1
|
Shen Y, Iwao T, Motomura T, Nagasato C. Cytoplasmic inheritance of mitochondria and chloroplasts in the anisogamous brown alga Mutimo cylindricus (Phaeophyceae). PROTOPLASMA 2021; 258:19-32. [PMID: 32862312 DOI: 10.1007/s00709-020-01540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Based on the morphology of gametes, sexual reproduction in brown algae is usually classified into three types: isogamy, anisogamy, and oogamy. In isogamy, chloroplasts and chloroplast DNA (chlDNA) in the sporophyte cells are inherited biparentally, while mitochondria (or mitochondrial DNA, mtDNA) is inherited maternally. In oogamy, chloroplasts and mitochondria are inherited maternally. However, the patterns of mitochondrial and chloroplast inheritance in anisogamy have not been clarified. Here, we examined derivation of mtDNA and chlDNA in the zygotes through strain-specific PCR analysis using primers based on single nucleotide polymorphism in the anisogamous brown alga Mutimo cylindricus. In 20-day-old sporophytes after fertilization, mtDNA and chlDNA derived from female gametes were detected, thus confirming the maternal inheritance of both organelles. Additionally, the behavior of mitochondria and chloroplasts in the zygotes was analyzed by examining the consecutive serial sections using transmission electron microscopy. Male mitochondria were isolated or compartmentalized by a double-membrane and then completely digested into a multivesicular structure 2 h after fertilization. Meanwhile, male chloroplasts with eyespots were observed even in 4-day-old, seven-celled sporophytes. The final fate of male chloroplasts could not be traced. Organelle DNA copy number was also examined in female and male gametes. The DNA copy number per chloroplast and mitochondria in male gametes was lower compared with female organelles. The degree of difference is bigger in mtDNA. Thus, changes in different morphology and DNA amount indicate that maternal inheritance of mitochondria and chloroplasts in this species may be based on different processes and timing after fertilization.
Collapse
Affiliation(s)
- Yuan Shen
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Toyoki Iwao
- Toba Fisheries Science Center, Toba, 517-0005, Japan
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Japan
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Japan.
| |
Collapse
|
2
|
Jing H, Liu H, Lu Z, liuqing, C, Tan X. Mitophagy Improves Ethanol Tolerance in Yeast: Regulation by Mitochondrial Reactive Oxygen Species in Saccharomyces cerevisiae. J Microbiol Biotechnol 2020; 30:1876-1884. [PMID: 33046676 PMCID: PMC9728279 DOI: 10.4014/jmb.2004.04073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/08/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Ethanol often accumulates during the process of wine fermentation, and mitophagy has critical role in ethanol output. However, the relationship between mitophagy and ethanol stress is still unclear. In this study, the expression of ATG11 and ATG32 genes exposed to ethanol stress was accessed by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). The result indicated that ethanol stress induced expression of the ATG11 and ATG32 genes. The colony sizes and the alcohol yield of atg11 and atg32 were also smaller and lower than those of wild type strain under ethanol whereas the mortality of mutants is higher. Furthermore, compared with wild type, the membrane integrity and the mitochondrial membrane potential of atg11 and atg32 exhibited greater damage following ethanol stress. In addition, a greater proportion of mutant cells were arrested at the G1/G0 cell cycle. There was more aggregation of peroxide hydrogen (H2O2) and superoxide anion (O2•-) in mutants. These changes in H2O2 and O2•- in yeasts were altered by reductants or inhibitors of scavenging enzyme by means of regulating the expression of ATG11 and ATG32 genes. Inhibitors of the mitochondrial electron transport chain (mtETC) also increased production of H2O2 and O2•- by enhancing expression of the ATG11 and ATG32 genes. Further results showed that activator or inhibitor of autophagy also activated or inhibited mitophagy by altering production of H2O2 and O2•. Therefore, ethanol stress induces mitophagy which improves yeast the tolerance to ethanol and the level of mitophagy during ethanol stress is regulated by ROS derived from mtETC.
Collapse
Affiliation(s)
- Hongjuan Jing
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China,Corresponding authors H.Jing Phone: +86-371-67756513 E-mail:
| | - Huanhuan Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China
| | - Zhang Lu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China
| | - Cui liuqing,
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China
| | - Xiaorong Tan
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China,X.Tan Phone: +86-371-67756513 E-mail:
| |
Collapse
|
3
|
Matha AR, Lin X. Current Perspectives on Uniparental Mitochondrial Inheritance in Cryptococcus neoformans. Pathogens 2020; 9:pathogens9090743. [PMID: 32927641 PMCID: PMC7559238 DOI: 10.3390/pathogens9090743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
The mitochondrion is a vital organelle in most eukaryotic cells. It contains its own DNA which differs from nuclear DNA, since it is often inherited from only one parent during sexual reproduction. In anisogamous mammals, this is largely due to the fact that the oocyte has over 1000 times more copies of mitochondrial DNA than the sperm. However, in the isogamous fungus Cryptococcus neoformans, uniparental mitochondrial inheritance (UMI) still occurs during sexual reproduction. It is proposed that UMI might have evolved in the last common ancestor of eukaryotes. Thus, understanding the fundamental process of UMI in lower eukaryotes may give insights into how the process might have evolved in eukaryotic ancestors. In this review, we discuss the current knowledge regarding the cellular features as well as the molecular underpinnings of UMI in Cryptococcus during the mating process, and open questions that need to be answered to solve the mystery of UMI in this eukaryotic microbe.
Collapse
|
4
|
Sun S, Fu C, Ianiri G, Heitman J. The Pheromone and Pheromone Receptor Mating-Type Locus Is Involved in Controlling Uniparental Mitochondrial Inheritance in Cryptococcus. Genetics 2020; 214:703-717. [PMID: 31888949 PMCID: PMC7054021 DOI: 10.1534/genetics.119.302824] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/23/2019] [Indexed: 01/03/2023] Open
Abstract
Mitochondria are inherited uniparentally during sexual reproduction in the majority of eukaryotic species studied, including humans, mice, and nematodes, as well as many fungal species. Mitochondrial uniparental inheritance (mito-UPI) could be beneficial in that it avoids possible genetic conflicts between organelles with different genetic backgrounds, as recently shown in mice, and it could prevent the spread of selfish genetic elements in the mitochondrial genome. Despite the prevalence of observed mito-UPI, the underlying mechanisms and the genes involved in controlling this non-Mendelian inheritance are poorly understood in many species. In Cryptococcus neoformans, a human pathogenic basidiomyceteous fungus, mating types (MATα and MATa) are defined by alternate alleles at the single MAT locus that evolved from fusion of the two MAT loci (P/R encoding pheromones and pheromone receptors, and HD encoding homeodomain transcription factors) that are the ancestral state in the basidiomycota. Mitochondria are inherited uniparentally from the MATa parent in C. neoformans, and this requires the SXI1α and SXI2a HD factors encoded by MAT However, there is evidence that additional genes contribute to the control of mito-UPI in Cryptococcus Here, we show that in C. amylolentus, a sibling species of C. neoformans with unlinked P/R and HD MAT loci, mito-UPI is controlled by the P/R locus and is independent of the HD locus. Consistently, by replacing the MATα alleles of the pheromones (MF) and pheromone receptor (STE3) with the MATa alleles, we show that these P/R locus-defining genes indeed affect mito-UPI in C. neoformans during sexual reproduction. Additionally, we show that during early stages of C. neoformans sexual reproduction, conjugation tubes are always produced by the MATα cells, resulting in unidirectional migration of the MATα nucleus into the MATa cell during zygote formation. This process is controlled by the P/R locus and could serve to physically restrict movement of MATα mitochondria in the zygotes, and thereby contribute to mito-UPI. We propose a model in which both physical and genetic mechanisms function in concert to prevent the coexistence of mitochondria from the two parents in the zygote, and subsequently in the meiotic progeny, thus ensuring mito-UPI in pathogenic Cryptococcus, as well as in closely related nonpathogenic species. The implications of these findings are discussed in the context of the evolution of mito-UPI in fungi and other more diverse eukaryotes.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Ci Fu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
5
|
Step-wise elimination of α-mitochondrial nucleoids and mitochondrial structure as a basis for the strict uniparental inheritance in Cryptococcus neoformans. Sci Rep 2020; 10:2468. [PMID: 32051468 PMCID: PMC7016115 DOI: 10.1038/s41598-020-59277-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/27/2020] [Indexed: 01/24/2023] Open
Abstract
In most sexual eukaryotes, mitochondrial (mt) DNA is uniparentally inherited, although the detailed mechanisms underlying this phenomenon remain controversial. The most widely accepted explanations include the autophagic elimination of paternal mitochondria in the fertilized eggs and the active degradation of paternal mitochondrial DNA. To decode the precise program for the uniparental inheritance, we focused on Cryptococcus neoformans as a model system, in which mtDNA is inherited only from the a-parent, although gametes of a- and α-cells are of equal size and contribute equal amounts of mtDNA to the zygote. In this research, the process of preferential elimination of the mitochondria contributed by the α-parent (α-mitochondria) was studied by fluorescence microscopy and single cell analysis using optical tweezers, which revealed that α-mitochondria are preferentially reduced by the following three steps: (1) preferential reduction of α-mitochondrial (mt) nucleoids and α-mtDNA, (2) degradation of the α-mitochondrial structure and (3) proliferation of remaining mt nucleoids during the zygote development. Furthermore, AUTOPHAGY RELATED GENE (ATG) 8 and the gene encoding mitochondrial endonuclease G (NUC1) were disrupted, and the effects of their disruption on the uniparental inheritance were scrutinized. Disruption of ATG8 (ATG7) and NUC1 did not have severe effects on the uniparental inheritance, but microscopic examination revealed that α-mitochondria lacking mt nucleoids persisted in Δatg8 zygotes, indicating that autophagy is not critical for the uniparental inheritance per se but is responsible for the clearance of mitochondrial structures after the reduction of α-mt nucleoids.
Collapse
|
6
|
Gontijo FDA, de Melo AT, Pascon RC, Fernandes L, Paes HC, Alspaugh JA, Vallim MA. The role of Aspartyl aminopeptidase (Ape4) in Cryptococcus neoformans virulence and authophagy. PLoS One 2017; 12:e0177461. [PMID: 28542452 PMCID: PMC5444613 DOI: 10.1371/journal.pone.0177461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 04/27/2017] [Indexed: 12/19/2022] Open
Abstract
In order to survive and cause disease, microbial pathogens must be able to proliferate at the temperature of their infected host. We identified novel microbial features associated with thermotolerance in the opportunistic fungal pathogen Cryptococcus neoformans using a random insertional mutagenesis strategy, screening for mutants with defective growth at 37°C. Among several thermosensitive mutants, we identified one bearing a disruption in a gene predicted to encode the Ape4 aspartyl aminopeptidase protein. Ape4 metalloproteases in other fungi, including Saccharomyces cerevisiae, are activated by nitrogen starvation, and they are required for autophagy and the cytoplasm-to-vacuole targeting (Cvt) pathway. However, none have been previously associated with altered growth at elevated temperatures. We demonstrated that the C. neoformans ape4 mutant does not grow at 37°C, and it also has defects in the expression of important virulence factors such as phospholipase production and capsule formation. C. neoformans Ape4 activity was required for this facultative intracellular pathogen to survive within macrophages, as well as for virulence in an animal model of cryptococcal infection. Similar to S. cerevisiae Ape4, the C. neoformans GFP-Ape4 fusion protein co-localized with intracytoplasmic vesicles during nitrogen depletion. APE4 expression was also induced by the combination of nutrient and thermal stress. Together these results suggest that autophagy is an important cellular process for this microbial pathogen to survive within the environment of the infected host.
Collapse
Affiliation(s)
| | | | - Renata C Pascon
- Universidade Federal de São Paulo, Departamento de Ciências Biológicas, Diadema, SP, Brazil
| | - Larissa Fernandes
- Universidade de Brasília, Faculdade de Ceilândia, Ceilândia, DF, Brazil
| | - Hugo Costa Paes
- Universidade de Brasília, Faculdade de Medicina, Brasília, DF, Brazil
| | - J Andrew Alspaugh
- Duke University School of Medicine, Department of Medicine, Durham, NC, United States of America
| | - Marcelo A Vallim
- Universidade Federal de São Paulo, Departamento de Ciências Biológicas, Diadema, SP, Brazil
| |
Collapse
|
7
|
Liu XH, Zhao YH, Zhu XM, Zeng XQ, Huang LY, Dong B, Su ZZ, Wang Y, Lu JP, Lin FC. Autophagy-related protein MoAtg14 is involved in differentiation, development and pathogenicity in the rice blast fungus Magnaporthe oryzae. Sci Rep 2017; 7:40018. [PMID: 28067330 PMCID: PMC5220305 DOI: 10.1038/srep40018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 12/01/2016] [Indexed: 11/09/2022] Open
Abstract
Autophagy is the major intracellular degradation system by which cytoplasmic materials are delivered to and degraded in the vacuole/lysosome in eukaryotic cells. MoAtg14 in M. oryzae, a hitherto uncharacterized protein, is the highly divergent homolog of the yeast Atg14 and the mammal BARKOR. The MoATG14 deletion mutant exhibited collapse in the center of the colonies, poor conidiation and a complete loss of virulence. Significantly, the ΔMoatg14 mutant showed delayed breakdown of glycogen, less lipid bodies, reduced turgor pressure in the appressorium and impaired conidial autophagic cell death. The autophagic process was blocked in the ΔMoatg14 mutant, and the autophagic degradation of the marker protein GFP-MoAtg8 was interrupted. GFP-MoAtg14 co-localized with mCherry-MoAtg8 in the aerial hypha. In addition, a conserved coiled-coil domain was predicted in the N-terminal region of the MoAtg14 protein, a domain which could mediate the interaction between MoAtg14 and MoAtg6. The coiled-coil domain of the MoAtg14 protein is essential for its function in autophagy and pathogenicity.
Collapse
Affiliation(s)
- Xiao-Hong Liu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, China
| | - Ya-Hui Zhao
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xue-Ming Zhu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Qing Zeng
- State Intellectual Property Office of the People's Republic of China, Beijing, 100080, China
| | - Lu-Yao Huang
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, China
| | - Bo Dong
- State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Zhen-Zhu Su
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, China.,Agricultural Technology Extension Center, Zhejiang University, Hangzhou, 310058, China
| | - Yao Wang
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fu-Cheng Lin
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Liu XH, Xu F, Snyder JH, Shi HB, Lu JP, Lin FC. Autophagy in plant pathogenic fungi. Semin Cell Dev Biol 2016; 57:128-137. [PMID: 27072489 DOI: 10.1016/j.semcdb.2016.03.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/24/2016] [Accepted: 03/29/2016] [Indexed: 11/25/2022]
Abstract
Autophagy is a conserved cellular process that degrades cytoplasmic constituents in vacuoles. Plant pathogenic fungi develop special infection structures and/or secrete a range of enzymes to invade their plant hosts. It has been demonstrated that monitoring autophagy processes can be extremely useful in visualizing the sequence of events leading to pathogenicity of plant pathogenic fungi. In this review, we introduce the molecular mechanisms involved in autophagy. In addition, we explore the relationship between autophagy and pathogenicity in plant pathogenic fungi. Finally, we discuss the various experimental strategies available for use in the study of autophagy in plant pathogenic fungi.
Collapse
Affiliation(s)
- Xiao-Hong Liu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
| | - Fei Xu
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - John Hugh Snyder
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Huan-Bin Shi
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Fu-Cheng Lin
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China.
| |
Collapse
|