPEC pathogenesis. Two-component systems (TCSs) comprise the predominant method by which bacteria respond to changing environments and play significant roles in modulating bacterial fitness in diverse niches. Recent studies have highlighted the potential of manipulating signal transduction systems as a means to chemically re-wire bacterial pathogens, thereby reducing selective pressure and avoiding the emergence of antibiotic resistance. This review begins by providing a brief introduction to characterized infection strategies and common virulence factors among APEC, NMEC, and UPEC and continues with a comprehensive overview of two-component signal transduction networks that have been shown to influence ExPEC pathogenesis.
Collapse
Affiliation(s)
- Erin J Breland
- Department of Pharmacology, Vanderbilt University Medical CenterNashville, TN, USA
| | - Allison R Eberly
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashville, TN, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashville, TN, USA.,Department of Urology, Vanderbilt University Medical CenterNashville, TN, USA
| |
Collapse
|
19
|
Porse A, Gumpert H, Kubicek-Sutherland JZ, Karami N, Adlerberth I, Wold AE, Andersson DI, Sommer MOA. Genome Dynamics of Escherichia coli during Antibiotic Treatment: Transfer, Loss, and Persistence of Genetic Elements In situ of the Infant Gut. Front Cell Infect Microbiol 2017; 7:126. [PMID: 28447026 PMCID: PMC5388698 DOI: 10.3389/fcimb.2017.00126] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/28/2017] [Indexed: 12/15/2022] Open
Abstract
Elucidating the adaptive strategies and plasticity of bacterial genomes in situ is crucial for understanding the epidemiology and evolution of pathogens threatening human health. While much is known about the evolution of Escherichia coli in controlled laboratory environments, less effort has been made to elucidate the genome dynamics of E. coli in its native settings. Here, we follow the genome dynamics of co-existing E. coli lineages in situ of the infant gut during the first year of life. One E. coli lineage causes a urinary tract infection (UTI) and experiences several alterations of its genomic content during subsequent antibiotic treatment. Interestingly, all isolates of this uropathogenic E. coli strain carried a highly stable plasmid implicated in virulence of diverse pathogenic strains from all over the world. While virulence elements are certainly beneficial during infection scenarios, their role in gut colonization and pathogen persistence is poorly understood. We performed in vivo competitive fitness experiments to assess the role of this highly disseminated virulence plasmid in gut colonization, but found no evidence for a direct benefit of plasmid carriage. Through plasmid stability assays, we demonstrate that this plasmid is maintained in a parasitic manner, by strong first-line inheritance mechanisms, acting on the single-cell level, rather than providing a direct survival advantage in the gut. Investigating the ecology of endemic accessory genetic elements, in their pathogenic hosts and native environment, is of vital importance if we want to understand the evolution and persistence of highly virulent and drug resistant bacterial isolates.
Collapse
Affiliation(s)
- Andreas Porse
- Novo Nordisk Foundation Center for Biosustainability, Technical University of DenmarkLyngby, Denmark
| | - Heidi Gumpert
- Department of Clinical Microbiology, Hvidovre University HospitalHvidovre, Denmark
| | | | - Nahid Karami
- Department of infectious Diseases, University of Gothenburg, Sahlgrenska AcademyGothenburg, Sweden
| | - Ingegerd Adlerberth
- Department of infectious Diseases, University of Gothenburg, Sahlgrenska AcademyGothenburg, Sweden
| | - Agnes E Wold
- Department of infectious Diseases, University of Gothenburg, Sahlgrenska AcademyGothenburg, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University Biomedical CentreUppsala, Sweden
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of DenmarkLyngby, Denmark
| |
Collapse
|
20
|
Genomic Analysis of Factors Associated with Low Prevalence of Antibiotic Resistance in Extraintestinal Pathogenic Escherichia coli Sequence Type 95 Strains. mSphere 2017; 2:mSphere00390-16. [PMID: 28405633 PMCID: PMC5381267 DOI: 10.1128/msphere.00390-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/12/2017] [Indexed: 12/26/2022] Open
Abstract
Antibiotic resistance in bacterial pathogens is a major public health concern. This work was motivated by the observation that only a small proportion of ST95 isolates, a major pandemic lineage of extraintestinal pathogenic E. coli, have acquired antibiotic resistance, in contrast to many other pandemic lineages. Understanding bacterial genetic factors that may prevent acquisition of resistance could contribute to the development of new biological, medical, or public health strategies to reduce antibiotic-resistant infections. Extraintestinal pathogenic Escherichia coli (ExPEC) strains belonging to multilocus sequence type 95 (ST95) are globally distributed and a common cause of infections in humans and domestic fowl. ST95 isolates generally show a lower prevalence of acquired antimicrobial resistance than other pandemic ExPEC lineages. We took a genomic approach to identify factors that may underlie reduced resistance. We fully assembled genomes for four ST95 isolates representing the four major fimH-based lineages within ST95 and also analyzed draft-level genomes from another 82 ST95 isolates, largely from the western United States. The fully assembled genomes of antibiotic-resistant isolates carried resistance genes exclusively on large (>90-kb) IncFIB/IncFII plasmids. These replicons were common in the draft genomes as well, particularly in antibiotic-resistant isolates, but we also observed multiple instances of a smaller (8.3-kb) ampicillin resistance plasmid that had been previously identified in Salmonella enterica. Among ST95 isolates, pansusceptibility to antibiotics was significantly associated with the fimH6 lineage and the presence of homologs of the previously identified 114-kb IncFIB/IncFII plasmid pUTI89, both of which were also associated with reduced carriage of other plasmids. Potential mechanistic explanations for lineage- and plasmid-specific effects on the prevalence of antibiotic resistance within the ST95 group are discussed. IMPORTANCE Antibiotic resistance in bacterial pathogens is a major public health concern. This work was motivated by the observation that only a small proportion of ST95 isolates, a major pandemic lineage of extraintestinal pathogenic E. coli, have acquired antibiotic resistance, in contrast to many other pandemic lineages. Understanding bacterial genetic factors that may prevent acquisition of resistance could contribute to the development of new biological, medical, or public health strategies to reduce antibiotic-resistant infections.
Collapse
|
21
|
Conlan S, Park M, Deming C, Thomas PJ, Young AC, Coleman H, Sison C, Weingarten RA, Lau AF, Dekker JP, Palmore TN, Frank KM, Segre JA. Plasmid Dynamics in KPC-Positive Klebsiella pneumoniae during Long-Term Patient Colonization. mBio 2016; 7:e00742-16. [PMID: 27353756 PMCID: PMC4937214 DOI: 10.1128/mbio.00742-16] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/23/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Carbapenem-resistant Klebsiella pneumoniae strains are formidable hospital pathogens that pose a serious threat to patients around the globe due to a rising incidence in health care facilities, high mortality rates associated with infection, and potential to spread antibiotic resistance to other bacterial species, such as Escherichia coli Over 6 months in 2011, 17 patients at the National Institutes of Health (NIH) Clinical Center became colonized with a highly virulent, transmissible carbapenem-resistant strain of K. pneumoniae Our real-time genomic sequencing tracked patient-to-patient routes of transmission and informed epidemiologists' actions to monitor and control this outbreak. Two of these patients remained colonized with carbapenemase-producing organisms for at least 2 to 4 years, providing the opportunity to undertake a focused genomic study of long-term colonization with antibiotic-resistant bacteria. Whole-genome sequencing studies shed light on the underlying complex microbial colonization, including mixed or evolving bacterial populations and gain or loss of plasmids. Isolates from NIH patient 15 showed complex plasmid rearrangements, leaving the chromosome and the blaKPC-carrying plasmid intact but rearranging the two other plasmids of this outbreak strain. NIH patient 16 has shown continuous colonization with blaKPC-positive organisms across multiple time points spanning 2011 to 2015. Genomic studies defined a complex pattern of succession and plasmid transmission across two different K. pneumoniae sequence types and an E. coli isolate. These findings demonstrate the utility of genomic methods for understanding strain succession, genome plasticity, and long-term carriage of antibiotic-resistant organisms. IMPORTANCE In 2011, the NIH Clinical Center had a nosocomial outbreak involving 19 patients who became colonized or infected with blaKPC-positive Klebsiella pneumoniae Patients who have intestinal colonization with blaKPC-positive K. pneumoniae are at risk for developing infections that are difficult or nearly impossible to treat with existing antibiotic options. Two of those patients remained colonized with blaKPC-positive Klebsiella pneumoniae for over a year, leading to the initiation of a detailed genomic analysis exploring mixed colonization, plasmid recombination, and plasmid diversification. Whole-genome sequence analysis identified a variety of changes, both subtle and large, in the blaKPC-positive organisms. Long-term colonization of patients with blaKPC-positive Klebsiella pneumoniae creates new opportunities for horizontal gene transfer of plasmids encoding antibiotic resistance genes and poses complications for the delivery of health care.
Collapse
Affiliation(s)
- Sean Conlan
- National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Morgan Park
- National Institutes of Health Intramural Sequencing Center (NISC), Rockville, Maryland, USA
| | - Clayton Deming
- National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Pamela J Thomas
- National Institutes of Health Intramural Sequencing Center (NISC), Rockville, Maryland, USA
| | - Alice C Young
- National Institutes of Health Intramural Sequencing Center (NISC), Rockville, Maryland, USA
| | - Holly Coleman
- National Institutes of Health Intramural Sequencing Center (NISC), Rockville, Maryland, USA
| | - Christina Sison
- National Institutes of Health Intramural Sequencing Center (NISC), Rockville, Maryland, USA
| | | | - Anna F Lau
- National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - John P Dekker
- National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Tara N Palmore
- National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Karen M Frank
- National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Julia A Segre
- National Human Genome Research Institute, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Nicholson BA, West AC, Mangiamele P, Barbieri N, Wannemuehler Y, Nolan LK, Logue CM, Li G. Genetic Characterization of ExPEC-Like Virulence Plasmids among a Subset of NMEC. PLoS One 2016; 11:e0147757. [PMID: 26800268 PMCID: PMC4723317 DOI: 10.1371/journal.pone.0147757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/07/2016] [Indexed: 12/29/2022] Open
Abstract
Neonatal Meningitis Escherichia coli (NMEC) is one of the most common causes of neonatal bacterial meningitis in the US and elsewhere resulting in mortality or neurologic deficits in survivors. Large plasmids have been shown experimentally to increase the virulence of NMEC in the rat model of neonatal meningitis. Here, 9 ExPEC-like plasmids were isolated from NMEC and sequenced to identify the core and accessory plasmid genes of ExPEC-like virulence plasmids in NMEC and create an expanded plasmid phylogeny. Results showed sequenced virulence plasmids carry a strongly conserved core of genes with predicted functions in five distinct categories including: virulence, metabolism, plasmid stability, mobile elements, and unknown genes. The major functions of virulence-associated and plasmid core genes serve to increase in vivo fitness by adding multiple iron uptake systems to the genetic repertoire to facilitate NMEC’s survival in the host’s low iron environment, and systems to enhance bacterial resistance to host innate immunity. Phylogenetic analysis based on these core plasmid genes showed that at least two lineages of ExPEC-like plasmids could be discerned. Further, virulence plasmids from Avian Pathogenic E. coli and NMEC plasmids could not be differentiated based solely on the genes of the core plasmid genome.
Collapse
Affiliation(s)
- Bryon A. Nicholson
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Aaron C. West
- Department of Chemistry, College of Liberal Arts and Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Paul Mangiamele
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Nicolle Barbieri
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Yvonne Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Lisa K. Nolan
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Catherine M. Logue
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, 1802 University Blvd, Iowa State University, Ames, Iowa, 50011, United States of America
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
- * E-mail:
| |
Collapse
|
23
|
Ho WS, Yap KP, Yeo CC, Rajasekaram G, Thong KL. The Complete Sequence and Comparative Analysis of a Multidrug-Resistance and Virulence Multireplicon IncFII Plasmid pEC302/04 from an Extraintestinal Pathogenic Escherichia coli EC302/04 Indicate Extensive Diversity of IncFII Plasmids. Front Microbiol 2016; 6:1547. [PMID: 26793180 PMCID: PMC4707298 DOI: 10.3389/fmicb.2015.01547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/21/2015] [Indexed: 01/07/2023] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) that causes extraintestinal infections often harbor plasmids encoding fitness traits such as resistance and virulence determinants that are of clinical importance. We determined the complete nucleotide sequence of plasmid pEC302/04 from a multidrug-resistant E. coli EC302/04 which was isolated from the tracheal aspirate of a patient in Malaysia. In addition, we also performed comparative sequence analyses of 18 related IncFIIA plasmids to determine the phylogenetic relationship and diversity of these plasmids. The 140,232 bp pEC302/04 is a multireplicon plasmid that bears three replication systems (FII, FIA, and FIB) with subtype of F2:A1:B1. The plasmid is self-transmissible with a complete transfer region. pEC302/04 also carries antibiotic resistance genes such as blaTEM−1 and a class I integron containing sul1, cml and aadA resistance genes, conferring multidrug resistance (MDR) to its host, E. coli EC302/04. Besides, two iron acquisition systems (SitABCD and IutA-IucABCD) which are the conserved virulence determinants of ExPEC-colicin V or B and M (ColV/ColBM)-producing plasmids were identified in pEC302/04. Multiple toxin-antitoxin (TA)-based addiction systems (i.e., PemI/PemK, VagC/VagD, CcdA/CcdB, and Hok/Sok) and a plasmid partitioning system, ParAB, and PsiAB, which are important for plasmid maintenance were also found. Comparative plasmid analysis revealed only one conserved gene, the repA1 as the core genome, showing that there is an extensive diversity among the IncFIIA plasmids. The phylogenetic relationship of 18 IncF plasmids based on the core regions revealed that ColV/ColBM-plasmids and non-ColV/ColBM plasmids were separated into two distinct groups. These plasmids, which carry highly diverse genetic contents, are also mosaic in nature. The atypical combination of genetic materials, i.e., the MDR- and ColV/ColBM-plasmid-virulence encoding regions in a single ExPEC plasmid is rare but of clinical importance. Such phenomenon is bothersome when the plasmids are transmissible, facilitating the spread of virulence and resistance plasmids among pathogenic bacteria. Notably, certain TA systems are more commonly found in particular ExPEC plasmid types, indicating the possible relationships between certain TA systems and ExPEC pathogenesis.
Collapse
Affiliation(s)
- Wing Sze Ho
- Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Kien-Pong Yap
- Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Chew Chieng Yeo
- Faculty of Medicine, Biomedical Research Centre, Universiti Sultan Zainal Abidin Kuala Terengganu, Malaysia
| | | | - Kwai Lin Thong
- Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Alkeskas A, Ogrodzki P, Saad M, Masood N, Rhoma NR, Moore K, Farbos A, Paszkiewicz K, Forsythe S. The molecular characterisation of Escherichia coli K1 isolated from neonatal nasogastric feeding tubes. BMC Infect Dis 2015; 15:449. [PMID: 26497222 PMCID: PMC4620641 DOI: 10.1186/s12879-015-1210-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/13/2015] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The most common cause of Gram-negative bacterial neonatal meningitis is E. coli K1. It has a mortality rate of 10-15 %, and neurological sequelae in 30-50 % of cases. Infections can be attributable to nosocomial sources, however the pre-colonisation of enteral feeding tubes has not been considered as a specific risk factor. METHODS Thirty E. coli strains, which had been isolated in an earlier study, from the residual lumen liquid and biofilms of neonatal nasogastric feeding tubes were genotyped using pulsed-field gel electrophoresis, and 7-loci multilocus sequence typing. Potential pathogenicity and biofilm associated traits were determined using specific PCR probes, genome analysis, and in vitro tissue culture assays. RESULTS The E. coli strains clustered into five pulsotypes, which were genotyped as sequence types (ST) 95, 73, 127, 394 and 2076 (Achman scheme). The extra-intestinal pathogenic E. coli (ExPEC) phylogenetic group B2 ST95 serotype O1:K1:NM strains had been isolated over a 2 week period from 11 neonates who were on different feeding regimes. The E. coli K1 ST95 strains encoded for various virulence traits associated with neonatal meningitis and extracellular matrix formation. These strains attached and invaded intestinal, and both human and rat brain cell lines, and persisted for 48 h in U937 macrophages. E. coli STs 73, 394 and 2076 also persisted in macrophages and invaded Caco-2 and human brain cells, but only ST394 invaded rat brain cells. E. coli ST127 was notable as it did not invade any cell lines. CONCLUSIONS Routes by which E. coli K1 can be disseminated within a neonatal intensive care unit are uncertain, however the colonisation of neonatal enteral feeding tubes may be one reservoir source which could constitute a serious health risk to neonates following ingestion.
Collapse
Affiliation(s)
- Aldukali Alkeskas
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Pauline Ogrodzki
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Mohamed Saad
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Naqash Masood
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Nasreddin R Rhoma
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Karen Moore
- Wellcome Trust Biomedical Informatics Hub, Biosciences, Stocker Road, University of Exeter, Exeter, EX4 4QD, UK.
| | - Audrey Farbos
- Wellcome Trust Biomedical Informatics Hub, Biosciences, Stocker Road, University of Exeter, Exeter, EX4 4QD, UK.
| | - Konrad Paszkiewicz
- Wellcome Trust Biomedical Informatics Hub, Biosciences, Stocker Road, University of Exeter, Exeter, EX4 4QD, UK.
| | - Stephen Forsythe
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| |
Collapse
|
25
|
Wijetunge DSS, Gongati S, DebRoy C, Kim KS, Couraud PO, Romero IA, Weksler B, Kariyawasam S. Characterizing the pathotype of neonatal meningitis causing Escherichia coli (NMEC). BMC Microbiol 2015; 15:211. [PMID: 26467858 PMCID: PMC4606507 DOI: 10.1186/s12866-015-0547-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/02/2015] [Indexed: 11/26/2022] Open
Abstract
Background Neonatal meningitis-causing Escherichia coli (NMEC) is the predominant Gram-negative bacterial pathogen associated with meningitis in newborn infants. High levels of heterogeneity and diversity have been observed in the repertoire of virulence traits and other characteristics among strains of NMEC making it difficult to define the NMEC pathotype. The objective of the present study was to identify genotypic and phenotypic characteristics of NMEC that can be used to distinguish them from commensal E. coli. Methods A total of 53 isolates of NMEC obtained from neonates with meningitis and 48 isolates of fecal E. coli obtained from healthy individuals (HFEC) were comparatively evaluated using five phenotypic (serotyping, serum bactericidal assay, biofilm assay, antimicorbial susceptibility testing, and in vitro cell invasion assay) and three genotypic (phylogrouping, virulence genotyping, and pulsed-field gel electrophoresis) methods. Results A majority (67.92 %) of NMEC belonged to B2 phylogenetic group whereas 59 % of HFEC belonged to groups A and D. Serotyping revealed that the most common O and H types present in NMEC tested were O1 (15 %), O8 (11.3 %), O18 (13.2 %), and H7 (25.3 %). In contrast, none of the HFEC tested belonged to O1 or O18 serogroups. The most common serogroup identified in HFEC was O8 (6.25 %). The virulence genotyping reflected that more than 70 % of NMEC carried kpsII, K1, neuC, iucC, sitA, and vat genes with only less than 27 % of HFEC possessing these genes. All NMEC and 79 % of HFEC tested were able to invade human cerebral microvascular endothelial cells. No statistically significant difference was observed in the serum resistance phenotype between NMEC and HFEC. The NMEC strains demonstrated a greater ability to form biofilms in Luria Bertani broth medium than did HFEC (79.2 % vs 39.9 %). Conclusion The results of our study demonstrated that virulence genotyping and phylogrouping may assist in defining the potential NMEC pathotype. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0547-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- D S S Wijetunge
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, 115 Henning Bldg, University Park, Pennsylvania, USA.
| | - S Gongati
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, 115 Henning Bldg, University Park, Pennsylvania, USA.
| | - C DebRoy
- E. coli Reference Center, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA.
| | - K S Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - P O Couraud
- Department of Cell Biology, University of Paris Descartes, Paris, France.
| | - I A Romero
- Department of Biological Sciences, Open University, Milton Keynes, UK.
| | - B Weksler
- Department of Medicine, Weill Cornell Medical College in New York, New York, USA.
| | - S Kariyawasam
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, 115 Henning Bldg, University Park, Pennsylvania, USA. .,Center for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
26
|
Complete Genome Sequence of Escherichia coli Strain RS218 (O18:H7:K1), Associated with Neonatal Meningitis. GENOME ANNOUNCEMENTS 2015. [PMID: 26205862 PMCID: PMC4513156 DOI: 10.1128/genomea.00804-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Escherichia coli RS218 is the prototypic strain of neonatal meningitis-causing E. coli (NMEC) and has been used in many studies related to NMEC pathogenesis. In the present study, the genome of E. coli RS218 was sequenced together with its plasmid, pRS218. Here, we report the fully closed genome sequence of E. coli RS218.
Collapse
|
27
|
Whole-Genome Sequences of the Archetypal K1 Escherichia coli Neonatal Isolate RS218 and Contemporary Neonatal Bacteremia Clinical Isolates SCB11, SCB12, and SCB15. GENOME ANNOUNCEMENTS 2015; 3:3/1/e01598-14. [PMID: 25720688 PMCID: PMC4342429 DOI: 10.1128/genomea.01598-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neonatal bacteremia Escherichia coli strains commonly belong to the K1 capsular type. Their ability to cause invasive neonatal disease appears to be determined by other virulence factors that have yet to be identified. We report here the genome sequences of four E. coli neonatal bacteremia isolates, including that of the archetypal strain RS218.
Collapse
|
28
|
Statement on the update of the list of QPS‐recommended biological agents intentionally added to food or feed as notified to EFSA 1: Suitability of taxonomic units notified to EFSA until October 2014. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3938] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|