1
|
Liu D, Yang Y, Ai J, Li Y, Xing Y, Li J. Research on microbial structures, functions and metabolic pathways in an advanced denitrification system coupled with aerobic methane oxidation based on metagenomics. BIORESOURCE TECHNOLOGY 2021; 332:125047. [PMID: 33839509 DOI: 10.1016/j.biortech.2021.125047] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Methanotrophs can oxidize methane as the sole carbon and energy, and the resulting intermediate products can be simultaneously utilized by coexistent denitrifying bacteria to remove the nitrogen, which named Aerobic Methane Oxidation Coupled to Denitrification (AME-D). In this paper, an AME-D system was built in an improved denitrification bio-filter, to analyze the nitrogen removal efficiency and mechanism. The maximum TN removal rate reached 95.05%. As shown in Raman spectroscopy, in the effluent wave crests generated by the symmetric expansion and contraction of NO3- disappeared, and the distortion of olefin CH2 and C-OH stretching of alcohols appeared. Metagenomics revealed Methylotenera and Methylobacter were the dominated methanotrophs. There was a completed methane and nitrogen metabolism pathway with the synergism of nxrAB, narGHI, nasAB, pmo-amoABC and mmo genes. Dissimilatory reduction pathway was the primary nitrate removal pathway. Moreover, Bradyrhizobium could participate in methane and nitrogen metabolism simultaneously.
Collapse
Affiliation(s)
- Dengping Liu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China
| | - Yanan Yang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China; Sinopec Great Wall Energy and Chemical (Guizhou) Co., LTD, Zhijin, Guizhou 552100, China
| | - Jia Ai
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China
| | - Yancheng Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou 550025, China.
| | - Yi Xing
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China; School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Jiang Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou 550025, China
| |
Collapse
|
2
|
Guo M, Wang J, Zhang Y, Zhang L. Increased WD40 motifs in Planctomycete bacteria and their evolutionary relevance. Mol Phylogenet Evol 2020; 155:107018. [PMID: 33242584 DOI: 10.1016/j.ympev.2020.107018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 10/05/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
Species of the family Planctomycetes have a complex intracellular structure, which is distinct from that of the majority of non-Planctomycetes bacteria. At present, genomic evidence of the evolution of intracellular complexity is lacking, cognitions of Planctomycetes's intracellular structure mainly rely on electron microscope observation. As the presence of WD40 motifs in eukaryotic proteins probably links to intracellular complexity, bioinformatic studies were conducted to detect and enumerate WD40 motifs, WD40 domains, and WD40 motif-bearing proteins in the genomes of 11 Planctomycetes species, 2775 non-Planctomycetes bacteria, and 63 representative eukaryotes. Compared to non-Planctomycetes bacteria (average 5 WD40 motifs and 1 WD40 motif-bearing protein per genome), a large increase in the number of WD40 motifs in Planctomycetes species (average 116 WD40 motifs and 26 WD40 motif-bearing proteins per genome) was observed. However, the average number of WD40 motifs in Planctomycetes species was significantly lower than that of eukaryotes (average 584 WD40 motifs and 193 WD40 motif-bearing proteins per genome). The number of WD40 motif-bearing proteins was found to correlate with genome size and gene number. Most WD40 motif-bearing proteins of Planctomycetes species belonged to the categories of 'ribosome assembly protein 4' and 'eukaryotic-like serine/threonine protein kinase.' Collinearity analysis of amino acid compositions of Planctomycetes and eukaryotic WD40 motifs revealed that the sequences of the four anti-parallel β-sheets of WD40 motifs were conserved. However, a number of Planctomycetes WD40 motifs had increased size of the interval region of β-sheets D and A. Taken together, results of this study suggest a positive correlation between the number of WD40 motif-bearing proteins and the evolution of Planctomycetes species toward a complex intracellular structure similar to that of eukaryotes.
Collapse
Affiliation(s)
- Min Guo
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Junhua Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuzhi Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|