1
|
Cai T, Tang H, Du X, Wang W, Tang K, Wang X, Liu D, Wang P. Genomic Island-Encoded Diguanylate Cyclase from Vibrio alginolyticus Regulates Biofilm Formation and Motility in Pseudoalteromonas. Microorganisms 2023; 11:2725. [PMID: 38004737 PMCID: PMC10672970 DOI: 10.3390/microorganisms11112725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Many bacteria use the second messenger c-di-GMP to regulate exopolysaccharide production, biofilm formation, motility, virulence, and other phenotypes. The c-di-GMP level is controlled by the complex network of diguanylate cyclases (DGCs) and phosphodiesterases (PDEs) that synthesize and degrade c-di-GMP. In addition to chromosomally encoded DGCs, increasing numbers of DGCs were found to be located on mobile genetic elements. Whether these mobile genetic element-encoded DGCs can modulate the physiological phenotypes in recipient bacteria after horizontal gene transfer should be investigated. In our previous study, a genomic island encoding three DGC proteins (Dgc137, Dgc139, and Dgc140) was characterized in Vibrio alginolyticus isolated from the gastric cavity of the coral Galaxea fascicularis. Here, the effect of the three DGCs in four Pseudoalteromonas strains isolated from coral Galaxea fascicularis and other marine environments was explored. The results showed that when dgc137 is present rather than the three DGC genes, it obviously modulates biofilm formation and bacterial motility in these Pseudoalteromonas strains. Our findings implied that mobile genetic element-encoded DGC could regulate the physiological status of neighboring bacteria in a microbial community by modulating the c-di-GMP level after horizontal gene transfer.
Collapse
Affiliation(s)
- Tongxuan Cai
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China; (T.C.); (H.T.); (X.D.); (W.W.); (K.T.); (X.W.)
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Huan Tang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China; (T.C.); (H.T.); (X.D.); (W.W.); (K.T.); (X.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofei Du
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China; (T.C.); (H.T.); (X.D.); (W.W.); (K.T.); (X.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China; (T.C.); (H.T.); (X.D.); (W.W.); (K.T.); (X.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China; (T.C.); (H.T.); (X.D.); (W.W.); (K.T.); (X.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China; (T.C.); (H.T.); (X.D.); (W.W.); (K.T.); (X.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Liu
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou 511458, China; (T.C.); (H.T.); (X.D.); (W.W.); (K.T.); (X.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Sun H, Yang Y, Yi K, Zhang M, Luo X, He D, Hu G, Wu H. ICEGpa1804, a novel integrative and conjugative element carrying eight resistance genes, identified in Glaesserella parasuis. Int J Antimicrob Agents 2023; 61:106740. [PMID: 36736498 DOI: 10.1016/j.ijantimicag.2023.106740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/10/2021] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
ICEGpa1804 was identified in the genome of a serovar 2, ST279 isolate EHP1804 carrying eight different resistance genes from 200 Glaesserella parasuis strains isolated from swine with lower respiratory tract infection in seven provinces of China. Susceptibility testing for EHP1804 was determined by broth microdilution, and its genetic profile was determined by whole-genome sequencing. The complete ICEGpa1804 was analysed by polymerase chain reaction, conjugation assay and bioinformatics tools. The conjugation assay was performed using EHP1804 as the donor and G. parasuis V43 (rifampicin-resistant) as the recipient. ICEGpa1804 has a size of 71,880 bp and contains 83 genes, including eight resistance genes [tet(B), blaRob-1, aphA1, strA, strB, aac(3)-IId, catA3 and sul2]. The conjugation assay showed that ICEGpa1804 could be transferred to G. parasuis V43 with frequencies of 4.3 × 10-7. To the best of the authors' knowledge, this is the first study to identify a novel integrative and conjugative element (ICE) carrying eight resistance genes and seven insertion sequence (IS) elements from a G. parasuis isolate. Tn6743, a novel transposon carrying six resistance genes, was identified. Moreover, ISGpa1, a novel IS256 family insertion element, is the first characterized example of a G. parasuis insertion element. Multiple mobile genetic elements involved in resistance genes were located in chromosomal ICEGpa1804, which showed that ICEs may serve as a vital platform for the accumulation of resistance genes.
Collapse
Affiliation(s)
- Huarun Sun
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Department of Animal Science, Henan Institute of Science and Technology, Xinxiang, 453000, China
| | - Yingying Yang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Kaifang Yi
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mengke Zhang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xingwei Luo
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Dandan He
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Gongzheng Hu
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Hua Wu
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
3
|
Sun H, Zhang J, Miao Q, Zhai Y, Pan Y, Yuan L, Yan F, Wu H, Hu G. Genomic insight into the integrative conjugative elements from ICEHpa1 family. Front Vet Sci 2022; 9:986824. [PMID: 36061114 PMCID: PMC9437646 DOI: 10.3389/fvets.2022.986824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Integrative conjugative elements (ICEs) are important carriers for disseminating resistance genes. We have previously reported a novel element ICEHpa1 carrying seven antibiotic resistance genes, which could be self-transmissible relying on the novel T4SS. To identify novel ICEHpa1 variants from 211 strains and novel T4SS encoded in ICEHpa1, and to explore the relationships in these ICEs, four complete sequences of ICEs were identified by WGS analysis and antimicrobial susceptibility testing was determined by broth microdilution. In addition, a comparative analysis of these ICEs was conducted with bioinformatic tools, and the transfer abilities of these ICEs were confirmed by conjugation. Four ICEHpa1 variants ICEGpa1818, ICEGpa1808, ICEGpa1807, and ICEGpa1815 with different resistance gene profiles were characterized, and their hosts showed different resistance spectrums. All ICEs shared the same backbone and were inserted into the tRNALeu site, and all resistance regions were inserted into the same target site between the accessory and integration regions. This study analyzed complete sequences of ICEs from the ICEHpa1 family and identified novel T4SS and insertion element ISGpa2. Diverse resistance genes extensively exist in these ICEs, serving as a reservoir for resistance genes and facilitating their dissemination.
Collapse
|
4
|
Song X, Lin Z, Yuan W. Toxin-antitoxin systems in pathogenic Vibrio species: a mini review from a structure perspective. 3 Biotech 2022; 12:125. [PMID: 35542053 DOI: 10.1007/s13205-022-03178-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/31/2022] [Indexed: 11/01/2022] Open
Abstract
Toxin-antitoxin (TA) genetic modules have been found to widely exist in bacterial chromosomes and mobile genetic elements. They are composed of stable toxins and less stable antitoxins that can counteract the toxicity of toxins. The interactions between toxins and antitoxins could play critical roles in the virulence and persistence of pathogenic bacteria. There are at least eight types of TA systems which have been identified in a variety of bacteria. Vibrio, a genus of Gram-negative bacteria, is widespread in aquatic environments and can cause various human diseases, such as epidemic cholera. In this review, we mainly explore the structures and functions of TA modules found in common Vibrio pathogens, mainly V. cholerae, for better understanding of TA action mechanisms in pathogenic bacteria.
Collapse
|
5
|
Ryan MP, Slattery S, Pembroke JT. A Novel Arsenate-Resistant Determinant Associated with ICEpMERPH, a Member of the SXT/R391 Group of Mobile Genetic Elements. Genes (Basel) 2019; 10:genes10121048. [PMID: 31888308 PMCID: PMC6947025 DOI: 10.3390/genes10121048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
ICEpMERPH, the first integrative conjugative element (ICE) of the SXT/R391 family isolated in the United Kingdom and Europe, was analyzed to determine the nature of its adaptive functions, its genetic structure, and its homology to related elements normally found in pathogenic Vibrio or Proteus species. Whole genome sequencing of Escherichia coli (E. coli) isolate K802 (which contains the ICEpMERPH) was carried out using Illumina sequencing technology. ICEpMERPH has a size of 110 Kb and 112 putative open reading frames (ORFs). The “hotspot regions” of the element were found to contain putative restriction digestion systems, insertion sequences, and heavy metal resistance genes that encoded resistance to mercury, as previously reported, but also surprisingly to arsenate. A novel arsenate resistance system was identified in hotspot 4 of the element, unrelated to other SXT/R391 elements. This arsenate resistance system was potentially linked to two genes: orf69, encoding an organoarsenical efflux major facilitator superfamily (MFS) transporter-like protein related to ArsJ, and orf70, encoding nicotinamide adenine dinucleotide (NAD)-dependent glyceraldehyde-3-phosphate dehydrogenase. Phenotypic analysis using isogenic strains of Escherichia coli strain AB1157 with and without the ICEpMERPH revealed resistance to low levels of arsenate in the range of 1–5 mM. This novel, low-level resistance may have an important adaptive function in polluted environments, which often contain low levels of arsenate contamination. A bioinformatic analysis on the novel determinant and the phylogeny of ICEpMERPH was presented.
Collapse
|
6
|
Luo P, Yun L, Li Y, Tian Y, Liu Q, Huang W, Hu C. Complete genomic sequence of the Vibrio alginolyticus bacteriophage Vp670 and characterization of the lysis-related genes, cwlQ and holA. BMC Genomics 2018; 19:741. [PMID: 30305030 PMCID: PMC6180450 DOI: 10.1186/s12864-018-5131-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 09/28/2018] [Indexed: 01/21/2023] Open
Abstract
Background Biocontrol of bacterial pathogens by bacteriophages (phages) represents a promising strategy. Vibrio alginolyticus, a gram-negative bacterium, is a notorious pathogen responsible for the loss of economically important farmed marine animals. To date, few V. alginolyticus phages have been successfully isolated, and only three complete genome sequences of them have been released. The limited available phage resources and poor genomic data hamper research on V. alginolyticus phages and their applications for the biocontrol of V. alginolyticus. Results We isolated a phage, Vp670, against the V. alginolyticus strain E06333 and obtained its full genomic sequence. It contains 43,121 nucleotides with a GC content of 43.4%, and codes for 49 predicted open reading frames. Observation by electron microscope combined with phylogenetic analysis of DNA polymerase indicates that Vp670 belongs to the subfamily Autographivirinae in the family Podoviridae. orf3 (designated holA) and orf8 (designated cwlQ) are predicted to encode a holin (HolA) and an endolysin (CwlQ), respectively. Expression of holA alone or coexpression of holA and cwlQ from within arrested the growth of Escherichia coli and V. alginolyticus while the expression of cwlQ alone had no effect on the growth of them. Further observation by transmission electron microscopy revealed that the expression of holA vanished the outer membrane and caused the release of cellular contents of V. alginolyticus and the coexpression of holA and cwlQ directly burst the cells and caused a more drastic release of cellular contents. Expression of cwlQ alone in V. alginolyticus did not cause cytomorphological changes. Conclusions Phage Vp670 is a V. alginolyticus phage belonging to the family of Podoviridae. The genome of Vp670 contains a two-component lysis module, which is comprised of holA and cwlQ. holA is predicted to encode for the holin protein, HolA, and cwlQ is predicted to encode for the endolysin protein, CwlQ. Both holA and cwlQ likely play important roles during the release of phage progeny. Electronic supplementary material The online version of this article (10.1186/s12864-018-5131-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 501301, People's Republic of China.,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, 510301, People's Republic of China
| | - Long Yun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 501301, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingying Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 501301, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yushun Tian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 501301, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuting Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 501301, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 501301, People's Republic of China. .,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, 510301, People's Republic of China.
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 501301, People's Republic of China. .,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, 510301, People's Republic of China.
| |
Collapse
|
7
|
Redefinition and Unification of the SXT/R391 Family of Integrative and Conjugative Elements. Appl Environ Microbiol 2018; 84:AEM.00485-18. [PMID: 29654185 DOI: 10.1128/aem.00485-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/11/2018] [Indexed: 11/20/2022] Open
Abstract
Integrative and conjugative elements (ICEs) of the SXT/R391 family are key drivers of the spread of antibiotic resistance in Vibrio cholerae, the infectious agent of cholera, and other pathogenic bacteria. The SXT/R391 family of ICEs was defined based on the conservation of a core set of 52 genes and site-specific integration into the 5' end of the chromosomal gene prfC Hence, the integrase gene int has been intensively used as a marker to detect SXT/R391 ICEs in clinical isolates. ICEs sharing most core genes but differing by their integration site and integrase gene have been recently reported and excluded from the SXT/R391 family. Here we explored the prevalence and diversity of atypical ICEs in GenBank databases and their relationship with typical SXT/R391 ICEs. We found atypical ICEs in V. cholerae isolates that predate the emergence and expansion of typical SXT/R391 ICEs in the mid-1980s in seventh-pandemic toxigenic V. cholerae strains O1 and O139. Our analyses revealed that while atypical ICEs are not associated with antibiotic resistance genes, they often carry cation efflux pumps, suggesting heavy metal resistance. Atypical ICEs constitute a polyphyletic group likely because of occasional recombination events with typical ICEs. Furthermore, we show that the alternative integration and excision genes of atypical ICEs remain under the control of SetCD, the main activator of the conjugative functions of SXT/R391 ICEs. Together, these observations indicate that substitution of the integration/excision module and change of specificity of integration do not preclude atypical ICEs from inclusion into the SXT/R391 family.IMPORTANCEVibrio cholerae is the causative agent of cholera, an acute intestinal infection that remains to this day a world public health threat. Integrative and conjugative elements (ICEs) of the SXT/R391 family have played a major role in spreading antimicrobial resistance in seventh-pandemic V. cholerae but also in several species of Enterobacteriaceae Most epidemiological surveys use the integrase gene as a marker to screen for SXT/R391 ICEs in clinical or environmental strains. With the recent reports of closely related elements that carry an alternative integrase gene, it became urgent to investigate whether ICEs that have been left out of the family are a liability for the accuracy of such screenings. In this study, based on comparative genomics, we broaden the SXT/R391 family of ICEs to include atypical ICEs that are often associated with heavy metal resistance.
Collapse
|
8
|
Fang Y, Wang Y, Li Z, Liu Z, Li X, Diao B, Kan B, Wang D. Distribution and Genetic Characteristics of SXT/R391 Integrative Conjugative Elements in Shewanella spp. From China. Front Microbiol 2018; 9:920. [PMID: 29867831 PMCID: PMC5958206 DOI: 10.3389/fmicb.2018.00920] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/20/2018] [Indexed: 01/31/2023] Open
Abstract
The genus Shewanella consists of facultatively anaerobic Gram-negative bacteria, which are regarded as potential agents of food contamination and opportunistic human pathogens. Information about the distribution and genetic characteristics of SXT/R391 integrative conjugative elements (ICEs) in Shewanella species is limited. Here, 91 Shewanella strains collected from diverse samples in China were studied for the presence of SXT/R391 ICEs. Three positive strains, classified as Shewanella upenei, were obtained from patients and water from a local mill. In light of their close clonal relationships and high sequence similarity, a representative ICE was selected and designated ICESupCHN110003. The BLASTn searches against GenBank showed that ICEVchBan5 was most closely related to ICESupCHN110003, with the coverage of 76% and identity of 99%. The phylogenetic tree of concatenated core genes demonstrated that ICESupCHN110003 formed a distinct branch outside the cluster comprising ICEValA056-1, ICEPmiCHN2410, and ICEPmiChn1. Comparison of the genetic structures revealed that ICESupCHN110003 encoded uncommon genes in hotspots, such as specific type III restriction-modification system, conferring adaptive functions to the host. Based on the low coverage in the sequence analysis, independent clade in the phylogenetic tree, and unique inserted fragments in hotspots, ICESupCHN110003 represented a novel SXT/R391 element, which widened the list of ICEs. Furthermore, the antibiotic resistance genes floR, strA, strB, and sul2 in ICESupCHN110003 and resistance to multiple drugs of the positive isolates were detected. A cross-species transfer capability of the SXT/R391 ICEs was also discovered. In summary, it is necessary to reinforce continuous surveillance of SXT/R391 ICEs in the genus Shewanella.
Collapse
Affiliation(s)
- Yujie Fang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Center for Human Pathogen Collection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yonglu Wang
- Ma'anshan Center for Disease Control and Prevention, Ma'anshan, China
| | - Zhenpeng Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zongdong Liu
- Laizhou Center for Disease Control and Prevention, Laizhou, China
| | - Xinyue Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Baowei Diao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Duochun Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Center for Human Pathogen Collection, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
9
|
Analysis and comparative genomics of R997, the first SXT/R391 integrative and conjugative element (ICE) of the Indian Sub-Continent. Sci Rep 2017; 7:8562. [PMID: 28819148 PMCID: PMC5561048 DOI: 10.1038/s41598-017-08735-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/12/2017] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to analyse R997, the first integrative and conjugative element (ICE) isolated from the Indian Sub-Continent, and to determine its relationship to the SXT/R391 family of ICEs. WGS of Escherichia coli isolate AB1157 (which contains R997) was performed using Illumina sequencing technology. R997 context was assessed by de novo assembly, gene prediction and annotation tools, and compared to other SXT/R391 ICEs. R997 has a size of 85 Kb and harbours 85 ORFs. Within one of the variable regions a HMS-1 β-lactamase resistance gene is located. The Hotspot regions of the element contains restriction digestion systems and insertion sequences. R997 is very closely related to the SXT-like elements from widely dispersed geographic areas. The sequencing of R997 increases the knowledge of the earliest isolated SXT/R391 elements and may provide insight on the emergence of these elements on the Indian sub-continent.
Collapse
|
10
|
Burrus V. Mechanisms of stabilization of integrative and conjugative elements. Curr Opin Microbiol 2017; 38:44-50. [PMID: 28482230 DOI: 10.1016/j.mib.2017.03.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/17/2017] [Accepted: 03/31/2017] [Indexed: 01/08/2023]
Abstract
Integrative and conjugative elements (ICEs) are nearly ubiquitous in microbial genomes and influence their evolution by providing adaptive functions to their host and by enhancing genome plasticity and diversification. For a long-time, it has been assumed that by integrating into the chromosome of their host, these self-transmissible elements were passively inherited in subsequent generations. Recent findings point to a much more complex story that includes multiple strategies used by ICEs to leverage maintenance in cell populations such as transient replication, active partition of the excised circular intermediate or disassembly into multiple parts scattered in the chromosome. Here I review these diverse mechanisms of stabilization in the general context of ICEs belonging to diverse families.
Collapse
Affiliation(s)
- Vincent Burrus
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| |
Collapse
|
11
|
Badhai J, Das SK. Characterization of Three Novel SXT/R391 Integrating Conjugative Elements ICE MfuInd1a and ICE MfuInd1b, and ICE MprChn1 Identified in the Genomes of Marinomonas fungiae JCM 18476 T and Marinomonas profundimaris Strain D104. Front Microbiol 2016; 7:1896. [PMID: 27933056 PMCID: PMC5122569 DOI: 10.3389/fmicb.2016.01896] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/11/2016] [Indexed: 11/13/2022] Open
Abstract
The genus Marinomonas comprises Gram negative bacteria which are widespread in the marine environment and there is no report on the genomic analysis of SXT/R391 ICEs derived from this group of bacteria. This study describes the genomic features of three new SXT/R391 integrating conjugating elements (ICEs) identified in the genome of Marinomonas fungiae JCM 18476T (ICEMfuInd1a and ICEMfuInd1b) and in Marinomonas profundimaris strain D104 (ICEMprChn1). Structural organizations of the three ICEs were similar to the typical SXT/R391 family of ICEs and showed high degree of conservation in the core genes. Sequence analysis revealed ICEMfuInd1b and ICEMprChn1 were inserted into the genome at 5′-end of an typical host prfC gene, while ICEMfuInd1a was inserted at 5′-end of an atypical hipA-like gene. Despite their coexistence, the ICEMfuInd1a and ICEMfuInd1b were not present in a tandem fashion in the genome of M. fungiae. Phylogenetic analyses revealed the three ICEs either evolved independently or high degrees of recombination events had masked their evolution from a common SXT ancestor. Further, we found that the typical entry exclusion mechanism mediated by the TraG/EeX protein pair was likely defective in preventing the conjugative transfer of a second copy of the same S (SXT) group ICE into the M. fungiae genome due to mutations. Our analysis showed the presence of 16, 25, and 27 variable genes in the hotspots of ICEMfuInd1a, ICEMfuInd1b, and ICEMprChn1, respectively, many of which were not reported earlier for SXT/R391 ICEs. Sequence analysis predicted these hotspot regions were shaped by acquisition of genes through homologous recombination between the SXT and R391 related ICEs or mobile genetic elements present in disparate marine bacteria. Multidrug resistance genes which are hallmark feature of SXT/R391 ICEs were not present in either of the two ICEs from M. fungiae but were present within a transposon cassette in the HS-1 of the ICEMprChn1 from M. profundimaris. Finally, our data provided information on the genetic diversity and predicted functions encoded by variable genes present in the hotspot regions of these new ICEs.
Collapse
Affiliation(s)
- Jhasketan Badhai
- Department of Biotechnology, Institute of Life Sciences Bhubaneswar, India
| | - Subrata K Das
- Department of Biotechnology, Institute of Life Sciences Bhubaneswar, India
| |
Collapse
|