1
|
Bhandare S, Lawal OU, Colavecchio A, Cadieux B, Zahirovich-Jovich Y, Zhong Z, Tompkins E, Amitrano M, Kukavica-Ibrulj I, Boyle B, Wang S, Levesque RC, Delaquis P, Danyluk M, Goodridge L. Genomic and Phenotypic Analysis of Salmonella enterica Bacteriophages Identifies Two Novel Phage Species. Microorganisms 2024; 12:695. [PMID: 38674639 PMCID: PMC11052255 DOI: 10.3390/microorganisms12040695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Bacteriophages (phages) are potential alternatives to chemical antimicrobials against pathogens of public health significance. Understanding the diversity and host specificity of phages is important for developing effective phage biocontrol approaches. Here, we assessed the host range, morphology, and genetic diversity of eight Salmonella enterica phages isolated from a wastewater treatment plant. The host range analysis revealed that six out of eight phages lysed more than 81% of the 43 Salmonella enterica isolates tested. The genomic sequences of all phages were determined. Whole-genome sequencing (WGS) data revealed that phage genome sizes ranged from 41 to 114 kb, with GC contents between 39.9 and 50.0%. Two of the phages SB13 and SB28 represent new species, Epseptimavirus SB13 and genera Macdonaldcampvirus, respectively, as designated by the International Committee for the Taxonomy of Viruses (ICTV) using genome-based taxonomic classification. One phage (SB18) belonged to the Myoviridae morphotype while the remaining phages belonged to the Siphoviridae morphotype. The gene content analyses showed that none of the phages possessed virulence, toxin, antibiotic resistance, type I-VI toxin-antitoxin modules, or lysogeny genes. Three (SB3, SB15, and SB18) out of the eight phages possessed tailspike proteins. Whole-genome-based phylogeny of the eight phages with their 113 homologs revealed three clusters A, B, and C and seven subclusters (A1, A2, A3, B1, B2, C1, and C2). While cluster C1 phages were predominantly isolated from animal sources, cluster B contained phages from both wastewater and animal sources. The broad host range of these phages highlights their potential use for controlling the presence of S. enterica in foods.
Collapse
Affiliation(s)
- Sudhakar Bhandare
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC H9X 3V9, Canada or (S.B.)
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham LE12 5RD, UK
| | - Opeyemi U. Lawal
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Anna Colavecchio
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC H9X 3V9, Canada or (S.B.)
| | - Brigitte Cadieux
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC H9X 3V9, Canada or (S.B.)
| | - Yella Zahirovich-Jovich
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC H9X 3V9, Canada or (S.B.)
| | - Zeyan Zhong
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC H9X 3V9, Canada or (S.B.)
| | - Elizabeth Tompkins
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC H9X 3V9, Canada or (S.B.)
| | - Margot Amitrano
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC H9X 3V9, Canada or (S.B.)
| | - Irena Kukavica-Ibrulj
- Institute for Integrative Systems Biology (IBIS), Laval University, Québec, QC G1V 0A6, Canada (R.C.L.)
| | - Brian Boyle
- Institute for Integrative Systems Biology (IBIS), Laval University, Québec, QC G1V 0A6, Canada (R.C.L.)
| | - Siyun Wang
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Roger C. Levesque
- Institute for Integrative Systems Biology (IBIS), Laval University, Québec, QC G1V 0A6, Canada (R.C.L.)
| | - Pascal Delaquis
- Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada
| | - Michelle Danyluk
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Lawrence Goodridge
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
2
|
Edgar RH, Samson AP, Viator JA. The Application of Bacteriophage and Photoacoustic Flow Cytometry in Bacterial Identification. Methods Mol Biol 2024; 2738:347-355. [PMID: 37966609 DOI: 10.1007/978-1-0716-3549-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Infection with resistant bacteria has become an ever-increasing problem in modern medical practice. Bacteremia is a serious and potentially lethal condition that can lead to sepsis without early intervention. Currently, broad-spectrum antibiotics are prescribed until bacteria can be identified through blood cultures, a process that can take 2-3 days and is unable to provide quantitative information. Staphylococcus aureus (S. aureus) is a leading cause of bacteremia, and methicillin-resistant S. aureus (MRSA) accounts for more than a third of the cases. Other bacteria such as Clostridium difficile, Acinetobacter baumannii, and Carbapenem-resistant Enterobacteriaceae are becoming more prevalent and antibiotic-resistant. Rapid diagnostics for each of these superbugs has been a priority for health organizations around the world. Bacteriophages have evolved for millions of years to develop exquisite specificity in target binding using their host attachment proteins. Bacteriophages are viruses that infect bacteria. Bacteriophages use tail spikes, specialized attachment proteins, to bind specifically to their target bacterial cell surface proteins. We use bacteriophages and parts of bacteriophages as specific tags coupled with photoacoustic flow cytometry for the detection and quantification of bacteria. In photoacoustic flow cytometry, laser light is absorbed by particles under flow, and the ultrasound waves generated on the release of the energy are detected. Photoacoustics involves the detection of ultrasound waves resulting from laser irradiation. In photoacoustic flow cytometry, pulsed laser light is delivered to a sample flowing past a focused transducer, and particles that absorb laser light create a photoacoustic response. Bacteria can be tagged with dyed bacteriophage and processed through a photoacoustic flow cytometer where they are detected by the acoustic response. In this chapter, we describe the procedure and methods used to accomplish this. Often the limiting factor for the treatment of patients is the time spent waiting for results. It is our hope that the work presented in this chapter can be a foundation for future work and provide an ability to detect bacterial pathogens in blood cultures. Bacterial plate cultures and Gram staining are nineteenth-century technologies that have been the gold standards for decades, but current trends in resistant bacteria have necessitated a move toward more rapid and quantifiable diagnostic tools.
Collapse
Affiliation(s)
- Robert H Edgar
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anie-Pier Samson
- Department of Engineering, Duquesne University, Pittsburgh, PA, USA
| | - John A Viator
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Engineering, Duquesne University, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Sørensen AN, Kalmár D, Lutz VT, Klein-Sousa V, Taylor NMI, Sørensen MC, Brøndsted L. Agtrevirus phage AV101 recognizes four different O-antigens infecting diverse E. coli. MICROLIFE 2023; 5:uqad047. [PMID: 38234449 PMCID: PMC10791037 DOI: 10.1093/femsml/uqad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
Bacteriophages in the Agtrevirus genus are known for expressing multiple tail spike proteins (TSPs), but little is known about their genetic diversity and host recognition apart from their ability to infect diverse Enterobacteriaceae species. Here, we aim to determine the genetic differences that may account for the diverse host ranges of Agrevirus phages. We performed comparative genomics of 14 Agtrevirus and identified only a few genetic differences including genes involved in nucleotide metabolism. Most notably was the diversity of the tsp gene cluster, specifically in the receptor-binding domains that were unique among most of the phages. We further characterized agtrevirus AV101 infecting nine diverse Extended Spectrum β-lactamase (ESBL) Escherichia coli and demonstrated that this phage encoded four unique TSPs among Agtrevirus. Purified TSPs formed translucent zones and inhibited AV101 infection of specific hosts, demonstrating that TSP1, TSP2, TSP3, and TSP4 recognize O8, O82, O153, and O159 O-antigens of E. coli, respectively. BLASTp analysis showed that the receptor-binding domain of TSP1, TSP2, TSP3, and TSP4 are similar to TSPs encoded by E. coli prophages and distant related virulent phages. Thus, Agtrevirus may have gained their receptor-binding domains by recombining with prophages or virulent phages. Overall, combining bioinformatic and biological data expands the understanding of TSP host recognition of Agtrevirus and give new insight into the origin and acquisition of receptor-binding domains of Ackermannviridae phages.
Collapse
Affiliation(s)
- Anders Nørgaard Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Dorottya Kalmár
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Veronika Theresa Lutz
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Victor Klein-Sousa
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Martine C Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| |
Collapse
|
4
|
Chen Y, Li L, Wei X, Hu M, Zhao X, Zhang Q, Luo Y, Zhao M, Liu Z, Cai Y, Liu Y. Phage Tail Fiber Protein as a Specific Probe for Recognition of Shiga Toxin-Producing Escherichia coli O91, O103, and O111. Anal Chem 2023; 95:18407-18414. [PMID: 38053255 DOI: 10.1021/acs.analchem.3c03370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The ability to quickly identify specific serotypes of Shiga toxin-producing Escherichia coli (STEC) could facilitate the monitoring and control of STEC pathogens. In this study, we identified the receptors and receptor-binding proteins (RBPs) of three novel phages (pO91, pO103, and pO111) isolated from hospital wastewater. Recombinant versions of these RBPs (pO91-ORF43, pO103-ORF42, and pO111-ORF8) fused to a fluorescent reporter protein were then constructed. Both fluorescence microscopy and transmission electron microscopy showed that all three recombinant RBPs were bound to the bacterial surface. Indirect enzyme-linked immunosorbent assay was used to verify that each recombinant RBP bound specifically to E. coli O91, O103, or O111, but not to any of the 83 strains of E. coli with different O-antigens, nor to 10 other bacterial species that were tested. The recombinant RBPs adsorbed to their respective host bacteria within 10 min of incubation. The minimum concentration of bacteria required for detection by the recombinant RBPs was 33 colony-forming units (CFU)/mL (range: 3.3 × 10 to 3.3 × 108 CFU/mL). Furthermore, each recombinant RBP was also able to detect bacteria in lettuce, chicken breast meat, and infected mice, indicating that their usage will facilitate the detection of STEC and may help to reduce the spread of STEC-related infections and diseases.
Collapse
Affiliation(s)
- Yibao Chen
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lulu Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiaotian Wei
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ming Hu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiaonan Zhao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Qing Zhang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yanbo Luo
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Min Zhao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhengjie Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yumei Cai
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Yuqing Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
5
|
Hatlem D, Christensen M, Broeker NK, Kristiansen PE, Lund R, Barbirz S, Linke D. A trimeric coiled-coil motif binds bacterial lipopolysaccharides with picomolar affinity. Front Cell Infect Microbiol 2023; 13:1125482. [PMID: 36875521 PMCID: PMC9978483 DOI: 10.3389/fcimb.2023.1125482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
α-helical coiled-coils are ubiquitous protein structures in all living organisms. For decades, modified coiled-coils sequences have been used in biotechnology, vaccine development, and biochemical research to induce protein oligomerization, and form self-assembled protein scaffolds. A prominent model for the versatility of coiled-coil sequences is a peptide derived from the yeast transcription factor, GCN4. In this work, we show that its trimeric variant, GCN4-pII, binds bacterial lipopolysaccharides (LPS) from different bacterial species with picomolar affinity. LPS molecules are highly immunogenic, toxic glycolipids that comprise the outer leaflet of the outer membrane of Gram-negative bacteria. Using scattering techniques and electron microscopy, we show how GCN4-pII breaks down LPS micelles in solution. Our findings suggest that the GCN4-pII peptide and derivatives thereof could be used for novel LPS detection and removal solutions with high relevance to the production and quality control of biopharmaceuticals and other biomedical products, where even minuscule amounts of residual LPS can be lethal.
Collapse
Affiliation(s)
- Daniel Hatlem
- Institutt for Biovitenskap, Universitetet i Oslo, Oslo, Norway
| | | | - Nina K. Broeker
- Department Humanmedizin, HMU Health and Medical University, Potsdam, Germany
| | | | - Reidar Lund
- Kjemisk Institutt, Universitetet i Oslo, Oslo, Norway
| | - Stefanie Barbirz
- Department Humanmedizin, HMU Health and Medical University, Potsdam, Germany
| | - Dirk Linke
- Institutt for Biovitenskap, Universitetet i Oslo, Oslo, Norway
| |
Collapse
|
6
|
Ding Y, Huang C, Zhang Y, Wang J, Wang X. Magnetic microbead enzyme-linked immunoassay based on phage encoded protein RBP 41-mediated for rapid and sensitive detection of Salmonella in food matrices. Food Res Int 2023; 163:112212. [PMID: 36596140 DOI: 10.1016/j.foodres.2022.112212] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
Abstract
Rapid and sensitive quantitative detection methods are required to monitor and detect Salmonella throughout the food supply chain and early prevention of foodborne disease outbreaks. In this study, a magnetic microbead enzyme-linked immunoassay (MELISA) based on phage receptor binding protein was developed for rapid enrichment and detection of Salmonella in complex food matrices. RBP 41 from phage T102 acted as a species-specific recognition element for Salmonella by exploiting its strong binding capacity to Salmonella surface receptors. RBP 41-MBs were prepared by coupling recombinant RBP 41 with MBs and used to separate and enrich Salmonella cells from spiked food samples. The captured complexes were further integrated with ELISA procedures by HRP-labeled anti-Salmonella antibody for rapid and accurate detection of Salmonella. The whole method took <1.5 h and the detection limit was 10 CFU/mL. Therefore, MELISA was successfully developed for the detection of Salmonella in various spiked food samples (skim milk, lettuce, and chicken breast). The ELISA reaction process of this method was carried out on magnetic beads. It simplified the process of the traditional ELISA method and reduces the reaction time. This study expanded the use of phage-associated proteins and demonstrated the promising prospects for practical applications in the detection of foodborne pathogens.
Collapse
Affiliation(s)
- Yifeng Ding
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chenxi Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yiming Zhang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jia Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaohong Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Fernández-Fernández R, Olivenza DR, Sánchez-Romero MA. Identifying Bacterial Lineages in Salmonella by Flow Cytometry. EcoSal Plus 2022; 10:eESP00182021. [PMID: 35148202 PMCID: PMC10729938 DOI: 10.1128/ecosalplus.esp-0018-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022]
Abstract
Advances in technologies that permit high-resolution analysis of events in single cells have revealed that phenotypic heterogeneity is a widespread phenomenon in bacteria. Flow cytometry has the potential to describe the distribution of cellular properties within a population of bacterial cells and has yielded invaluable information about the ability of isogenic cells to diversify into phenotypic subpopulations. This review will discuss several single-cell approaches that have recently been applied to define phenotypic heterogeneity in populations of Salmonella enterica.
Collapse
Affiliation(s)
| | - David R. Olivenza
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | |
Collapse
|
8
|
Costa SP, Nogueira CL, Cunha AP, Lisac A, Carvalho CM. Potential of bacteriophage proteins as recognition molecules for pathogen detection. Crit Rev Biotechnol 2022:1-18. [PMID: 35848817 DOI: 10.1080/07388551.2022.2071671] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bacterial pathogens are leading causes of infections with high mortality worldwide having a great impact on healthcare systems and the food industry. Gold standard methods for bacterial detection mainly rely on culture-based technologies and biochemical tests which are laborious and time-consuming. Regardless of several developments in existing methods, the goal of achieving high sensitivity and specificity, as well as a low detection limit, remains unaccomplished. In past years, various biorecognition elements, such as antibodies, enzymes, aptamers, or nucleic acids, have been widely used, being crucial for the pathogens detection in different complex matrices. However, these molecules are usually associated with high detection limits, demand laborious and costly production, and usually present cross-reactivity. (Bacterio)phage-encoded proteins, especially the receptor binding proteins (RBPs) and cell-wall binding domains (CBDs) of endolysins, are responsible for the phage binding to the bacterial surface receptors in different stages of the phage lytic cycle. Due to their remarkable properties, such as high specificity, sensitivity, stability, and ability to be easily engineered, they are appointed as excellent candidates to replace conventional recognition molecules, thereby contributing to the improvement of the detection methods. Moreover, they offer several possibilities of application in a variety of detection systems, such as magnetic, optical, and electrochemical. Herein we provide a review of phage-derived bacterial binding proteins, namely the RBPs and CBDs, with the prospect to be employed as recognition elements for bacteria. Moreover, we summarize and discuss the various existing methods based on these proteins for the detection of nosocomial and foodborne pathogens.
Collapse
Affiliation(s)
- Susana P Costa
- Centre of Biological Engineering, University of Minho, Braga, Portugal.,International Iberian Nanotechnology Laboratory, Braga, Portugal.,Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC MN), IN-Institute of Nanoscience and Nanotechnolnology, Lisbon, Portugal
| | - Catarina L Nogueira
- International Iberian Nanotechnology Laboratory, Braga, Portugal.,Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC MN), IN-Institute of Nanoscience and Nanotechnolnology, Lisbon, Portugal
| | - Alexandra P Cunha
- Centre of Biological Engineering, University of Minho, Braga, Portugal.,International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Ana Lisac
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Carla M Carvalho
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| |
Collapse
|
9
|
Venturini C, Petrovic Fabijan A, Fajardo Lubian A, Barbirz S, Iredell J. Biological foundations of successful bacteriophage therapy. EMBO Mol Med 2022; 14:e12435. [PMID: 35620963 PMCID: PMC9260219 DOI: 10.15252/emmm.202012435] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/20/2022] Open
Abstract
Bacteriophages (phages) are selective viral predators of bacteria. Abundant and ubiquitous in nature, phages can be used to treat bacterial infections (phage therapy), including refractory infections and those resistant to antibiotics. However, despite an abundance of anecdotal evidence of efficacy, significant hurdles remain before routine implementation of phage therapy into medical practice, including a dearth of robust clinical trial data. Phage-bacterium interactions are complex and diverse, characterized by co-evolution trajectories that are significantly influenced by the environments in which they occur (mammalian body sites, water, soil, etc.). An understanding of the molecular mechanisms underpinning these dynamics is essential for successful clinical translation. This review aims to cover key aspects of bacterium-phage interactions that affect bacterial killing by describing the most relevant published literature and detailing the current knowledge gaps most likely to influence therapeutic success.
Collapse
Affiliation(s)
- Carola Venturini
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of ScienceSydney School of Veterinary ScienceThe University of SydneySydneyNSWAustralia
| | - Aleksandra Petrovic Fabijan
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Alicia Fajardo Lubian
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Stefanie Barbirz
- Department of MedicineScience FacultyMSB Medical School BerlinBerlinGermany
| | - Jonathan Iredell
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
- Westmead HospitalWestern Sydney Local Health DistrictWestmeadNSWAustralia
| |
Collapse
|
10
|
Abril AG, Carrera M, Notario V, Sánchez-Pérez Á, Villa TG. The Use of Bacteriophages in Biotechnology and Recent Insights into Proteomics. Antibiotics (Basel) 2022; 11:653. [PMID: 35625297 PMCID: PMC9137636 DOI: 10.3390/antibiotics11050653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
Phages have certain features, such as their ability to form protein-protein interactions, that make them good candidates for use in a variety of beneficial applications, such as in human or animal health, industry, food science, food safety, and agriculture. It is essential to identify and characterize the proteins produced by particular phages in order to use these viruses in a variety of functional processes, such as bacterial detection, as vehicles for drug delivery, in vaccine development, and to combat multidrug resistant bacterial infections. Furthermore, phages can also play a major role in the design of a variety of cheap and stable sensors as well as in diagnostic assays that can either specifically identify specific compounds or detect bacteria. This article reviews recently developed phage-based techniques, such as the use of recombinant tempered phages, phage display and phage amplification-based detection. It also encompasses the application of phages as capture elements, biosensors and bioreceptors, with a special emphasis on novel bacteriophage-based mass spectrometry (MS) applications.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain;
- Department of Food Technology, Spanish National Research Council (CSIC), Marine Research Institute (IIM), 36208 Vigo, Spain;
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council (CSIC), Marine Research Institute (IIM), 36208 Vigo, Spain;
| | - Vicente Notario
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA;
| | - Ángeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia;
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain;
| |
Collapse
|
11
|
Filik K, Szermer-Olearnik B, Oleksy S, Brykała J, Brzozowska E. Bacteriophage Tail Proteins as a Tool for Bacterial Pathogen Recognition-A Literature Review. Antibiotics (Basel) 2022; 11:555. [PMID: 35625199 PMCID: PMC9137617 DOI: 10.3390/antibiotics11050555] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/23/2022] Open
Abstract
In recent years, a number of bacterial detection methods have been developed to replace time-consuming culture methods. One interesting approach is to mobilize the ability of phage tail proteins to recognize and bind to bacterial hosts. In this paper, the authors provide an overview of the current methodologies in which phage proteins play major roles in detecting pathogenic bacteria. Authors focus on proteins capable of recognizing highly pathogenic strains, such as Acinetobacter baumannii, Campylobacter spp., Yersinia pestis, Pseudomonas aeruginosa, Listeria monocytogenes, Staphylococcus aureus, Enterococcus spp., Salmonella spp., and Shigella. These pathogens may be diagnosed by capture-based detection methods involving the use of phage protein-coated nanoparticles, ELISA (enzyme-linked immunosorbent assay)-based methods, or biosensors. The reviewed studies show that phage proteins are becoming an important diagnostic tool due to the discovery of new phages and the increasing knowledge of understanding the specificity and functions of phage tail proteins.
Collapse
Affiliation(s)
- Karolina Filik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, St. R. Weigl 12, 51-167 Wroclaw, Poland; (S.O.); (J.B.); (E.B.)
| | - Bożena Szermer-Olearnik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, St. R. Weigl 12, 51-167 Wroclaw, Poland; (S.O.); (J.B.); (E.B.)
| | | | | | | |
Collapse
|
12
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
13
|
Gibb B, Hyman P, Schneider CL. The Many Applications of Engineered Bacteriophages-An Overview. Pharmaceuticals (Basel) 2021; 14:ph14070634. [PMID: 34208847 PMCID: PMC8308837 DOI: 10.3390/ph14070634] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 12/18/2022] Open
Abstract
Since their independent discovery by Frederick Twort in 1915 and Felix d’Herelle in 1917, bacteriophages have captured the attention of scientists for more than a century. They are the most abundant organisms on the planet, often outnumbering their bacterial hosts by tenfold in a given environment, and they constitute a vast reservoir of unexplored genetic information. The increased prevalence of antibiotic resistant pathogens has renewed interest in the use of naturally obtained phages to combat bacterial infections, aka phage therapy. The development of tools to modify phages, genetically or chemically, combined with their structural flexibility, cargo capacity, ease of propagation, and overall safety in humans has opened the door to a myriad of applications. This review article will introduce readers to many of the varied and ingenious ways in which researchers are modifying phages to move them well beyond their innate ability to target and kill bacteria.
Collapse
Affiliation(s)
- Bryan Gibb
- Department of Biological and Chemical Sciences, Theobald Science Center, Room 423, New York Institute of Technology, Old Westbury, NY 11568-8000, USA
- Correspondence: (B.G.); (C.L.S.)
| | - Paul Hyman
- Department of Biology and Toxicology, Ashland University, 401 College Ave., Ashland, OH 44805, USA;
| | - Christine L. Schneider
- Department of Life Sciences, Carroll University, 100 North East Ave., Waukesha, WI 53186, USA
- Correspondence: (B.G.); (C.L.S.)
| |
Collapse
|
14
|
Aslam B, Arshad MI, Aslam MA, Muzammil S, Siddique AB, Yasmeen N, Khurshid M, Rasool M, Ahmad M, Rasool MH, Fahim M, Hussain R, Xia X, Baloch Z. Bacteriophage Proteome: Insights and Potentials of an Alternate to Antibiotics. Infect Dis Ther 2021; 10:1171-1193. [PMID: 34170506 PMCID: PMC8322358 DOI: 10.1007/s40121-021-00446-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/27/2021] [Indexed: 01/21/2023] Open
Abstract
Introduction The mounting incidence of multidrug-resistant bacterial strains and the dearth of novel antibiotics demand alternate therapies to manage the infections caused by resistant superbugs. Bacteriophages and phage=derived proteins are considered as potential alternates to treat such infections, and have several applications in health care systems. The aim of this review is to explore the hidden potential of bacteriophage proteins which may be a practical alternative approach to manage the threat of antibiotic resistance. Results Clinical trials are in progress for the use of phage therapy as a tool for routine medical use; however, the existing regulations may hamper their development of routine antimicrobial agents. The advancement of molecular techniques and the advent of sequencing have opened new potentials for the design of engineered bacteriophages as well as recombinant bacteriophage proteins. The phage enzymes and proteins encoded by the lysis cassette genes, especially endolysins, holins, and spanins, have shown plausible potentials as therapeutic candidates. Conclusion This review offers an integrated viewpoint that aims to decipher the insights and abilities of bacteriophages and their derived proteins as potential alternatives to antibiotics.
Collapse
Affiliation(s)
- Bilal Aslam
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Imran Arshad
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Aamir Aslam
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abu Baker Siddique
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Nafeesa Yasmeen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Maria Rasool
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Moeed Ahmad
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Mohammad Fahim
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Riaz Hussain
- University College of Veterinary and Animal Sciences, Islamia University Bahawalpur, Bahawalpur, Pakistan
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P.R. China.
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P.R. China.
| |
Collapse
|
15
|
Park H, Kim J, Kim M, Park Y, Ryu S. Development of new strategy combining heat treatment and phage cocktail for post-contamination prevention. Food Res Int 2021; 145:110415. [PMID: 34112418 DOI: 10.1016/j.foodres.2021.110415] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Heat treatment is an effective method for ensuring food safety and quality by controlling microbial contamination. However, food poisoning outbreaks have continuously occurred in heat-treated products due to improper thermal treatment and/or post-contamination of foodborne pathogens. This study proposes a novel strategy combining thermostable bacteriophages with thermal processing of food production plants to control foodborne pathogens and even bacterial contamination. Typically, bacteriophages' susceptibility to heat is a major challenge to their application with thermal processing, we isolated thermostable bacteriophages by a modified isolation method of applying heat to samples and characterized the thermostable bacteriophages. Furthermore, we optimized the bacteriophage cocktail components to expand the controllable host range and reduce the risk of bacteriophage resistance development. Finally, we verified this antibacterial strategy by combining heat treatment with thermostable bacteriophages in model systems, including milk and chicken breast. After the phage cocktail and heat treatment, we artificially contaminated the food products to mimic the post-contamination event. Surprisingly, the remaining bacteriophages that withstood heat treatment significantly reduced the number of post-contaminated Salmonella. Altogether, thermostable phages could be applied as complementary tools to control post-contamination after thermal processing of food products.
Collapse
Affiliation(s)
- Haejoon Park
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinwoo Kim
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Minsik Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yerin Park
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea; Center for Food Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
16
|
Witte S, Zinsli LV, Gonzalez-Serrano R, Matter CI, Loessner MJ, van Mierlo JT, Dunne M. Structural and functional characterization of the receptor binding proteins of Escherichia coli O157 phages EP75 and EP335. Comput Struct Biotechnol J 2021; 19:3416-3426. [PMID: 34194667 PMCID: PMC8217332 DOI: 10.1016/j.csbj.2021.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/16/2022] Open
Abstract
Bacteriophages (phages) are widely used as biocontrol agents in food and as antibacterial agents for treatment of food production plant surfaces. An important feature of such phages is broad infectivity towards a given pathogenic species. Phages attach to the surfaces of bacterial cells using receptor binding proteins (RBPs), namely tail fibers or tailspikes (TSPs). The binding range of RBPs is the primary determinant of phage host range and infectivity, and therefore dictates a phage's suitability as an antibacterial agent. Phages EP75 and EP335 broadly infect strains of E. coli serotype O157. To better understand host recognition by both phages, here we focused on characterizing the structures and functions of their RBPs. We identified two distinct tail fibers in the genome of the podovirus EP335: gp12 and gp13. Using fluorescence microscopy, we reveal how gp13 recognizes strains of E. coli serotypes O157 and O26. Phage EP75 belongs to the Kuttervirus genus within the Ackermannviridae family and features a four TSP complex (TSPs 1-4) that is universal among such phages. We demonstrate enzymatic activity of TSP1 (gp167) and TSP2 (gp168) toward the O18A and O157 O-antigens of E. coli, respectively, as well as TSP3 activity (gp169.1) against O4, O7, and O9 Salmonella O-antigens. TSPs of EP75 present high similarity to TSPs from E. coli phages CBA120 (TSP2) and HK620 (TSP1) and Salmonella myovirus Det7 (TSP3), which helps explain the cross-genus infectivity observed for EP75.
Collapse
Affiliation(s)
- Sander Witte
- Micreos Food Safety B.V., Wageningen, Nieuwe Kanaal 7P, 6709PA, The Netherlands
| | - Léa V. Zinsli
- Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | | | - Cassandra I. Matter
- Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | - Martin J. Loessner
- Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | - Joël T. van Mierlo
- Micreos Food Safety B.V., Wageningen, Nieuwe Kanaal 7P, 6709PA, The Netherlands
| | - Matthew Dunne
- Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| |
Collapse
|
17
|
Bacteriophage-based advanced bacterial detection: Concept, mechanisms, and applications. Biosens Bioelectron 2021; 177:112973. [DOI: 10.1016/j.bios.2021.112973] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
|
18
|
Dhanker R, Hussain T, Tyagi P, Singh KJ, Kamble SS. The Emerging Trend of Bio-Engineering Approaches for Microbial Nanomaterial Synthesis and Its Applications. Front Microbiol 2021; 12:638003. [PMID: 33796089 PMCID: PMC8008120 DOI: 10.3389/fmicb.2021.638003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Micro-organisms colonized the world before the multi-cellular organisms evolved. With the advent of microscopy, their existence became evident to the mankind and also the vast processes they regulate, that are in direct interest of the human beings. One such process that intrigued the researchers is the ability to grow in presence of toxic metals. The process seemed to be simple with the metal ions being sequestrated into the inclusion bodies or cell surfaces enabling the conversion into nontoxic nanostructures. However, the discovery of genome sequencing techniques highlighted the genetic makeup of these microbes as a quintessential aspect of these phenomena. The findings of metal resistance genes (MRG) in these microbes showed a rather complex regulation of these processes. Since most of these MRGs are plasmid encoded they can be transferred horizontally. With the discovery of nanoparticles and their many applications from polymer chemistry to drug delivery, the demand for innovative techniques of nanoparticle synthesis increased dramatically. It is now established that microbial synthesis of nanoparticles provides numerous advantages over the existing chemical methods. However, it is the explicit use of biotechnology, molecular biology, metabolic engineering, synthetic biology, and genetic engineering tools that revolutionized the world of microbial nanotechnology. Detailed study of the micro and even nanolevel assembly of microbial life also intrigued biologists and engineers to generate molecular motors that mimic bacterial flagellar motor. In this review, we highlight the importance and tremendous hidden potential of bio-engineering tools in exploiting the area of microbial nanoparticle synthesis. We also highlight the application oriented specific modulations that can be done in the stages involved in the synthesis of these nanoparticles. Finally, the role of these nanoparticles in the natural ecosystem is also addressed.
Collapse
Affiliation(s)
- Raunak Dhanker
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, India
| | - Touseef Hussain
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Priyanka Tyagi
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, India
| | - Kawal Jeet Singh
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Shashank S. Kamble
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, India
| |
Collapse
|
19
|
Hassan AY, Lin JT, Ricker N, Anany H. The Age of Phage: Friend or Foe in the New Dawn of Therapeutic and Biocontrol Applications? Pharmaceuticals (Basel) 2021; 14:199. [PMID: 33670836 PMCID: PMC7997343 DOI: 10.3390/ph14030199] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Extended overuse and misuse of antibiotics and other antibacterial agents has resulted in an antimicrobial resistance crisis. Bacteriophages, viruses that infect bacteria, have emerged as a legitimate alternative antibacterial agent with a wide scope of applications which continue to be discovered and refined. However, the potential of some bacteriophages to aid in the acquisition, maintenance, and dissemination of negatively associated bacterial genes, including resistance and virulence genes, through transduction is of concern and requires deeper understanding in order to be properly addressed. In particular, their ability to interact with mobile genetic elements such as plasmids, genomic islands, and integrative conjugative elements (ICEs) enables bacteriophages to contribute greatly to bacterial evolution. Nonetheless, bacteriophages have the potential to be used as therapeutic and biocontrol agents within medical, agricultural, and food processing settings, against bacteria in both planktonic and biofilm environments. Additionally, bacteriophages have been deployed in developing rapid, sensitive, and specific biosensors for various bacterial targets. Intriguingly, their bioengineering capabilities show great promise in improving their adaptability and effectiveness as biocontrol and detection tools. This review aims to provide a balanced perspective on bacteriophages by outlining advantages, challenges, and future steps needed in order to boost their therapeutic and biocontrol potential, while also providing insight on their potential role in contributing to bacterial evolution and survival.
Collapse
Affiliation(s)
- Ahmad Y. Hassan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada;
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Janet T. Lin
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Nicole Ricker
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada;
- Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
20
|
Abstract
The diversity of advanced genetic engineering techniques that have become available in recent years has enabled a more precise manipulation of genes and genomes. Among these, bacteriophage genomes stand out as an interesting target due to their dependence on a host for replication, which previously complicated their manipulation, and due as well to the many possible fields in which they can be used. In this review, we highlight recent applications for which genetically modified bacteriophages are being employed: as phage therapy in medicine, animal industries and agricultural settings; as a source of new antimicrobials; as biosensors for research, health and environmental purposes; and as genetic engineering tools themselves.
Collapse
Affiliation(s)
| | - Hiroki Ando
- Department of Microbiology, Graduate School of Medicine, Gifu University
| |
Collapse
|
21
|
Stephan MS, Broeker NK, Saragliadis A, Roos N, Linke D, Barbirz S. In vitro Analysis of O-Antigen-Specific Bacteriophage P22 Inactivation by Salmonella Outer Membrane Vesicles. Front Microbiol 2020; 11:510638. [PMID: 33072001 PMCID: PMC7541932 DOI: 10.3389/fmicb.2020.510638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 08/26/2020] [Indexed: 11/23/2022] Open
Abstract
Bacteriophages use a large number of different bacterial cell envelope structures as receptors for surface attachment. As a consequence, bacterial surfaces represent a major control point for the defense against phage attack. One strategy for phage population control is the production of outer membrane vesicles (OMVs). In Gram-negative host bacteria, O-antigen-specific bacteriophages address lipopolysaccharide (LPS) to initiate infection, thus relying on an essential outer membrane glycan building block as receptor that is constantly present also in OMVs. In this work, we have analyzed interactions of Salmonella (S.) bacteriophage P22 with OMVs. For this, we isolated OMVs that were formed in large amounts during mechanical cell lysis of the P22 S. Typhimurium host. In vitro, these OMVs could efficiently reduce the number of infective phage particles. Fluorescence spectroscopy showed that upon interaction with OMVs, bacteriophage P22 released its DNA into the vesicle lumen. However, only about one third of the phage P22 particles actively ejected their genome. For the larger part, no genome release was observed, albeit the majority of phages in the system had lost infectivity towards their host. With OMVs, P22 ejected its DNA more rapidly and could release more DNA against elevated osmotic pressures compared to DNA release triggered with protein-free LPS aggregates. This emphasizes that OMV composition is a key feature for the regulation of infective bacteriophage particles in the system.
Collapse
Affiliation(s)
- Mareike S Stephan
- Physical Biochemistry, Department for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Nina K Broeker
- Physical Biochemistry, Department for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - Norbert Roos
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Stefanie Barbirz
- Physical Biochemistry, Department for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
22
|
Reporter Phage-Based Detection of Bacterial Pathogens: Design Guidelines and Recent Developments. Viruses 2020; 12:v12090944. [PMID: 32858938 PMCID: PMC7552063 DOI: 10.3390/v12090944] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/10/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Fast and reliable detection of bacterial pathogens in clinical samples, contaminated food products, and water supplies can drastically improve clinical outcomes and reduce the socio-economic impact of disease. As natural predators of bacteria, bacteriophages (phages) have evolved to bind their hosts with unparalleled specificity and to rapidly deliver and replicate their viral genome. Not surprisingly, phages and phage-encoded proteins have been used to develop a vast repertoire of diagnostic assays, many of which outperform conventional culture-based and molecular detection methods. While intact phages or phage-encoded affinity proteins can be used to capture bacteria, most phage-inspired detection systems harness viral genome delivery and amplification: to this end, suitable phages are genetically reprogrammed to deliver heterologous reporter genes, whose activity is typically detected through enzymatic substrate conversion to indicate the presence of a viable host cell. Infection with such engineered reporter phages typically leads to a rapid burst of reporter protein production that enables highly sensitive detection. In this review, we highlight recent advances in infection-based detection methods, present guidelines for reporter phage construction, outline technical aspects of reporter phage engineering, and discuss some of the advantages and pitfalls of phage-based pathogen detection. Recent improvements in reporter phage construction and engineering further substantiate the potential of these highly evolved nanomachines as rapid and inexpensive detection systems to replace or complement traditional diagnostic approaches.
Collapse
|
23
|
Phothaworn P, Supokaivanich R, Lim J, Klumpp J, Imam M, Kutter E, Galyov EE, Dunne M, Korbsrisate S. Development of a broad-spectrum Salmonella phage cocktail containing Viunalike and Jerseylike viruses isolated from Thailand. Food Microbiol 2020; 92:103586. [PMID: 32950171 DOI: 10.1016/j.fm.2020.103586] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/28/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
Salmonella is one of the most common agents of foodborne disease worldwide. As natural alternatives to traditional antimicrobial agents, bacteriophages (phages) are emerging as highly effective biocontrol agents against Salmonella and other foodborne bacteria. Due to the high diversity within the Salmonella genus and emergence of drug resistant strains, improved efforts are necessary to find broad range and strictly lytic Salmonella phages for use in food biocontrol. Here, we describe the isolation and characterization of two Salmonella phages: ST-W77 isolated on S. Typhimurium and SE-W109 isolated on S. Enteritidis with extraordinary Salmonella specificity. Whole genome sequencing identified ST-W77 as a Myovirus within the Viunalikevirus genus and SE-W109 as a Siphovirus within the Jerseylikevirus genus. Infectivity studies using a panel of S. Typhimurium cell wall mutants revealed both phages require the lipopolysaccharide O-antigen, with SE-W109 also recognizing the flagella, during infection of Salmonella. A combination of both phages was capable of prolonged (one-week) antibacterial activity when added to milk or chicken meat contaminated with Salmonella. Due to their broad host ranges, strictly lytic lifestyles and lack of lysogeny-related genes or virulence genes in their genomes, ST-W77 and SE-W109 are ideal phages for further development as Salmonella biocontrol agents for food production.
Collapse
Affiliation(s)
- Preeda Phothaworn
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Rattaya Supokaivanich
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Jiali Lim
- DSO National Laboratories, Singapore, 117510, Singapore
| | - Jochen Klumpp
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, 8092, Switzerland
| | - Mohammed Imam
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, Leicester, LE1 7HN, United Kingdom
| | - Elizabeth Kutter
- Bacteriophage Lab, the Evergreen State College, Olympia, WA, USA
| | - Edouard E Galyov
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, Leicester, LE1 7HN, United Kingdom
| | - Matthew Dunne
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, 8092, Switzerland.
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
24
|
Glycotyping and Specific Separation of Listeria monocytogenes with a Novel Bacteriophage Protein Tool Kit. Appl Environ Microbiol 2020; 86:AEM.00612-20. [PMID: 32358009 PMCID: PMC7301860 DOI: 10.1128/aem.00612-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous opportunistic pathogen that presents a major concern to the food industry due to its propensity to cause foodborne illness. The Listeria genus contains 15 different serovars, with most of the variance depending on the wall-associated teichoic acid glycopolymers, which confer somatic antigenicity. Strains belonging to serovars 1/2 and 4b cause the vast majority of listeriosis cases and outbreaks, meaning that regulators, as well as the food industry itself, have an interest in rapidly identifying isolates of these particular serovars in food processing environments. Current methods for phenotypic serovar differentiation are slow and lack accuracy, and the food industry could benefit from new technologies allowing serovar-specific isolation. Therefore, the novel method described here for rapid glycotype determination could present a valuable asset to detect and control this bacterium. The Gram-positive pathogen Listeria monocytogenes can be subdivided into at least 12 different serovars, based on the differential expression of a set of somatic and flagellar antigens. Of note, strains belonging to serovars 1/2a, 1/2b, and 4b cause the vast majority of foodborne listeriosis cases and outbreaks. The standard protocol for serovar determination involves an agglutination method using a set of sera containing cell surface-recognizing antibodies. However, this procedure is imperfect in both precision and practicality, due to discrepancies resulting from subjective interpretation. Furthermore, the exact antigenic epitopes remain unclear, due to the preparation of the absorbed sera and the complex nature of polyvalent antibody binding. Here, we present a novel method for quantitative somatic antigen differentiation using a set of recombinant affinity proteins (cell wall-binding domains and receptor-binding proteins) derived from a collection of Listeria bacteriophages. These proteins enable rapid, objective, and precise identification of the different teichoic acid glycopolymer structures, which represent the O-antigens, and allow a near-complete differentiation. This glycotyping approach confirmed serovar designations of over 60 previously characterized Listeria strains. Using select phage receptor-binding proteins coupled to paramagnetic beads, we also demonstrate the ability to specifically isolate serovar 1/2 or 4b cells from a mixed culture. In addition, glycotyping led to the discovery that strains designated serovar 4e actually possess an intermediate 4b-4d teichoic acid glycosylation pattern, underpinning the high discerning power and precision of this novel technique. IMPORTANCEListeria monocytogenes is a ubiquitous opportunistic pathogen that presents a major concern to the food industry due to its propensity to cause foodborne illness. The Listeria genus contains 15 different serovars, with most of the variance depending on the wall-associated teichoic acid glycopolymers, which confer somatic antigenicity. Strains belonging to serovars 1/2 and 4b cause the vast majority of listeriosis cases and outbreaks, meaning that regulators, as well as the food industry itself, have an interest in rapidly identifying isolates of these particular serovars in food processing environments. Current methods for phenotypic serovar differentiation are slow and lack accuracy, and the food industry could benefit from new technologies allowing serovar-specific isolation. Therefore, the novel method described here for rapid glycotype determination could present a valuable asset to detect and control this bacterium.
Collapse
|
25
|
Gonzalez-Serrano R, Dunne M, Rosselli R, Martin-Cuadrado AB, Grosboillot V, Zinsli LV, Roda-Garcia JJ, Loessner MJ, Rodriguez-Valera F. Alteromonas Myovirus V22 Represents a New Genus of Marine Bacteriophages Requiring a Tail Fiber Chaperone for Host Recognition. mSystems 2020; 5:e00217-20. [PMID: 32518192 PMCID: PMC7289586 DOI: 10.1128/msystems.00217-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/20/2020] [Indexed: 12/24/2022] Open
Abstract
Marine phages play a variety of critical roles in regulating the microbial composition of our oceans. Despite constituting the majority of genetic diversity within these environments, there are relatively few isolates with complete genome sequences or in-depth analyses of their host interaction mechanisms, such as characterization of their receptor binding proteins (RBPs). Here, we present the 92,760-bp genome of the Alteromonas-targeting phage V22. Genomic and morphological analyses identify V22 as a myovirus; however, due to a lack of sequence similarity to any other known myoviruses, we propose that V22 be classified as the type phage of a new Myoalterovirus genus within the Myoviridae family. V22 shows gene homology and synteny with two different subfamilies of phages infecting enterobacteria, specifically within the structural region of its genome. To improve our understanding of the V22 adsorption process, we identified putative RBPs (gp23, gp24, and gp26) and tested their ability to decorate the V22 propagation strain, Alteromonas mediterranea PT11, as recombinant green fluorescent protein (GFP)-tagged constructs. Only GFP-gp26 was capable of bacterial recognition and identified as the V22 RBP. Interestingly, production of functional GFP-gp26 required coexpression with the downstream protein gp27. GFP-gp26 could be expressed alone but was incapable of host recognition. By combining size-exclusion chromatography with fluorescence microscopy, we reveal how gp27 is not a component of the final RBP complex but instead is identified as a new type of phage-encoded intermolecular chaperone that is essential for maturation of the gp26 RBP.IMPORTANCE Host recognition by phage-encoded receptor binding proteins (RBPs) constitutes the first step in all phage infections and the most critical determinant of host specificity. By characterizing new types of RBPs and identifying their essential chaperones, we hope to expand the repertoire of known phage-host recognition machineries. Due to their genetic plasticity, studying RBPs and their associated chaperones can shed new light onto viral evolution affecting phage-host interactions, which is essential for fields such as phage therapy or biotechnology. In addition, since marine phages constitute one of the most important reservoirs of noncharacterized genetic diversity on the planet, their genomic and functional characterization may be of paramount importance for the discovery of novel genes with potential applications.
Collapse
Affiliation(s)
| | - Matthew Dunne
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Riccardo Rosselli
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Utrecht University, Den Burg, The Netherlands
- Laboratory for Theoretical and Computer Studies of Biological Macromolecules and Genomes, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | | | - Léa V Zinsli
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Juan J Roda-Garcia
- Evolutionary Genomics Group, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Universidad Miguel Hernández, San Juan de Alicante, Spain
- Laboratory for Theoretical and Computer Studies of Biological Macromolecules and Genomes, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
26
|
Chen Y, Li X, Wang S, Guan L, Li X, Hu D, Gao D, Song J, Chen H, Qian P. A Novel Tail-Associated O91-Specific Polysaccharide Depolymerase from a Podophage Reveals Lytic Efficacy of Shiga Toxin-Producing Escherichia coli. Appl Environ Microbiol 2020; 86:e00145-20. [PMID: 32111587 PMCID: PMC7170472 DOI: 10.1128/aem.00145-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/12/2020] [Indexed: 12/16/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) strains are important zoonotic foodborne pathogens, causing diarrhea, hemorrhagic colitis, and life-threatening hemolytic uremic syndrome (HUS) in humans. However, antibiotic treatment of STEC infection is associated with an increased risk of HUS. Therefore, there is an urgent need for early and effective therapeutic strategies. Here, we isolated lytic T7-like STEC phage PHB19 and identified a novel O91-specific polysaccharide depolymerase (Dep6) in the C terminus of the PHB19 tailspike protein. Dep6 exhibited strong hydrolase activity across wide ranges of pH (pH 4 to 8) and temperature (20 to 60°C) and degraded polysaccharides on the surface of STEC strain HB10. In addition, both Dep6 and PHB19 degraded biofilms formed by STEC strain HB10. In a mouse STEC infection model, delayed Dep6 treatment (3 h postinfection) resulted in only 33% survival, compared with 83% survival when mice were treated simultaneously with infection. In comparison, pretreatment with Dep6 led to 100% survival compared with that of the control group. Surprisingly, a single PHB19 treatment resulted in 100% survival in all three treatment protocols. Moreover, a significant reduction in the levels of proinflammatory cytokines was observed at 24 h postinfection in Dep6- or PHB19-treated mice. These results demonstrated that Dep6 or PHB19 might be used as a potential therapeutic agent to prevent STEC infection.IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) is an important foodborne pathogen worldwide. The Shiga-like toxin causes diarrhea, hemorrhagic colitis, and life-threatening hemolytic uremic syndrome (HUS) in humans. Although antibiotic therapy is still used for STEC infections, this approach may increase the risk of HUS. Phages or phage-derived depolymerases have been used to treat bacterial infections in animals and humans, as in the case of the "San Diego patient" treated with a phage cocktail. Here, we showed that phage PHB19 and its O91-specific polysaccharide depolymerase Dep6 degraded STEC biofilms and stripped the lipopolysaccharide (LPS) from STEC strain HB10, which was subsequently killed by serum complement in vitro In a mouse model, PHB19 and Dep6 protected against STEC infection and caused a significant reduction in the levels of proinflammatory cytokines. This study reports the use of an O91-specific polysaccharide depolymerase for the treatment of STEC infection in mice.
Collapse
Affiliation(s)
- Yibao Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| | - Shuang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Lingyu Guan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Xinxin Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Dayue Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Dongyang Gao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Jiaoyang Song
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| |
Collapse
|
27
|
Edgar RH, Cook J, Noel C, Minard A, Sajewski A, Fitzpatrick M, Fernandez R, Hempel JD, Kellum JA, Viator JA. Bacteriophage-mediated identification of bacteria using photoacoustic flow cytometry. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-7. [PMID: 31758676 PMCID: PMC6874036 DOI: 10.1117/1.jbo.24.11.115003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/04/2019] [Indexed: 05/26/2023]
Abstract
Infection with resistant bacteria has become an ever increasing problem in modern medical practice. Currently, broad spectrum antibiotics are prescribed until bacteria can be identified through blood cultures, a process that can take two to three days and is unable to provide quantitative information. To detect and quantify bacteria rapidly in blood samples, we designed a method using labeled bacteriophage in conjunction with photoacoustic flow cytometry (PAFC). PAFC is the generation of ultrasonic waves created by the absorption of laser light in particles under flow. Bacteriophage is a virus that infects bacteria and possesses the ability to discriminate bacterial surface antigens, allowing the bacteriophage to bind only to their target bacteria. Bacteria can be tagged with dyed phage and processed through a photoacoustic flow cytometer where they are detected by the acoustic response. We demonstrate that E. coli; can be detected and discriminated from Salmonella; using this method. Our goal is to develop a method to determine bacterial content in blood samples. We hope to develop this technology into future clinical use and decrease the time required to identify bacterial species from 3 to 4 days to less than 1 hour.
Collapse
Affiliation(s)
- Robert H. Edgar
- University of Pittsburgh, Swanson School of Engineering, Department of Bioengineering, Pittsburgh, Pennsylvania, United States
| | - Justin Cook
- Duquesne University, Pittsburgh, Pennsylvania, United States
| | - Cierra Noel
- Duquesne University, Pittsburgh, Pennsylvania, United States
| | - Austin Minard
- Duquesne University, Pittsburgh, Pennsylvania, United States
| | - Andrea Sajewski
- Duquesne University, Pittsburgh, Pennsylvania, United States
| | | | | | - John D. Hempel
- Duquesne University, Pittsburgh, Pennsylvania, United States
| | - John A. Kellum
- University of Pittsburgh, Center for Critical Care Nephrology, Department of Critical Care Medicine, Pittsburgh, Pennsylvania, United States
| | - John A. Viator
- University of Pittsburgh, Swanson School of Engineering, Department of Bioengineering, Pittsburgh, Pennsylvania, United States
- Duquesne University, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
28
|
Wang C, Nie T, Lin F, Connerton IF, Lu Z, Zhou S, Hang H. Resistance mechanisms adopted by a Salmonella Typhimurium mutant against bacteriophage. Virus Res 2019; 273:197759. [PMID: 31539557 DOI: 10.1016/j.virusres.2019.197759] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 01/21/2023]
Abstract
Bacteriophages have key roles in regulating bacterial populations in most habitats. A Salmonella Typhimurium mutant (N18) with impaired sensitivity to phage fmb-p1 was obtained and examined, the adsorption efficiency of fmb-p1 to N18 was reduced to 6%, compared to more than 97% for wild type S. Typhimurium CMCC50115. Reduced adsorption was accompanied by a reduction of 90% in the LPS content compared to wild type. Electron microscopy showed phage scattered around N18 with minimal engagement, while the phage were efficiently adsorbed to the wild type with tails oriented towards the bacterial surface. Evidence suggests fmb-p1 can slightly infect N18 and this does not give rise to an increase of phage titer. RT-qPCR data show that several Salmonella genes involved in lipopolysaccharide synthesis and five virulence related genes were down-regulated upon exposure of N18 to phage fmb-p1. In contrast, phage resistance related genes such as the SOS response, restriction-modification (RM), and Cas1 gene were up-regulated in N18. These data suggest that although inefficient adsorption and entry is the primary mechanism of resistance, transcriptional responses to phage exposure indicate that alternative resistance mechanisms against phage infection are also brought to bear, including digestion of phage nucleic acids and activation of the SOS. These findings may help develop strategies for biocontrol of Salmonella where multi-resistant bacteria are encountered or emerge in applications for food production, bioremediation or wastewater treatment.
Collapse
Affiliation(s)
- Changbao Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China; College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, PR China
| | - Ting Nie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Fuxing Lin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ian F Connerton
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Shoubiao Zhou
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, PR China
| | - Hua Hang
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, PR China
| |
Collapse
|
29
|
Understanding and Exploiting Phage-Host Interactions. Viruses 2019; 11:v11060567. [PMID: 31216787 PMCID: PMC6630733 DOI: 10.3390/v11060567] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 01/05/2023] Open
Abstract
Initially described a century ago by William Twort and Felix d’Herelle, bacteriophages are bacterial viruses found ubiquitously in nature, located wherever their host cells are present. Translated literally, bacteriophage (phage) means ‘bacteria eater’. Phages interact and infect specific bacteria while not affecting other bacteria or cell lines of other organisms. Due to the specificity of these phage–host interactions, the relationship between phages and their host cells has been the topic of much research. The advances in phage biology research have led to the exploitation of these phage–host interactions and the application of phages in the agricultural and food industry. Phages may provide an alternative to the use of antibiotics, as it is well known that the emergence of antibiotic-resistant bacterial infections has become an epidemic in clinical settings. In agriculture, pre-harvest and/or post-harvest application of phages to crops may prevent the colonisation of bacteria that are detrimental to plant or human health. In addition, the abundance of data generated from genome sequencing has allowed the development of phage-derived bacterial detection systems of foodborne pathogens. This review aims to outline the specific interactions between phages and their host and how these interactions may be exploited and applied in the food industry.
Collapse
|
30
|
Phothaworn P, Dunne M, Supokaivanich R, Ong C, Lim J, Taharnklaew R, Vesaratchavest M, Khumthong R, Pringsulaka O, Ajawatanawong P, Klumpp J, Brown N, Imam M, Clokie MRJ, Galyov EE, Korbsrisate S. Characterization of Flagellotropic, Chi-Like Salmonella Phages Isolated from Thai Poultry Farms. Viruses 2019; 11:v11060520. [PMID: 31195709 PMCID: PMC6631126 DOI: 10.3390/v11060520] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/04/2019] [Indexed: 01/02/2023] Open
Abstract
Despite a wealth of knowledge on Salmonella phages worldwide, little is known about poultry-associated Salmonella phages from Thailand. Here, we isolated 108 phages from Thai poultry farms that infect Salmonella enterica serovar Typhimurium. Phages STm101 and STm118 were identified as temperate Siphoviridae phages. Genome sequencing and analyses revealed these phages share approximately 96% nucleotide sequence similarity to phage SPN19, a member of the Chi-like virus genus. PCR amplification of the gene encoding capsid protein E of the Chi-like phage was positive for 50% of phage isolates, suggesting a predominance of this phage type among the sampled poultry farms. In addition to the flagella, two phages required the lipopolysaccharide to infect and lyse Salmonella. Furthermore, phylogenomic analysis demonstrated that phages STm101 and STm118 formed a monophyletic clade with phages isolated from Western countries, but not from closer isolated phages from Korea. However, further investigation and more phage isolates are required to investigate possible causes for this geographic distribution.
Collapse
Affiliation(s)
- Preeda Phothaworn
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Matthew Dunne
- Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland.
| | - Rattaya Supokaivanich
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Catherine Ong
- DSO National Laboratories, Singapore 117510, Singapore.
| | - Jiali Lim
- DSO National Laboratories, Singapore 117510, Singapore.
| | | | | | - Rabuesak Khumthong
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand.
| | - Onanong Pringsulaka
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand.
| | - Pravech Ajawatanawong
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Jochen Klumpp
- Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland.
| | - Nathan Brown
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK.
| | - Mohammed Imam
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK.
| | - Martha R J Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK.
| | - Edouard E Galyov
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK.
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
31
|
Gencay YE, Gambino M, Prüssing TF, Brøndsted L. The genera of bacteriophages and their receptors are the major determinants of host range. Environ Microbiol 2019; 21:2095-2111. [PMID: 30888719 DOI: 10.1111/1462-2920.14597] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 01/21/2023]
Abstract
The host range of phages is a key to understand their impact on bacterial ecology and evolution. Because of the complexity of phage-host interactions, the variables that determine the breadth of a phage host range remain poorly understood. Here, we propose a novel holistic approach to identify the host range determinants of a new collection of phages infecting Salmonella, isolated from animal, environmental and wastewater samples that were able to infect 58 of the 71 Salmonella strains in our collection. By using a set of statistic approaches (non-metric dimensional scaling, Bray-Curtis distance, PERMANOVA), we analysed phenotypic (host range on wild-type and receptor mutants) and genetic data (taxonomic assignment and receptor binding proteins) to evaluate the impact of isolation strain and niche, phage receptor and genus on the host range. Statistical analysis revealed that two phage characteristics influence the host range by explaining the most variance: the receptor by 45% and the genus by 51%. Interestingly, phage genus and receptor in combination explained 79% of the variance, establishing these characteristics as the major determinants of the host range. This study demonstrates the power and the novelty of applying statistical approaches to phenotypic and genetic data to investigate the ecology of phage-host interactions.
Collapse
Affiliation(s)
- Yilmaz Emre Gencay
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| | - Michela Gambino
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| | - Tessa From Prüssing
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| |
Collapse
|
32
|
Modified Bacteriophage Tail Fiber Proteins for Labeling, Immobilization, Capture, and Detection of Bacteria. Methods Mol Biol 2019; 1918:67-86. [PMID: 30580400 DOI: 10.1007/978-1-4939-9000-9_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A critical component of bacterial detection assays is choosing a suitable affinity molecule that retains sensitivity and specificity for the target pathogen over a wide range of in situ applications. Bacteriophages (phages) are bacterial viruses that bind and infect their host cells with unmatched specificity. Phage host range is often determined by their long tail fibers (LTFs) that mediate adsorption of the virus particle to potential bacterial host cells, by binding to specific cell surface receptors. The inherent specificity of the LTFs for distinct bacterial species makes them ideal candidates for development into recombinant affinity molecules. In this chapter, we describe the development of the Salmonella phage S16 LTF (S16 LTF) into an affinity molecule as part of a novel assay to detect Salmonella cells. The enzyme-linked long tail fiber assay (ELLTA) involves two steps: (1) Immobilization and separation of Salmonella cells using S16 LTF-coated paramagnetic beads (LTF-MBs), and (2) Labeling of bead-captured Salmonella using horseradish peroxidase-conjugated S16 LTF (HRP-LTF). Rapid HRP-mediated conversion of a chromogenic substrate provides visual confirmation for the presence of Salmonella. Overall, the ELLTA assay requires as little as 2 h to detect as few as 102 cfu/ml Salmonella cells from liquid culture. The absorbance of the enzyme-generated color substrate is largely proportional to the present bacterial concentrations between 102 and 107 cfu/ml, providing semiquantitative determination of Salmonella cell counts. The methodology described in this chapter can be adapted for other phage receptor-binding proteins, to develop ELLTAs for the detection of other relevant bacterial pathogens.
Collapse
|
33
|
Dunne M, Denyes JM, Arndt H, Loessner MJ, Leiman PG, Klumpp J. Salmonella Phage S16 Tail Fiber Adhesin Features a Rare Polyglycine Rich Domain for Host Recognition. Structure 2018; 26:1573-1582.e4. [PMID: 30244968 DOI: 10.1016/j.str.2018.07.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/11/2018] [Accepted: 07/27/2018] [Indexed: 11/15/2022]
Abstract
The ability of phages to infect specific bacteria has led to their exploitation as bio-tools for bacterial remediation and detection. Many phages recognize bacterial hosts via adhesin tips of their long tail fibers (LTFs). Adhesin sequence plasticity modulates receptor specificity, and thus primarily defines a phage's host range. Here we present the crystal structure of an adhesin (gp38) attached to a trimeric β-helical tip (gp37) from the Salmonella phage S16 LTF. Gp38 contains rare polyglycine type II helices folded into a packed lattice, herein designated "PGII sandwich." Sequence variability within the domain is limited to surface-exposed helices and distal loops that form putative receptor-binding sites. In silico analyses revealed a prevalence of the adhesin architecture among T-even phages, excluding the archetypal T4 phage. Overall, S16 LTF provides a valuable model for understanding binding mechanisms of phage adhesins, and for engineering of phage adhesins with expandable or modulated host ranges.
Collapse
Affiliation(s)
- Matthew Dunne
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland.
| | - Jenna M Denyes
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Helena Arndt
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Petr G Leiman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA
| | - Jochen Klumpp
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
Santos SB, Costa AR, Carvalho C, Nóbrega FL, Azeredo J. Exploiting Bacteriophage Proteomes: The Hidden Biotechnological Potential. Trends Biotechnol 2018; 36:966-984. [DOI: 10.1016/j.tibtech.2018.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
|
35
|
Kunstmann S, Scheidt T, Buchwald S, Helm A, Mulard LA, Fruth A, Barbirz S. Bacteriophage Sf6 Tailspike Protein for Detection of Shigella flexneri Pathogens. Viruses 2018; 10:E431. [PMID: 30111705 PMCID: PMC6116271 DOI: 10.3390/v10080431] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/26/2018] [Accepted: 08/09/2018] [Indexed: 12/30/2022] Open
Abstract
Bacteriophage research is gaining more importance due to increasing antibiotic resistance. However, for treatment with bacteriophages, diagnostics have to be improved. Bacteriophages carry adhesion proteins, which bind to the bacterial cell surface, for example tailspike proteins (TSP) for specific recognition of bacterial O-antigen polysaccharide. TSP are highly stable proteins and thus might be suitable components for the integration into diagnostic tools. We used the TSP of bacteriophage Sf6 to establish two applications for detecting Shigella flexneri (S. flexneri), a highly contagious pathogen causing dysentery. We found that Sf6TSP not only bound O-antigen of S. flexneri serotype Y, but also the glucosylated O-antigen of serotype 2a. Moreover, mass spectrometry glycan analyses showed that Sf6TSP tolerated various O-acetyl modifications on these O-antigens. We established a microtiter plate-based ELISA like tailspike adsorption assay (ELITA) using a Strep-tag®II modified Sf6TSP. As sensitive screening alternative we produced a fluorescently labeled Sf6TSP via coupling to an environment sensitive dye. Binding of this probe to the S. flexneri O-antigen Y elicited a fluorescence intensity increase of 80% with an emission maximum in the visible light range. The Sf6TSP probes thus offer a promising route to a highly specific and sensitive bacteriophage TSP-based Shigella detection system.
Collapse
Affiliation(s)
- Sonja Kunstmann
- Physical Biochemistry, University of Potsdam, 14476 Potsdam, Germany.
| | - Tom Scheidt
- Physical Biochemistry, University of Potsdam, 14476 Potsdam, Germany.
| | - Saskia Buchwald
- Physical Biochemistry, University of Potsdam, 14476 Potsdam, Germany.
| | - Alexandra Helm
- Physical Biochemistry, University of Potsdam, 14476 Potsdam, Germany.
| | - Laurence A Mulard
- Institut Pasteur, Unité de Chimie des Biomolécules, 28 rue du Roux, 75015 Paris, France.
- CNRS UMR 3523, Institut Pasteur, 75015 Paris, France.
| | - Angelika Fruth
- National Reference Centre for Salmonella and other Bacterial Enterics, Robert Koch Institute, 38855 Wernigerode, Germany.
| | - Stefanie Barbirz
- Physical Biochemistry, University of Potsdam, 14476 Potsdam, Germany.
| |
Collapse
|
36
|
|
37
|
Abstract
Bacteriophage research has been instrumental to advancing many fields of biology, such as genetics, molecular biology, and synthetic biology. Many phage-derived technologies have been adapted for building gene circuits to program biological systems. Phages also exhibit significant medical potential as antibacterial agents and bacterial diagnostics due to their extreme specificity for their host, and our growing ability to engineer them further enhances this potential. Phages have also been used as scaffolds for genetically programmable biomaterials that have highly tunable properties. Furthermore, phages are central to powerful directed evolution platforms, which are being leveraged to enhance existing biological functions and even produce new ones. In this review, we discuss recent examples of how phage research is influencing these next-generation biotechnologies.
Collapse
Affiliation(s)
- Sebastien Lemire
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Kevin M Yehl
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Timothy K Lu
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; .,Synthetic Biology Group, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
38
|
In Vitro Studies of Lipopolysaccharide-Mediated DNA Release of Podovirus HK620. Viruses 2018; 10:v10060289. [PMID: 29843473 PMCID: PMC6024685 DOI: 10.3390/v10060289] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 12/17/2022] Open
Abstract
Gram-negative bacteria protect themselves with an outermost layer containing lipopolysaccharide (LPS). O-antigen-specific bacteriophages use tailspike proteins (TSP) to recognize and cleave the O-polysaccharide part of LPS. However, O-antigen composition and structure can be highly variable depending on the environmental conditions. It is important to understand how these changes may influence the early steps of the bacteriophage infection cycle because they can be linked to changes in host range or the occurrence of phage resistance. In this work, we have analyzed how LPS preparations in vitro trigger particle opening and DNA ejection from the E. coli podovirus HK620. Fluorescence-based monitoring of DNA release showed that HK620 phage particles in vitro ejected their genome at velocities comparable to those found for other podoviruses. Moreover, we found that HK620 irreversibly adsorbed to the LPS receptor via its TSP at restrictive low temperatures, without opening the particle but could eject its DNA at permissive temperatures. DNA ejection was solely stimulated by LPS, however, the composition of the O-antigen dictated whether the LPS receptor could start the DNA release from E. coli phage HK620 in vitro. This finding can be significant when optimizing bacteriophage mixtures for therapy, where in natural environments O-antigen structures may rapidly change.
Collapse
|