1
|
Hebdon SD, Gerritsen AT, Chen YP, Marcano JG, Chou KJ. Genome-Wide Transcription Factor DNA Binding Sites and Gene Regulatory Networks in Clostridium thermocellum. Front Microbiol 2021; 12:695517. [PMID: 34566906 PMCID: PMC8457756 DOI: 10.3389/fmicb.2021.695517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/27/2021] [Indexed: 12/02/2022] Open
Abstract
Clostridium thermocellum is a thermophilic bacterium recognized for its natural ability to effectively deconstruct cellulosic biomass. While there is a large body of studies on the genetic engineering of this bacterium and its physiology to-date, there is limited knowledge in the transcriptional regulation in this organism and thermophilic bacteria in general. The study herein is the first report of a large-scale application of DNA-affinity purification sequencing (DAP-seq) to transcription factors (TFs) from a bacterium. We applied DAP-seq to > 90 TFs in C. thermocellum and detected genome-wide binding sites for 11 of them. We then compiled and aligned DNA binding sequences from these TFs to deduce the primary DNA-binding sequence motifs for each TF. These binding motifs are further validated with electrophoretic mobility shift assay (EMSA) and are used to identify individual TFs’ regulatory targets in C. thermocellum. Our results led to the discovery of novel, uncharacterized TFs as well as homologues of previously studied TFs including RexA-, LexA-, and LacI-type TFs. We then used these data to reconstruct gene regulatory networks for the 11 TFs individually, which resulted in a global network encompassing the TFs with some interconnections. As gene regulation governs and constrains how bacteria behave, our findings shed light on the roles of TFs delineated by their regulons, and potentially provides a means to enable rational, advanced genetic engineering of C. thermocellum and other organisms alike toward a desired phenotype.
Collapse
Affiliation(s)
- Skyler D Hebdon
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Alida T Gerritsen
- Computational Sciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Yi-Pei Chen
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Joan G Marcano
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Katherine J Chou
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| |
Collapse
|
2
|
Utilization of Monosaccharides by Hungateiclostridium thermocellum ATCC 27405 through Adaptive Evolution. Microorganisms 2021; 9:microorganisms9071445. [PMID: 34361881 PMCID: PMC8303734 DOI: 10.3390/microorganisms9071445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
Hungateiclostridium thermocellum ATCC 27405 is a promising bacterium for consolidated bioprocessing with a robust ability to degrade lignocellulosic biomass through a multienzyme cellulosomal complex. The bacterium uses the released cellodextrins, glucose polymers of different lengths, as its primary carbon source and energy. In contrast, the bacterium exhibits poor growth on monosaccharides such as fructose and glucose. This phenomenon raises many important questions concerning its glycolytic pathways and sugar transport systems. Until now, the detailed mechanisms of H. thermocellum adaptation to growth on hexose sugars have been relatively poorly explored. In this study, adaptive laboratory evolution was applied to train the bacterium in hexose sugars-based media, and genome resequencing was used to detect the genes that got mutated during adaptation period. RNA-seq data of the first culture growing on either fructose or glucose revealed that several glycolytic genes in the Embden–Mayerhof–Parnas pathway were expressed at lower levels in these cells than in cellobiose-grown cells. After seven consecutive transfer events on fructose and glucose (~42 generations for fructose-adapted cells and ~40 generations for glucose-adapted cells), several genes in the EMP glycolysis of the evolved strains increased the levels of mRNA expression, accompanied by a faster growth, a greater biomass yield, a higher ethanol titer than those in their parent strains. Genomic screening also revealed several mutation events in the genomes of the evolved strains, especially in those responsible for sugar transport and central carbon metabolism. Consequently, these genes could be applied as potential targets for further metabolic engineering to improve this bacterium for bio-industrial usage.
Collapse
|
3
|
Ha-Tran DM, Lai RY, Nguyen TTM, Huang E, Lo SC, Huang CC. Construction of engineered RuBisCO Kluyveromyces marxianus for a dual microbial bioethanol production system. PLoS One 2021; 16:e0247135. [PMID: 33661900 PMCID: PMC7932148 DOI: 10.1371/journal.pone.0247135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/02/2021] [Indexed: 11/28/2022] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) genes play important roles in CO2 fixation and redox balancing in photosynthetic bacteria. In the present study, the kefir yeast Kluyveromyces marxianus 4G5 was used as host for the transformation of form I and form II RubisCO genes derived from the nonsulfur purple bacterium Rhodopseudomonas palustris using the Promoter-based Gene Assembly and Simultaneous Overexpression (PGASO) method. Hungateiclostridium thermocellum ATCC 27405, a well-known bacterium for its efficient solubilization of recalcitrant lignocellulosic biomass, was used to degrade Napier grass and rice straw to generate soluble fermentable sugars. The resultant Napier grass and rice straw broths were used as growth media for the engineered K. marxianus. In the dual microbial system, H. thermocellum degraded the biomass feedstock to produce both C5 and C6 sugars. As the bacterium only used hexose sugars, the remaining pentose sugars could be metabolized by K. marxianus to produce ethanol. The transformant RubisCO K. marxianus strains grew well in hydrolyzed Napier grass and rice straw broths and produced bioethanol more efficiently than the wild type. Therefore, these engineered K. marxianus strains could be used with H. thermocellum in a bacterium-yeast coculture system for ethanol production directly from biomass feedstocks.
Collapse
Affiliation(s)
- Dung Minh Ha-Tran
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Rou-Yin Lai
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Trinh Thi My Nguyen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Eugene Huang
- College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Shou-Chen Lo
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- * E-mail: (SCL); (CCH)
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan
- * E-mail: (SCL); (CCH)
| |
Collapse
|
4
|
Aikawa S, Thianheng P, Baramee S, Ungkulpasvich U, Tachaapaikoon C, Waeonukul R, Pason P, Ratanakhanokchai K, Kosugi A. Phenotypic characterization and comparative genome analysis of two strains of thermophilic, anaerobic, cellulolytic-xylanolytic bacterium Herbivorax saccincola. Enzyme Microb Technol 2020; 136:109517. [PMID: 32331721 DOI: 10.1016/j.enzmictec.2020.109517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/09/2020] [Accepted: 01/25/2020] [Indexed: 11/25/2022]
Abstract
The genome sequences of thermophilic, anaerobic, and cellulolytic-xylanolytic bacterium Herbivorax saccincola strains A7 and GGR1 have recently been determined. Although both strains belong to the same species, A7 is alkaliphilic, non-endospore-forming, and ammonium-assimilating, whereas GGR1 is neutrophilic, endospore-forming, and weak-ammonium-assimilating. To better understand the phenotypic diversity among H. saccincola strains, the genome sequences of A7 and GGR1 were compared. A7 contained three additional genes showing similarity to an alkaline stress-associated ABC-transporter but lacked four endospore formation-associated genes, AUG58543 and AUG58618 (encoding SpoVT), AUG57258 (encoding SpoVS), and AUG58614 (encoding YdhD), all of which were present in GGR1. In addition, A7 contained key ammonia assimilation genes PQQ67145 and PQQ66619, encoding ornithine cyclodeaminase and arginase, respectively, which were absent in GGR1. There was no difference in the number and types of cellulosomal-scaffolding proteins and glycosyl hydrolases between the two strains. However, cellulase and xylanase enzymes from A7 demonstrated greater activity and stability at an alkaline pH compared with those from GGR1, and amino acid substitutions were identified in 11 glycosyl hydrolases from A7. This characterization though comparative genomic analysis provides useful information for understanding the genetic basis of the phenotypic differences between H. saccincola strains isolated from distinct areas and environments.
Collapse
Affiliation(s)
- Shimpei Aikawa
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Phakhinee Thianheng
- Enzyme Technology Laboratory, School of Bioresources and Technology, King Mongkut's University of Technology, Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Sirilak Baramee
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Umbhorn Ungkulpasvich
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Chakrit Tachaapaikoon
- Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology, Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Rattiya Waeonukul
- Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology, Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Patthra Pason
- Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology, Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Khanok Ratanakhanokchai
- Enzyme Technology Laboratory, School of Bioresources and Technology, King Mongkut's University of Technology, Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Akihiko Kosugi
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
5
|
Mazzoli R, Olson D. Clostridium thermocellum: A microbial platform for high-value chemical production from lignocellulose. ADVANCES IN APPLIED MICROBIOLOGY 2020; 113:111-161. [PMID: 32948265 DOI: 10.1016/bs.aambs.2020.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Second generation biorefining, namely fermentation processes based on lignocellulosic feedstocks, has attracted tremendous interest (owing to the large availability and low cost of this biomass) as a strategy to produce biofuels and commodity chemicals that is an alternative to oil refining. However, the innate recalcitrance of lignocellulose has slowed progress toward economically viable processes. Consolidated bioprocessing (CBP), i.e., single-step fermentation of lignocellulose may dramatically reduce the current costs of 2nd generation biorefining. Metabolic engineering has been used as a tool to develop improved microbial strains supporting CBP. Clostridium thermocellum is among the most efficient cellulose degraders isolated so far and one of the most promising host organisms for application of CBP. The development of efficient and reliable genetic tools has allowed significant progress in metabolic engineering of this strain aimed at expanding the panel of growth substrates and improving the production of a number of commodity chemicals of industrial interest such as ethanol, butanol, isobutanol, isobutyl acetate and lactic acid. The present review aims to summarize recent developments in metabolic engineering of this organism which currently represents a reference model for the development of biocatalysts for 2nd generation biorefining.
Collapse
|
6
|
Papanek B, O’Dell KB, Manga P, Giannone RJ, Klingeman DM, Hettich RL, Brown SD, Guss AM. Transcriptomic and proteomic changes from medium supplementation and strain evolution in high-yielding Clostridium thermocellum strains. ACTA ACUST UNITED AC 2018; 45:1007-1015. [DOI: 10.1007/s10295-018-2073-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/18/2018] [Indexed: 01/05/2023]
Abstract
Abstract
Clostridium thermocellum is a potentially useful organism for the production of lignocellulosic biofuels because of its ability to directly deconstruct cellulose and convert it into ethanol. Previously engineered C. thermocellum strains have achieved higher yields and titers of ethanol. These strains often initially grow more poorly than the wild type. Adaptive laboratory evolution and medium supplementation have been used to improve growth, but the mechanism(s) by which growth improves remain(s) unclear. Here, we studied (1) wild-type C. thermocellum, (2) the slow-growing and high-ethanol-yielding mutant AG553, and (3) the faster-growing evolved mutant AG601, each grown with and without added formate. We used a combination of transcriptomics and proteomics to understand the physiological impact of the metabolic engineering, evolution, and medium supplementation. Medium supplementation with formate improved growth in both AG553 and AG601. Expression of C1 metabolism genes varied with formate addition, supporting the hypothesis that the primary benefit of added formate is the supply of C1 units for biosynthesis. Expression of stress response genes such as those involved in the sporulation cascade was dramatically over-represented in AG553, even after the addition of formate, suggesting that the source of the stress may be other issues such as redox imbalances. The sporulation response is absent in evolved strain AG601, suggesting that sporulation limits the growth of engineered strain AG553. A better understanding of the stress response and mechanisms of improved growth hold promise for informing rational improvement of C. thermocellum for lignocellulosic biofuel production.
Collapse
Affiliation(s)
- Beth Papanek
- 0000 0004 0446 2659 grid.135519.a Biosciences Division Oak Ridge National Laboratory Oak Ridge TN USA
- 0000 0001 2315 1184 grid.411461.7 Bredesen Center for Interdisciplinary Research and Graduate Education University of Tennessee-Knoxville Knoxville TN USA
- 0000 0004 1936 9991 grid.35403.31 Integrated Bioprocessing Research Laboratory University of Illinois-Urbana-Champaign Urbana IL USA
| | - Kaela B O’Dell
- 0000 0004 0446 2659 grid.135519.a Biosciences Division Oak Ridge National Laboratory Oak Ridge TN USA
| | - Punita Manga
- 0000 0004 0446 2659 grid.135519.a Biosciences Division Oak Ridge National Laboratory Oak Ridge TN USA
- 0000 0001 2315 1184 grid.411461.7 The Graduate School of Genome Science and Technology University of Tennessee-Knoxville Knoxville TN USA
| | - Richard J Giannone
- 0000 0004 0446 2659 grid.135519.a Biosciences Division Oak Ridge National Laboratory Oak Ridge TN USA
| | - Dawn M Klingeman
- 0000 0004 0446 2659 grid.135519.a Biosciences Division Oak Ridge National Laboratory Oak Ridge TN USA
| | - Robert L Hettich
- 0000 0004 0446 2659 grid.135519.a Biosciences Division Oak Ridge National Laboratory Oak Ridge TN USA
| | - Steven D Brown
- 0000 0004 0446 2659 grid.135519.a Biosciences Division Oak Ridge National Laboratory Oak Ridge TN USA
- 0000 0001 2315 1184 grid.411461.7 The Graduate School of Genome Science and Technology University of Tennessee-Knoxville Knoxville TN USA
- LanzaTech Inc 8045 Lamon Ave, Suite 400 60077 Skokie IL USA
| | - Adam M Guss
- 0000 0004 0446 2659 grid.135519.a Biosciences Division Oak Ridge National Laboratory Oak Ridge TN USA
- 0000 0001 2315 1184 grid.411461.7 Bredesen Center for Interdisciplinary Research and Graduate Education University of Tennessee-Knoxville Knoxville TN USA
| |
Collapse
|
7
|
Choi J, Klingeman DM, Brown SD, Cox CD. The LacI family protein GlyR3 co-regulates the celC operon and manB in Clostridium thermocellum. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:163. [PMID: 28652864 PMCID: PMC5483248 DOI: 10.1186/s13068-017-0849-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/16/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Clostridium thermocellum utilizes a wide variety of free and cellulosomal cellulases and accessory enzymes to hydrolyze polysaccharides present in complex substrates. To date only a few studies have unveiled the details by which the expression of these cellulases are regulated. Recent studies have described the auto regulation of the celC operon and determined that the celC-glyR3-licA gene cluster and nearby manB-celT gene cluster are co-transcribed as polycistronic mRNA. RESULTS In this paper, we demonstrate that the GlyR3 protein mediates the regulation of manB. We first identify putative GlyR3 binding sites within or just upstream of the coding regions of manB and celT. Using an electrophoretic mobility shift assay (EMSA), we determined that a higher concentration of GlyR3 is required to effectively bind to the putative manB site in comparison to the celC site. Neither the putative celT site nor random DNA significantly binds GlyR3. While laminaribiose interfered with GlyR3 binding to the celC binding site, binding to the manB site was unaffected. In the presence of laminaribiose, in vivo transcription of the celC-glyR3-licA gene cluster increases, while manB expression is repressed, compared to in the absence of laminaribiose, consistent with the results from the EMSA. An in vitro transcription assay demonstrated that GlyR3 and laminaribiose interactions were responsible for the observed patters of in vivo transcription. CONCLUSIONS Together these results reveal a mechanism by which manB is expressed at low concentrations of GlyR3 but repressed at high concentrations. In this way, C. thermocellum is able to co-regulate both the celC and manB gene clusters in response to the availability of β-1,3-polysaccharides in its environment.
Collapse
Affiliation(s)
- Jinlyung Choi
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996 USA
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Dawn M. Klingeman
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Steven D. Brown
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Chris D. Cox
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996 USA
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996 USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Department Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 USA
| |
Collapse
|
8
|
Dumitrache A, Klingeman DM, Natzke J, Rodriguez M, Giannone RJ, Hettich RL, Davison BH, Brown SD. Specialized activities and expression differences for Clostridium thermocellum biofilm and planktonic cells. Sci Rep 2017; 7:43583. [PMID: 28240279 PMCID: PMC5327387 DOI: 10.1038/srep43583] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/25/2017] [Indexed: 01/01/2023] Open
Abstract
Clostridium (Ruminiclostridium) thermocellum is a model organism for its ability to deconstruct plant biomass and convert the cellulose into ethanol. The bacterium forms biofilms adherent to lignocellulosic feedstocks in a continuous cell-monolayer in order to efficiently break down and uptake cellulose hydrolysates. We developed a novel bioreactor design to generate separate sessile and planktonic cell populations for omics studies. Sessile cells had significantly greater expression of genes involved in catabolism of carbohydrates by glycolysis and pyruvate fermentation, ATP generation by proton gradient, the anabolism of proteins and lipids and cellular functions critical for cell division consistent with substrate replete conditions. Planktonic cells had notably higher gene expression for flagellar motility and chemotaxis, cellulosomal cellulases and anchoring scaffoldins, and a range of stress induced homeostasis mechanisms such as oxidative stress protection by antioxidants and flavoprotein co-factors, methionine repair, Fe-S cluster assembly and repair in redox proteins, cell growth control through tRNA thiolation, recovery of damaged DNA by nucleotide excision repair and removal of terminal proteins by proteases. This study demonstrates that microbial attachment to cellulose substrate produces widespread gene expression changes for critical functions of this organism and provides physiological insights for two cells populations relevant for engineering of industrially-ready phenotypes.
Collapse
Affiliation(s)
- Alexandru Dumitrache
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A
| | - Dawn M Klingeman
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A
| | - Jace Natzke
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A
| | - Miguel Rodriguez
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A
| | - Richard J Giannone
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A
| | - Robert L Hettich
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A
| | - Brian H Davison
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A
| | - Steven D Brown
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, U.S.A
| |
Collapse
|
9
|
Sander K, Wilson CM, Rodriguez M, Klingeman DM, Rydzak T, Davison BH, Brown SD. Clostridium thermocellum DSM 1313 transcriptional responses to redox perturbation. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:211. [PMID: 26692898 PMCID: PMC4676874 DOI: 10.1186/s13068-015-0394-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/24/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND Clostridium thermocellum is a promising consolidated bioprocessing candidate organism capable of directly converting lignocellulosic biomass to ethanol. Current ethanol yields, productivities, and growth inhibitions are industrial deployment impediments for commodity fuel production by this bacterium. Redox imbalance under certain conditions and in engineered strains may contribute to incomplete substrate utilization and may direct fermentation products to undesirable overflow metabolites. Towards a better understanding of redox metabolism in C. thermocellum, we established continuous growth conditions and analyzed global gene expression during addition of two stress chemicals (methyl viologen and hydrogen peroxide) which changed the fermentation redox potential. RESULTS The addition of methyl viologen to C. thermocellum DSM 1313 chemostat cultures caused an increase in ethanol and lactate yields. A lower fermenter redox potential was observed in response to methyl viologen exposure, which correlated with a decrease in cell yield and significant differential expression of 123 genes (log2 > 1.5 or log2 < -1.5, with a 5 % false discovery rate). Expression levels decreased in four main redox-active systems during methyl viologen exposure; the [NiFe] hydrogenase, sulfate transport and metabolism, ammonia assimilation (GS-GOGAT), and porphyrin/siroheme biosynthesis. Genes encoding sulfate transport and reduction and porphyrin/siroheme biosynthesis are co-located immediately downstream of a putative iscR regulatory gene, which may be a cis-regulatory element controlling expression of these genes. Other genes showing differential expression during methyl viologen exposure included transporters and transposases. CONCLUSIONS The differential expression results from this study support a role for C. thermocellum genes for sulfate transport/reduction, glutamate synthase-glutamine synthetase (the GS-GOGAT system), and porphyrin biosynthesis being involved in redox metabolism and homeostasis. This global profiling study provides gene targets for future studies to elucidate the relative contributions of prospective pathways for co-factor pool re-oxidation and C. thermocellum redox homeostasis.
Collapse
Affiliation(s)
- Kyle Sander
- />Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996 USA
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996 USA
| | - Charlotte M. Wilson
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Miguel Rodriguez
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Dawn M. Klingeman
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Thomas Rydzak
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Brian H. Davison
- />Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996 USA
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Steven D. Brown
- />Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996 USA
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| |
Collapse
|