1
|
O'Connell LM, Coffey A, O'Mahony JM. Alternatives to antibiotics in veterinary medicine: considerations for the management of Johne's disease. Anim Health Res Rev 2023; 24:12-27. [PMID: 37475561 DOI: 10.1017/s146625232300004x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Antibiotic resistance has become a major health concern globally, with current predictions expecting deaths related to resistant infections to surpass those of cancer by 2050. Major efforts are being undertaken to develop derivative and novel alternatives to current antibiotic therapies in human medicine. What appears to be lacking however, are similar efforts into researching the application of those alternatives, such as (bacterio)phage therapy, in veterinary contexts. Agriculture is still undoubtedly the most prominent consumer of antibiotics, with up to 70% of annual antibiotic usage attributed to this sector, despite policies to reduce their use in food animals. This not only increases the risk of resistant infections spreading from farm to community but also the risk that animals may acquire species-specific infections that subvert treatment. While these diseases may not directly affect human welfare, they greatly affect the profit margin of industries reliant on livestock due to the cost of treatments and (more frequently) the losses associated with animal death. This means actively combatting animal infection not only benefits animal welfare but also global economies. In particular, targeting recurring or chronic conditions associated with certain livestock has the potential to greatly reduce financial losses. This can be achieved by developing novel diagnostics to quickly identify ill animals alongside the design of novel therapies. To explore this concept further, this review employs Johne's disease, a chronic gastroenteritis condition that affects ruminants, as a case study to exemplify the benefits of rapid diagnostics and effective treatment of chronic disease, with particular regard to the diagnostic and therapeutic potential of phage.
Collapse
Affiliation(s)
- Laura M O'Connell
- Department of Biological Sciences, Munster Technological University, Rossa Avenue, Bishopstown, Cork, T12 P928, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, Rossa Avenue, Bishopstown, Cork, T12 P928, Ireland
| | - Jim M O'Mahony
- Department of Biological Sciences, Munster Technological University, Rossa Avenue, Bishopstown, Cork, T12 P928, Ireland
| |
Collapse
|
2
|
Lu M, Schneider D, Daniel R. Metagenomic Screening for Lipolytic Genes Reveals an Ecology-Clustered Distribution Pattern. Front Microbiol 2022; 13:851969. [PMID: 35756004 PMCID: PMC9226776 DOI: 10.3389/fmicb.2022.851969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Lipolytic enzymes are one of the most important enzyme types for application in various industrial processes. Despite the continuously increasing demand, only a small portion of the so far encountered lipolytic enzymes exhibit adequate stability and activities for biotechnological applications. To explore novel and/or extremophilic lipolytic enzymes, microbial consortia in two composts at thermophilic stage were analyzed using function-driven and sequence-based metagenomic approaches. Analysis of community composition by amplicon-based 16S rRNA genes and transcripts, and direct metagenome sequencing revealed that the communities of the compost samples were dominated by members of the phyla Actinobacteria, Proteobacteria, Firmicutes, Bacteroidetes, and Chloroflexi. Function-driven screening of the metagenomic libraries constructed from the two samples yielded 115 unique lipolytic enzymes. The family assignment of these enzymes was conducted by analyzing the phylogenetic relationship and generation of a protein sequence similarity network according to an integrated classification system. The sequence-based screening was performed by using a newly developed database, containing a set of profile Hidden Markov models, highly sensitive and specific for detection of lipolytic enzymes. By comparing the lipolytic enzymes identified through both approaches, we demonstrated that the activity-directed complements sequence-based detection, and vice versa. The sequence-based comparative analysis of lipolytic genes regarding diversity, function and taxonomic origin derived from 175 metagenomes indicated significant differences between habitats. Analysis of the prevalent and distinct microbial groups providing the lipolytic genes revealed characteristic patterns and groups driven by ecological factors. The here presented data suggests that the diversity and distribution of lipolytic genes in metagenomes of various habitats are largely constrained by ecological factors.
Collapse
Affiliation(s)
| | | | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg August University of Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Behera SS, Ray RC. Bioprospecting of cowdung microflora for sustainable agricultural, biotechnological and environmental applications. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100018. [PMID: 34841310 PMCID: PMC8610318 DOI: 10.1016/j.crmicr.2020.100018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 11/28/2022] Open
Abstract
The review aims at highlighting the manifold applications of cow dung (CD) and CD microflora covering agricultural, biotechnological and environmental applications. The update research on CD microflora and CD in agricultural domain such as biocontrol, growth promotion, organic fertilizer, sulfur oxidation, phosphorus solubilization, zinc mobilization and underlying mechanisms involved in these processes are discussed. The significance of CD applications in tropical agriculture in context to climate change is briefly emphasized. The advances on genomics and proteomics of CD microflora for enhanced yield of enzymes, organic acids, alternative fuels (biomethane and biohydrogen) and other biocommodities, and environmental applications in context to biosorption of heavy metals, biodegradation of xenobiotics, etc. have been given critical attention.
Collapse
Key Words
- AD, anaerobic digesters
- AP, apple pomace
- ARB, antibiotic-resistant bacteria
- ARGs, antibiotic-resistant genes
- BOD, biochemical oxygen demand
- Biocontrol
- Biodegradation
- Biogas
- Bioprocess
- Bioremediation
- Biosorption
- C/N, carbon nitrogen ratio
- CD, cow dung
- CDP, cow dung powder
- CEC, cation exchange capacity
- Cow dung
- DO, dissolved oxygen
- EC, electric conductivity
- IAA, indole-3-acetic acids
- NPK, nitrogen, phosphorus, and potassium
- NPP, net primary productivity
- OM, organic matter
- PGPR, plant growth promoting rhizobateria
- PSM, P-solubilizing microorganisms
- Panchagavya
- SGR, specific growth rate
- SSF, solid sate fermentation
- SmF, sub-merged fermentation
- TOC, total organic carbon
- TPPB, two phase partitioning bioreactor
- TS, total solids
Collapse
Affiliation(s)
- Sudhanshu S Behera
- Department of Biotechnology, National Institute of Technology, GE Road, Raipur 492010, India.,Department of Fisheries and Animal Resource Development, Government of Odisha, India
| | - Ramesh C Ray
- Centre for Food Biology and Environment Studies, Bhubaneswar 751019, India
| |
Collapse
|
4
|
Allué-Guardia A, Saranathan R, Chan J, Torrelles JB. Mycobacteriophages as Potential Therapeutic Agents against Drug-Resistant Tuberculosis. Int J Mol Sci 2021; 22:ijms22020735. [PMID: 33450990 PMCID: PMC7828454 DOI: 10.3390/ijms22020735] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 01/21/2023] Open
Abstract
The current emergence of multi-, extensively-, extremely-, and total-drug resistant strains of Mycobacterium tuberculosis poses a major health, social, and economic threat, and stresses the need to develop new therapeutic strategies. The notion of phage therapy against bacteria has been around for more than a century and, although its implementation was abandoned after the introduction of drugs, it is now making a comeback and gaining renewed interest in Western medicine as an alternative to treat drug-resistant pathogens. Mycobacteriophages are genetically diverse viruses that specifically infect mycobacterial hosts, including members of the M. tuberculosis complex. This review describes general features of mycobacteriophages and their mechanisms of killing M. tuberculosis, as well as their advantages and limitations as therapeutic and prophylactic agents against drug-resistant M. tuberculosis strains. This review also discusses the role of human lung micro-environments in shaping the availability of mycobacteriophage receptors on the M. tuberculosis cell envelope surface, the risk of potential development of bacterial resistance to mycobacteriophages, and the interactions with the mammalian host immune system. Finally, it summarizes the knowledge gaps and defines key questions to be addressed regarding the clinical application of phage therapy for the treatment of drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Correspondence: (A.A.-G.); (J.B.T.)
| | - Rajagopalan Saranathan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA; (R.S.); (J.C.)
| | - John Chan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA; (R.S.); (J.C.)
| | - Jordi B. Torrelles
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Correspondence: (A.A.-G.); (J.B.T.)
| |
Collapse
|
5
|
Suarez CA, Franceschelli JJ, Tasselli SE, Morbidoni HR. Weirdo19ES is a novel singleton mycobacteriophage that selects for glycolipid deficient phage-resistant M. smegmatis mutants. PLoS One 2020; 15:e0231881. [PMID: 32357186 PMCID: PMC7194413 DOI: 10.1371/journal.pone.0231881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/02/2020] [Indexed: 11/23/2022] Open
Abstract
The sequencing and bioinformatics analysis of bacteriophages infecting mycobacteria has yielded a large amount of information on their evolution, including that on their environmental propagation on other genera such as Gordonia, closely related to Mycobacterium. However, little is known on mycobacteriophages cell biology such as the nature of their receptor(s) or their replication cycle. As part of our on-going screening for novel mycobacteriophages, we herein report the isolation and genome bioinformatics analysis of Weirdo19ES, a singleton Siphoviridae temperate mycobacteriophage with a 70.19% GC content. Nucleotide and protein sequence comparison to actinobacteriophage databases revealed that Weirdo19ES shows low homology to Gordonia phage Ruthy and mycobacteriophages falling in clusters Q and G and to singleton DS6A.Weirdo19ES also displays uncommon features such as a very short Lysin A gene (with only one enzymatic domain) and two putative HNH endonucleases. Mycobacterium smegmatis mutants resistant to Weirdo19ES are cross- resistant to I3. In agreement with that phenotype, analysis of cell envelope of those mutants showed that Weirdo19ES shares receptors with the transducing mycobacteriophage I3.This singleton mycobacteriophage adds up to the uncommonness of local mycobacteriophages previously isolated by our group and helps understanding the nature of mycobacteriophage receptors.
Collapse
Affiliation(s)
- Cristian Alejandro Suarez
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Jorgelina Judith Franceschelli
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Sabrina Emilse Tasselli
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Héctor Ricardo Morbidoni
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
- * E-mail:
| |
Collapse
|
6
|
Diversity of Mycobacteriaceae from aquatic environment at the São Paulo Zoological Park Foundation in Brazil. PLoS One 2020; 15:e0227759. [PMID: 31935265 PMCID: PMC6959594 DOI: 10.1371/journal.pone.0227759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/28/2019] [Indexed: 12/22/2022] Open
Abstract
We investigated the species diversity of Mycobacteriaceae in surface water samples from six environments at the zoological park in São Paulo, Brazil. Three hundred and eighty isolates were cultivated and identified by phenotypic characteristics (growth rate and pigmentation) and sequencing of hsp65, rpoB and 16S rRNA genes. The results revealed that almost 48% of the isolates could be identified at the species level; about 50% were classified at the genus level, and only less than 2% of the isolates showed an inconclusive identification. The isolates classified at the genus level and not identified were then evaluated by phylogenetic analyses using the same three concatenated target genes. The results allowed us to identify at the genus level some isolates that previously had inconclusive identification, and they also suggested the presence of putative candidate species within the sample, demonstrating that this zoological park is an important source of diversity.
Collapse
|
7
|
Cebriá-Mendoza M, Sanjuán R, Domingo-Calap P. Directed Evolution of a Mycobacteriophage. Antibiotics (Basel) 2019; 8:antibiotics8020046. [PMID: 31027152 PMCID: PMC6627502 DOI: 10.3390/antibiotics8020046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/03/2022] Open
Abstract
Bacteriophages represent an alternative strategy to combat pathogenic bacteria. Currently, Mycobacterium tuberculosis infections constitute a major public health problem due to extensive antibiotic resistance in some strains. Using a non-pathogenic species of the same genus as an experimental model, Mycobacterium smegmatis, here we have set up a basic methodology for mycobacteriophage growth and we have explored directed evolution as a tool for increasing phage infectivity and lytic activity. We demonstrate mycobacteriophage adaptation to its host under different conditions. Directed evolution could be used for the development of future phage therapy applications against mycobacteria.
Collapse
Affiliation(s)
- María Cebriá-Mendoza
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 Paterna, Valencia, Spain.
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 Paterna, Valencia, Spain.
- Department of Genetics, Universitat de València, 46100 Burjassot, Valencia, Spain.
| | - Pilar Domingo-Calap
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 Paterna, Valencia, Spain.
- Department of Genetics, Universitat de València, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
8
|
Silva NM, de Oliveira AMSA, Pegorin S, Giusti CE, Ferrari VB, Barbosa D, Martins LF, Morais C, Setubal JC, Vasconcellos SP, da Silva AM, de Oliveira JCF, Pascon RC, Viana-Niero C. Characterization of novel hydrocarbon-degrading Gordonia paraffinivorans and Gordonia sihwensis strains isolated from composting. PLoS One 2019; 14:e0215396. [PMID: 30998736 PMCID: PMC6472744 DOI: 10.1371/journal.pone.0215396] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/01/2019] [Indexed: 01/10/2023] Open
Abstract
Hydrocarbons are important environmental pollutants, and the isolation and characterization of new microorganisms with the ability to degrade these compounds are important for effective biodegradation. In this work we isolated and characterized several bacterial isolates from compost, a substrate rich in microbial diversity. The isolates were obtained from selective culture medium containing n-hexadecane, aiming to recover alkane-degraders. Six isolates identified as Gordonia by MALDI-TOF and 16S rRNA sequencing had the ability to degrade n-hexadecane in three days. Two isolates were selected for genomic and functional characterization, Gordonia paraffinivorans (MTZ052) and Gordonia sihwensis (MTZ096). The CG-MS results showed distinct n-hexadecane degradation rates for MTZ052 and MTZ096 (86% and 100% respectively). The genome sequence showed that MTZ052 encodes only one alkane degrading gene cluster, the CYP153 system, while MTZ096 harbors both the Alkane Hydroxylase (AH) and the CYP153 systems. qPCR showed that both gene clusters are induced by the presence of n-hexadecane in the growth medium, suggesting that G. paraffinivorans and G. sihwensis use these systems for degradation. Altogether, our results indicate that these Gordonia isolates have a good potential for biotransformation of hydrocarbons.
Collapse
Affiliation(s)
- Natalia Maria Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Stefania Pegorin
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Camila Escandura Giusti
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vitor Batista Ferrari
- Departamento de Ciências Farmacêuticas da Universidade Federal de São Paulo, Diadema, Brazil
| | - Deibs Barbosa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Layla Farage Martins
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Carlos Morais
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - João Carlos Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Aline Maria da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Cristina Viana-Niero
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Amgarten D, Martins LF, Lombardi KC, Antunes LP, de Souza APS, Nicastro GG, Kitajima EW, Quaggio RB, Upton C, Setubal JC, da Silva AM. Three novel Pseudomonas phages isolated from composting provide insights into the evolution and diversity of tailed phages. BMC Genomics 2017; 18:346. [PMID: 28472930 PMCID: PMC5418858 DOI: 10.1186/s12864-017-3729-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/26/2017] [Indexed: 12/18/2022] Open
Abstract
Background Among viruses, bacteriophages are a group of special interest due to their capacity of infecting bacteria that are important for biotechnology and human health. Composting is a microbial-driven process in which complex organic matter is converted into humus-like substances. In thermophilic composting, the degradation activity is carried out primarily by bacteria and little is known about the presence and role of bacteriophages in this process. Results Using Pseudomonas aeruginosa as host, we isolated three new phages from a composting operation at the Sao Paulo Zoo Park (Brazil). One of the isolated phages is similar to Pseudomonas phage Ab18 and belongs to the Siphoviridae YuA-like viral genus. The other two isolated phages are similar to each other and present genomes sharing low similarity with phage genomes in public databases; we therefore hypothesize that they belong to a new genus in the Podoviridae family. Detailed genomic descriptions and comparisons of the three phages are presented, as well as two new clusters of phage genomes in the Viral Orthologous Clusters database of large DNA viruses. We found sequences encoding homing endonucleases that disrupt a putative ribonucleotide reductase gene and an RNA polymerase subunit 2 gene in two of the phages. These findings provide insights about the evolution of two-subunits RNA polymerases and the possible role of homing endonucleases in this process. Infection tests on 30 different strains of bacteria reveal a narrow host range for the three phages, restricted to P. aeruginosa PA14 and three other P. aeruginosa clinical isolates. Biofilm dissolution assays suggest that these phages could be promising antimicrobial agents against P. aeruginosa PA14 infections. Analyses on composting metagenomic and metatranscriptomic data indicate association between abundance variations in both phage and host populations in the environment. Conclusion The results about the newly discovered and described phages contribute to the understanding of tailed bacteriophage diversity, evolution, and role in the complex composting environment. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3729-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deyvid Amgarten
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Bioinformática, Universidade de São Paulo, São Paulo, Brazil
| | - Layla Farage Martins
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Karen Cristina Lombardi
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Elliott Watanabe Kitajima
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Ronaldo Bento Quaggio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Chris Upton
- Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - João Carlos Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil. .,Biocomplexity Institute of Virginia Tech, Blacksburg, VA, USA.
| | - Aline Maria da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|