1
|
Turunen O, Saleem T, Kurkela J, Kallio P, Tyystjärvi T. Engineering RNA polymerase to construct biotechnological host strains of cyanobacteria. PHYSIOLOGIA PLANTARUM 2024; 176:e14263. [PMID: 38528669 DOI: 10.1111/ppl.14263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/27/2024]
Abstract
Application of cyanobacteria for bioproduction, bioremediation and biotransformation is being increasingly explored. Photoautotrophs are carbon-negative by default, offering a direct pathway to reducing emissions in production systems. More robust and versatile host strains are needed for constructing production strains that would function as efficient and carbon-neutral cyanofactories. We have tested if the engineering of sigma factors, regulatory units of the bacterial RNA polymerase, could be used to generate better host strains of the model cyanobacterium Synechocystis sp. PCC 6803. Overexpressing the stress-responsive sigB gene under the strong psbA2 promoter (SigB-oe) led to improved tolerance against heat, oxidative stress and toxic end-products. By targeting transcription initiation in the SigB-oe strain, we could simultaneously activate a wide spectrum of cellular protective mechanisms, including carotenoids, the HspA heat shock protein, and highly activated non-photochemical quenching. Yellow fluorescent protein was used to test the capacity of the SigB-oe strain to produce heterologous proteins. In standard conditions, the SigB-oe strain reached a similar production as the control strain, but when cultures were challenged with oxidative stress, the production capacity of SigB-oe surpassed the control strain. We also tested the production of growth-rate-controlled host strains via manipulation of RNA polymerase, but post-transcriptional regulation prevented excessive overexpression of the primary sigma factor SigA, and overproduction of the growth-restricting SigC factor was lethal. Thus, more research is needed before cyanobacteria growth can be manipulated by engineering RNA polymerase.
Collapse
Affiliation(s)
- Otso Turunen
- Department of Life Technologies/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Tayyab Saleem
- Department of Life Technologies/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Juha Kurkela
- Department of Life Technologies/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Pauli Kallio
- Department of Life Technologies/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Taina Tyystjärvi
- Department of Life Technologies/Molecular Plant Biology, University of Turku, Turku, Finland
| |
Collapse
|
2
|
Koskinen S, Kurkela J, Linhartová M, Tyystjärvi T. The genome sequence of Synechocystis sp. PCC 6803 substrain GT-T and its implications for the evolution of PCC 6803 substrains. FEBS Open Bio 2023; 13:701-712. [PMID: 36792971 PMCID: PMC10068330 DOI: 10.1002/2211-5463.13576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Synechocystis sp. PCC 6803 is a model cyanobacterium, glucose-tolerant substrains of which are commonly used as laboratory strains. In recent years, it has become evident that 'wild-type' strains used in different laboratories show some differences in their phenotypes. We report here the chromosome sequence of our Synechocystis sp. PCC 6803 substrain, named substrain GT-T. The chromosome sequence of GT-T was compared to those of two other commonly used laboratory substrains, GT-S and PCC-M. We identified 11 specific mutations in the GT-T substrain, whose physiological consequences are discussed. We also provide an update on evolutionary relationships between different Synechocystis sp. PCC 6803 substrains.
Collapse
Affiliation(s)
- Satu Koskinen
- Department of Life Sciences/Molecular Plant Biology, University of Turku, Finland
| | - Juha Kurkela
- Department of Life Sciences/Molecular Plant Biology, University of Turku, Finland
| | - Markéta Linhartová
- Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
| | - Taina Tyystjärvi
- Department of Life Sciences/Molecular Plant Biology, University of Turku, Finland
| |
Collapse
|
3
|
Han Y, Li C, Yan Y, Lin M, Ke X, Zhang Y, Zhan Y. Post-transcriptional control of bacterial nitrogen metabolism by regulatory noncoding RNAs. World J Microbiol Biotechnol 2022; 38:126. [PMID: 35666348 PMCID: PMC9170634 DOI: 10.1007/s11274-022-03287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/12/2022] [Indexed: 12/04/2022]
Abstract
Nitrogen metabolism is the most basic process of material and energy metabolism in living organisms, and processes involving the uptake and use of different nitrogen sources are usually tightly regulated at the transcriptional and post-transcriptional levels. Bacterial regulatory noncoding RNAs are novel post-transcriptional regulators that repress or activate the expression of target genes through complementarily pairing with target mRNAs; therefore, these noncoding RNAs play an important regulatory role in many physiological processes, such as bacterial substance metabolism and stress response. In recent years, a study found that noncoding RNAs play a vital role in the post-transcriptional regulation of nitrogen metabolism, which is currently a hot topic in the study of bacterial nitrogen metabolism regulation. In this review, we present an overview of recent advances that increase our understanding on the regulatory roles of bacterial noncoding RNAs and describe in detail how noncoding RNAs regulate biological nitrogen fixation and nitrogen metabolic engineering. Furthermore, our goal is to lay a theoretical foundation for better understanding the molecular mechanisms in bacteria that are involved in environmental adaptations and metabolically-engineered genetic modifications.
Collapse
Affiliation(s)
- Yueyue Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongliang Yan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiubin Ke
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunhua Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China. .,School of Resources and Environment, Anhui Agricultural University, Hefei, China.
| | - Yuhua Zhan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
4
|
Abstract
Bacterial small RNAs (sRNAs) contribute to a variety of regulatory mechanisms that modulate a wide range of pathways, including metabolism, virulence, and antibiotic resistance. We investigated the involvement of sRNAs in rifampicin resistance in the opportunistic pathogen Staphylococcus aureus. Using a competition assay with an sRNA mutant library, we identified 6S RNA as being required for protection against low concentrations of rifampicin, an RNA polymerase (RNAP) inhibitor. This effect applied to rifabutin and fidaxomicin, two other RNAP-targeting antibiotics. 6S RNA is highly conserved in bacteria, and its absence in two other major pathogens, Salmonella enterica and Clostridioides difficile, also impaired susceptibility to RNAP inhibitors. In S. aureus, 6S RNA is produced from an autonomous gene and accumulates in stationary phase. In contrast to what was reported for Escherichia coli, S. aureus 6S RNA does not appear to play a critical role in the transition from exponential to stationary phase but affects σB-regulated expression in prolonged stationary phase. Nevertheless, its protective effect against rifampicin is independent of alternative sigma factor σB activity. Our results suggest that 6S RNA helps maintain RNAP-σA integrity in S. aureus, which could in turn help bacteria withstand low concentrations of RNAP inhibitors.
Collapse
|
5
|
Kariyazono R, Osanai T. Identification of the genome-wide distribution of cyanobacterial group-2 sigma factor SigE, accountable for its regulon. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:548-561. [PMID: 35092706 DOI: 10.1111/tpj.15687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Ryo Kariyazono
- School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Takashi Osanai
- School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| |
Collapse
|
6
|
Involvement of E. coli 6S RNA in Oxidative Stress Response. Int J Mol Sci 2022; 23:ijms23073653. [PMID: 35409013 PMCID: PMC8998176 DOI: 10.3390/ijms23073653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/22/2023] Open
Abstract
6S RNA, a small non-coding RNA present in almost all bacteria, inhibits transcription via direct binding to RNA polymerase holoenzymes. The mechanism of 6S RNA action was investigated to a large extent in E. coli, however, lack of 6S RNA (ΔssrS) was demonstrated to be unfavorable but not essential for cell survival under various growth conditions. In the present study, we revealed, for the first time, a lethal phenotype of the ΔssrS strain in the presence of high concentrations of H2O2. This phenotype was rescued by complementation of the ssrS gene on a plasmid. We performed comparative qRT-PCR analyses on an enlarged set of mRNAs of genes associated with the oxidative stress response, allowing us to identify four genes known to be involved in this pathway (soxS, ahpC, sodA and tpx) that had decreased mRNA levels in the ΔssrS strain. Finally, we performed comparative proteomic analyses of the wild-type and ΔssrS strains, confirming that ΔssrS bacteria have reduced levels of the proteins AhpC and Tpx involved in H2O2 reduction. Our findings substantiate the crucial role of the riboregulator 6S RNA for bacterial coping with extreme stresses.
Collapse
|
7
|
Roles of Close Homologues SigB and SigD in Heat and High Light Acclimation of the Cyanobacterium Synechocystis sp. PCC 6803. Life (Basel) 2022; 12:life12020162. [PMID: 35207450 PMCID: PMC8875361 DOI: 10.3390/life12020162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
Acclimation of cyanobacterium Synechocystis sp. PCC6803 to suboptimal conditions is largely dependent on adjustments of gene expression, which is highly controlled by the σ factor subunits of RNA polymerase (RNAP). The SigB and SigD σ factors are close homologues. Here we show that the sigB and sigD genes are both induced in high light and heat stresses. Comparison of transcriptomes of the control strain (CS), ΔsigB, ΔsigD, ΔsigBCE (containing SigD as the only functional group 2 σ factor), and ΔsigCDE (SigB as the only functional group 2 σ factor) strains in standard, high light, and high temperature conditions revealed that the SigB and SigD factors regulate different sets of genes and SigB and SigD regulons are highly dependent on stress conditions. The SigB regulon is bigger than the SigD regulon at high temperature, whereas, in high light, the SigD regulon is bigger than the SigB regulon. Furthermore, our results show that favoring the SigB or SigD factor by deleting other group 2 σ factors does not lead to superior acclimation to high light or high temperature, indicating that all group 2 σ factors play roles in the acclimation processes.
Collapse
|
8
|
Evguenieva-Hackenberg E. Riboregulation in bacteria: From general principles to novel mechanisms of the trp attenuator and its sRNA and peptide products. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1696. [PMID: 34651439 DOI: 10.1002/wrna.1696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Gene expression strategies ensuring bacterial survival and competitiveness rely on cis- and trans-acting RNA-regulators (riboregulators). Among the cis-acting riboregulators are transcriptional and translational attenuators, and antisense RNAs (asRNAs). The trans-acting riboregulators are small RNAs (sRNAs) that bind proteins or base pairs with other RNAs. This classification is artificial since some regulatory RNAs act both in cis and in trans, or function in addition as small mRNAs. A prominent example is the archetypical, ribosome-dependent attenuator of tryptophan (Trp) biosynthesis genes. It responds by transcription attenuation to two signals, Trp availability and inhibition of translation, and gives rise to two trans-acting products, the attenuator sRNA rnTrpL and the leader peptide peTrpL. In Escherichia coli, rnTrpL links Trp availability to initiation of chromosome replication and in Sinorhizobium meliloti, it coordinates regulation of split tryptophan biosynthesis operons. Furthermore, in S. meliloti, peTrpL is involved in mRNA destabilization in response to antibiotic exposure. It forms two types of asRNA-containing, antibiotic-dependent ribonucleoprotein complexes (ARNPs), one of them changing the target specificity of rnTrpL. The posttranscriptional role of peTrpL indicates two emerging paradigms: (1) sRNA reprograming by small molecules and (2) direct involvement of antibiotics in regulatory RNPs. They broaden our view on RNA-based mechanisms and may inspire new approaches for studying, detecting, and using antibacterial compounds. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
|
9
|
Yadav A, Maertens L, Meese T, Van Nieuwerburgh F, Mysara M, Leys N, Cuypers A, Janssen PJ. Genetic Responses of Metabolically Active Limnospira indica Strain PCC 8005 Exposed to γ-Radiation during Its Lifecycle. Microorganisms 2021; 9:1626. [PMID: 34442705 PMCID: PMC8400943 DOI: 10.3390/microorganisms9081626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Two morphotypes of the cyanobacterial Limnospira indica (formerly Arthrospira sp.) strain PCC 8005, denoted as P2 (straight trichomes) and P6 (helical trichomes), were subjected to chronic gamma radiation from spent nuclear fuel (SNF) rods at a dose rate of ca. 80 Gy·h-1 for one mass doubling period (approximately 3 days) under continuous light with photoautotrophic metabolism fully active. Samples were taken for post-irradiation growth recovery and RNA-Seq transcriptional analysis at time intervals of 15, 40, and 71.5 h corresponding to cumulative doses of ca. 1450, 3200, and 5700 Gy, respectively. Both morphotypes, which were previously reported by us to display different antioxidant capacities and differ at the genomic level in 168 SNPs, 48 indels and 4 large insertions, recovered equally well from 1450 and 3200 Gy. However, while the P2 straight type recovered from 5700 Gy by regaining normal growth within 6 days, the P6 helical type took about 13 days to recover from this dose, indicating differences in their radiation tolerance and response. To investigate these differences, P2 and P6 cells exposed to the intermediate dose of gamma radiation (3200 Gy) were analyzed for differential gene expression by RNA-Seq analysis. Prior to batch normalization, a total of 1553 genes (887 and 666 of P2 and P6, respectively, with 352 genes in common) were selected based on a two-fold change in expression and a false discovery rate FDR smaller or equal to 0.05. About 85% of these 1553 genes encoded products of yet unknown function. Of the 229 remaining genes, 171 had a defined function while 58 genes were transcribed into non-coding RNA including 21 tRNAs (all downregulated). Batch normalization resulted in 660 differentially expressed genes with 98 having a function and 32 encoding RNA. From PCC 8005-P2 and PCC 8005-P6 expression patterns, it emerges that although the cellular routes used by the two substrains to cope with ionizing radiation do overlap to a large extent, both strains displayed a distinct preference of priorities.
Collapse
Affiliation(s)
- Anu Yadav
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium;
| | - Laurens Maertens
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
- Research Unit in Biology of Microorganisms (URBM), Narilis Institute, University of Namur, 5000 Namur, Belgium
| | - Tim Meese
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium; (T.M.); (F.V.N.)
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium; (T.M.); (F.V.N.)
| | - Mohamed Mysara
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
| | - Natalie Leys
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium;
| | - Paul Jaak Janssen
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
| |
Collapse
|
10
|
Neumann N, Doello S, Forchhammer K. Recovery of Unicellular Cyanobacteria from Nitrogen Chlorosis: A Model for Resuscitation of Dormant Bacteria. Microb Physiol 2021; 31:78-87. [PMID: 33878759 DOI: 10.1159/000515742] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/06/2021] [Indexed: 11/19/2022]
Abstract
Nitrogen starvation induces developmental transitions in cyanobacteria. Whereas complex multicellular cyanobacteria of the order Nostocales can differentiate specialized cells that perform nitrogen fixation in the presence of oxygenic photosynthesis, non-diazotrophic unicellular strains, such as Synechococcus elongatus or Synechocystis PCC 6803, undergo a transition into a dormant non-growing state. Due to loss of pigments during this acclimation, the process is termed chlorosis. Cells maintain viability in this state for prolonged periods of time, until they encounter a useable nitrogen source, which triggers a highly coordinated awakening process, termed resuscitation. The minimal set of cellular activity that maintains the viability of cells during chlorosis and ensures efficient resuscitation represents the organism's equivalent of the BIOS, the basic input/output system of a computer, that helps "booting" the operation system after switching on. This review summarizes the recent research in the resuscitation of cyanobacteria, representing a powerful model for the awakening of dormant bacteria.
Collapse
Affiliation(s)
- Niels Neumann
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sofia Doello
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Riediger M, Spät P, Bilger R, Voigt K, Maček B, Hess WR. Analysis of a photosynthetic cyanobacterium rich in internal membrane systems via gradient profiling by sequencing (Grad-seq). THE PLANT CELL 2021; 33:248-269. [PMID: 33793824 PMCID: PMC8136920 DOI: 10.1093/plcell/koaa017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/12/2020] [Indexed: 05/23/2023]
Abstract
Although regulatory small RNAs have been reported in photosynthetic cyanobacteria, the lack of clear RNA chaperones involved in their regulation poses a conundrum. Here, we analyzed the full complement of cellular RNAs and proteins using gradient profiling by sequencing (Grad-seq) in Synechocystis 6803. Complexes with overlapping subunits such as the CpcG1-type versus the CpcL-type phycobilisomes or the PsaK1 versus PsaK2 photosystem I pre(complexes) could be distinguished, supporting the high quality of this approach. Clustering of the in-gradient distribution profiles followed by several additional criteria yielded a short list of potential RNA chaperones that include an YlxR homolog and a cyanobacterial homolog of the KhpA/B complex. The data suggest previously undetected complexes between accessory proteins and CRISPR-Cas systems, such as a Csx1-Csm6 ribonucleolytic defense complex. Moreover, the exclusive association of either RpoZ or 6S RNA with the core RNA polymerase complex and the existence of a reservoir of inactive sigma-antisigma complexes is suggested. The Synechocystis Grad-seq resource is available online at https://sunshine.biologie.uni-freiburg.de/GradSeqExplorer/ providing a comprehensive resource for the functional assignment of RNA-protein complexes and multisubunit protein complexes in a photosynthetic organism.
Collapse
Affiliation(s)
- Matthias Riediger
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Philipp Spät
- Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Raphael Bilger
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Karsten Voigt
- IT Administration, Institute of Biology 3, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Boris Maček
- Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| |
Collapse
|
12
|
Li Z, Zhu L, Yu Z, Liu L, Chou SH, Wang J, He J. 6S-1 RNA Contributes to Sporulation and Parasporal Crystal Formation in Bacillus thuringiensis. Front Microbiol 2020; 11:604458. [PMID: 33324388 PMCID: PMC7726162 DOI: 10.3389/fmicb.2020.604458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/04/2020] [Indexed: 11/13/2022] Open
Abstract
6S RNA is a kind of high-abundance non-coding RNA that globally regulates bacterial transcription by interacting with RNA polymerase holoenzyme. Through bioinformatics analysis, we found that there are two tandem 6S RNA-encoding genes in the genomes of Bacillus cereus group bacteria. Using Bacillus thuringiensis BMB171 as the starting strain, we have explored the physiological functions of 6S RNAs, and found that the genes ssrSA and ssrSB encoding 6S-1 and 6S-2 RNAs were located in the same operon and are co-transcribed as a precursor that might be processed by specific ribonucleases to form mature 6S-1 and 6S-2 RNAs. We also constructed two single-gene deletion mutant strains ΔssrSA and ΔssrSB and a double-gene deletion mutant strain ΔssrSAB by means of the markerless gene knockout method. Our data show that deletion of 6S-1 RNA inhibited the growth of B. thuringiensis in the stationary phase, leading to lysis of some bacterial cells. Furthermore, deletion of 6S-1 RNA also significantly reduced the spore number and parasporal crystal content. Our work reveals that B. thuringiensis 6S RNA played an important regulatory role in ensuring the sporulation and parasporal crystal formation.
Collapse
Affiliation(s)
- Zhou Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaoqing Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lu Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jieping Wang
- Agricultural BioResources Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Similarities and differences between 6S RNAs from Bradyrhizobium japonicum and Sinorhizobium meliloti. J Microbiol 2020; 58:945-956. [PMID: 33125669 DOI: 10.1007/s12275-020-0283-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 10/23/2022]
Abstract
6S RNA, a conserved and abundant small non-coding RNA found in most bacteria, regulates gene expression by inhibiting RNA polymerase (RNAP) holoenzyme. 6S RNAs from α-proteobacteria have been studied poorly so far. Here, we present a first in-depth analysis of 6S RNAs from two α-proteobacteria species, Bradyrhizobium japonicum and Sinorhizobium meliloti. Although both belong to the order Rhizobiales and are typical nitrogen-fixing symbionts of legumes, their 6S RNA expression profiles were found to differ: B. japonicum 6S RNA accumulated in the stationary phase, thus being reminiscent of Escherichia coli 6S RNA, whereas S. meliloti 6S RNA level peaked at the transition to the stationary phase, similarly to Rhodobacter sphaeroides 6S RNA. We demonstrated in vitro that both RNAs have hallmarks of 6S RNAs: they bind to the σ70-type RNAP holoenzyme and serve as templates for de novo transcription of so-called product RNAs (pRNAs) ranging in length from ∼13 to 24 nucleotides, with further evidence of the synthesis of even longer pRNAs. Likewise, stably bound pRNAs were found to rearrange the 6S RNA structure to induce its dissociation from RNAP. Compared with B. japonicum 6S RNA, considerable conformational heterogeneity was observed for S. meliloti 6S RNA and its complexes with pRNAs, even though the two 6S RNAs share ∼75% sequence identity. Overall, our findings suggest that the two rhizobial 6S RNAs have diverged with respect to their regulatory impact on gene expression throughout the bacterial life cycle.
Collapse
|
14
|
Ciebiada M, Kubiak K, Daroch M. Modifying the Cyanobacterial Metabolism as a Key to Efficient Biopolymer Production in Photosynthetic Microorganisms. Int J Mol Sci 2020; 21:E7204. [PMID: 33003478 PMCID: PMC7582838 DOI: 10.3390/ijms21197204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022] Open
Abstract
Cyanobacteria are photoautotrophic bacteria commonly found in the natural environment. Due to the ecological benefits associated with the assimilation of carbon dioxide from the atmosphere and utilization of light energy, they are attractive hosts in a growing number of biotechnological processes. Biopolymer production is arguably one of the most critical areas where the transition from fossil-derived chemistry to renewable chemistry is needed. Cyanobacteria can produce several polymeric compounds with high applicability such as glycogen, polyhydroxyalkanoates, or extracellular polymeric substances. These important biopolymers are synthesized using precursors derived from central carbon metabolism, including the tricarboxylic acid cycle. Due to their unique metabolic properties, i.e., light harvesting and carbon fixation, the molecular and genetic aspects of polymer biosynthesis and their relationship with central carbon metabolism are somehow different from those found in heterotrophic microorganisms. A greater understanding of the processes involved in cyanobacterial metabolism is still required to produce these molecules more efficiently. This review presents the current state of the art in the engineering of cyanobacterial metabolism for the efficient production of these biopolymers.
Collapse
Affiliation(s)
- Maciej Ciebiada
- School of Environment and Energy, Peking University Shenzhen Graduate School, 2199 Lishui Rd., Shenzhen 518055, China;
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, 4/40 Stefanowskiego Str, 90-924 Lodz, Poland
| | - Katarzyna Kubiak
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, 4/40 Stefanowskiego Str, 90-924 Lodz, Poland
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, 2199 Lishui Rd., Shenzhen 518055, China;
| |
Collapse
|
15
|
Tightening the Screws on PsbA in Cyanobacteria. Trends Genet 2020; 37:211-215. [PMID: 32977998 DOI: 10.1016/j.tig.2020.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 11/22/2022]
Abstract
Cyanobacterial genomes encode several isoforms of the D1 (PsbA) subunit of Photosystem II (PSII). The distinct regulation of each isoform ensures adaptation under changing environmental conditions. Uncovering the missing elements of signal transduction pathways and psbA gene expression could open new avenues in engineering programs of cyanobacterial strains.
Collapse
|
16
|
Thüring M, Ganapathy S, Schlüter MAC, Lechner M, Hartmann RK. 6S-2 RNA deletion in the undomesticated B. subtilis strain NCIB 3610 causes a biofilm derepression phenotype. RNA Biol 2020; 18:79-92. [PMID: 32862759 DOI: 10.1080/15476286.2020.1795408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Bacterial 6S RNA regulates transcription via binding to the active site of RNA polymerase holoenzymes. 6S RNA has been identified in the majority of bacteria, in most cases encoded by a single gene. Firmicutes including Bacillus subtilis encode two 6S RNA paralogs, 6S-1 and 6S-2 RNA. Hypothesizing that the regulatory role of 6S RNAs may be particularly important under natural, constantly changing environmental conditions, we constructed 6S RNA deletion mutants of the undomesticated B. subtilis wild-type strain NCIB 3610. We observed a strong phenotype for the ∆6S-2 RNA strain that showed increased biofilm formation on solid media and the ability to form surface-attached biofilms in liquid culture. This phenotype remained undetected in derived laboratory strains (168, PY79) that are defective in biofilm formation. Quantitative RT-PCR data revealed transcriptional upregulation of biofilm marker genes such as tasA, epsA and bslA in the ∆6S-2 RNA strain, particularly during transition from exponential to stationary growth phase. Salt stress, which blocks sporulation at a very early stage, was found to override the derepressed biofilm phenotype of the ∆6S-2 RNA strain. Furthermore, the ∆6S-2 RNA strain showed retarded swarming activity and earlier spore formation. Finally, the ∆6S-1&2 RNA double deletion strain showed a prolonged lag phase of growth under oxidative, high salt and alkaline stress conditions, suggesting that the interplay of both 6S RNAs in B. subtilis optimizes and fine-tunes transcriptomic adaptations, thereby contributing to the fitness of B. subtilis under the unsteady and temporarily harsh conditions encountered in natural habitats.
Collapse
Affiliation(s)
- Marietta Thüring
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg , Marburg, Germany
| | - Sweetha Ganapathy
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg , Marburg, Germany
| | - M Amri C Schlüter
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg , Marburg, Germany
| | - Marcus Lechner
- Center for Synthetic Microbiology, Bioinformatics Core Facility , Marburg, Germany
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg , Marburg, Germany
| |
Collapse
|
17
|
Transcription in cyanobacteria: a distinctive machinery and putative mechanisms. Biochem Soc Trans 2019; 47:679-689. [DOI: 10.1042/bst20180508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/11/2019] [Accepted: 02/04/2019] [Indexed: 02/03/2023]
Abstract
Abstract
Transcription in cyanobacteria involves several fascinating features. Cyanobacteria comprise one of the very few groups in which no proofreading factors (Gre homologues) have been identified. Gre factors increase the efficiency of RNA cleavage, therefore helping to maintain the fidelity of the RNA transcript and assist in the resolution of stalled RNAPs to prevent genome damage. The vast majority of bacterial species encode at least one of these highly conserved factors and so their absence in cyanobacteria is intriguing. Additionally, the largest subunit of bacterial RNAP has undergone a split in cyanobacteria to form two subunits and the SI3 insertion within the integral trigger loop element is roughly 3.5 times larger than in Escherichia coli. The Rho termination factor also appears to be absent, leaving cyanobacteria to rely solely on an intrinsic termination mechanism. Furthermore, cyanobacteria must be able to respond to environment signals such as light intensity and tightly synchronise gene expression and other cell activities to a circadian rhythm.
Collapse
|
18
|
Hakkila K, Valev D, Antal T, Tyystjï Rvi E, Tyystjï Rvi T. Group 2 Sigma Factors are Central Regulators of Oxidative Stress Acclimation in Cyanobacteria. PLANT & CELL PHYSIOLOGY 2019; 60:436-447. [PMID: 30407607 DOI: 10.1093/pcp/pcy221] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/04/2018] [Indexed: 06/08/2023]
Abstract
Regulatory σ factors of the RNA polymerase (RNAP) adjust gene expression according to environmental cues when the cyanobacterium Synechocystis sp. PCC 6803 acclimates to suboptimal conditions. Here we show central roles of the non-essential group 2 σ factors in oxidative stress responses. Cells missing all group 2 σ factors fail to acclimate to chemically induced singlet oxygen, superoxide or H2O2 stresses, and lose pigments in high light. SigB and SigD are the major σ factors in oxidative stress, whereas SigC and SigE play only minor roles. The SigD factor is up-regulated in high light, singlet oxygen and H2O2 stresses, and overproduction of the SigD factor in the ΔsigBCE strain leads to superior growth of ΔsigBCE cells in those stress conditions. Superoxide does not induce the production of the SigD factor but instead SigB and SigC factors are moderately induced. The SigB factor alone in ΔsigCDE can support almost as fast growth in superoxide stress as the full complement of σ factors in the control strain, but an overdose of the stationary phase-related SigC factor causes growth arrest of ΔsigBDE in superoxide stress. A drastic decrease of the functional RNAP limits the transcription capacity of the cells in H2O2 stress, which explains why cyanobacteria are sensitive to H2O2. Formation of RNAP-SigB and RNAP-SigD holoenzymes is highly enhanced in H2O2 stress, and cells containing only SigB (ΔsigCDE) or SigD (ΔsigBCE) show superior growth in H2O2 stress.
Collapse
Affiliation(s)
- Kaisa Hakkila
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Dimitar Valev
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Taras Antal
- Biological Faculty, Moscow State University, Vorobyevi Gory, Moscow, Russia
| | - Esa Tyystjï Rvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Taina Tyystjï Rvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, Finland
| |
Collapse
|
19
|
Abstract
Global (metabolic) regulatory networks allow microorganisms to survive periods of nitrogen starvation or general nutrient stress. Uptake and utilization of various nitrogen sources are thus commonly tightly regulated in Prokarya (Bacteria and Archaea) in response to available nitrogen sources. Those well-studied regulations occur mainly at the transcriptional and posttranslational level. Surprisingly, and in contrast to their involvement in most other stress responses, small RNAs (sRNAs) involved in the response to environmental nitrogen fluctuations are only rarely reported. In addition to sRNAs indirectly affecting nitrogen metabolism, only recently it was demonstrated that three sRNAs were directly involved in regulation of nitrogen metabolism in response to changes in available nitrogen sources. All three trans-acting sRNAs are under direct transcriptional control of global nitrogen regulators and affect expression of components of nitrogen metabolism (glutamine synthetase, nitrogenase, and PII-like proteins) by either masking the ribosome binding site and thus inhibiting translation initiation or stabilizing the respective target mRNAs. Most likely, there are many more sRNAs and other types of noncoding RNAs, e.g., riboswitches, involved in the regulation of nitrogen metabolism in Prokarya that remain to be uncovered. The present review summarizes the current knowledge on sRNAs involved in nitrogen metabolism and their biological functions and targets.
Collapse
|
20
|
Fang X, Liu Y, Zhao Y, Chen Y, Liu R, Qin QL, Li G, Zhang YZ, Chan W, Hess WR, Zeng Q. Transcriptomic responses of the marine cyanobacterium Prochlorococcus to viral lysis products. Environ Microbiol 2019; 21:2015-2028. [PMID: 30585375 DOI: 10.1111/1462-2920.14513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/19/2018] [Indexed: 01/27/2023]
Abstract
Viral infection of marine phytoplankton releases a variety of dissolved organic matter (DOM). The impact of viral DOM (vDOM) on the uninfected co-occurring phytoplankton remains largely unknown. Here, we conducted transcriptomic analyses to study the effects of vDOM on the cyanobacterium Prochlorococcus, which is the most abundant photosynthetic organism on Earth. Using Prochlorococcus MIT9313, we showed that its growth was not affected by vDOM, but many tRNAs increased in abundance. We tested tRNA-gly and found that its abundance increased upon addition of glycine. The decreased transcript abundances of N metabolism genes also suggested that Prochlorococcus responded to organic N compounds in vDOM. Addition of vDOM to Prochlorococcus reduced the maximum photochemical efficiency of photosystem II and CO2 fixation while increasing its respiration rate, consistent with differentially abundant transcripts related to photosynthesis and respiration. One of the highest positive fold-changes was observed for the 6S RNA, a noncoding RNA functioning as a global transcriptional regulator in bacteria. The high level of 6S RNA might be responsible for some of the observed transcriptional responses. Taken together, our results revealed the transcriptional regulation of Prochlorococcus in response to viral lysis products and suggested its metabolic potential to utilize organic N compounds.
Collapse
Affiliation(s)
- Xiaoting Fang
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yaxin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yao Zhao
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yue Chen
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Riyue Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Qi-Long Qin
- State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Gang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology (CAS), Guangzhou, China
| | - Yu-Zhong Zhang
- State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, China.,College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Wolfgang R Hess
- Genetics & Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Germany
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,HKUST Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
21
|
Forchhammer K, Schwarz R. Nitrogen chlorosis in unicellular cyanobacteria – a developmental program for surviving nitrogen deprivation. Environ Microbiol 2018; 21:1173-1184. [DOI: 10.1111/1462-2920.14447] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine, University Tübingen Auf der Morgenstelle 28, 72076 Tübingen Germany
| | - Rakefet Schwarz
- The Mina & Everard Goodman Faculty of Life SciencesBar‐Ilan University Ramat‐Gan 5290002 Israel
| |
Collapse
|
22
|
Köbler C, Schultz SJ, Kopp D, Voigt K, Wilde A. The role of the Synechocystis sp. PCC 6803 homolog of the circadian clock output regulator RpaA in day-night transitions. Mol Microbiol 2018; 110:847-861. [PMID: 30216574 DOI: 10.1111/mmi.14129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/07/2018] [Accepted: 07/12/2018] [Indexed: 01/20/2023]
Abstract
Cyanobacteria exhibit rhythmic gene expression with a period length of 24 hours to adapt to daily environmental changes. In the model organism Synechococcuselongatus PCC 7942, the central oscillator consists of the three proteins KaiA, KaiB and KaiC and utilizes the histidine kinase SasA and its response regulator RpaA as output-signaling pathway. Synechocystis sp. PCC 6803 contains in addition to the canonical kaiAB1C1 gene cluster two further homologs of the kaiB and kaiC genes. Here, we demonstrate that the SasA-RpaA system interacts with the KaiAB1C1 core oscillator only. Interaction with KaiC2 and KaiC3 proteins was not detected, suggesting different signal transduction components for the clock homologs. Inactivation of rpaA in Synechocystis sp. PCC 6803 leads to reduced viability of the mutant in light-dark cycles, especially under mixotrophic growth conditions. Chemoheterotrophic growth of the ∆rpaA strain in the dark was abolished completely. Transcriptomic data revealed that RpaA is mainly involved in the regulation of genes related to CO2 - acclimation in the light and to carbon metabolism in the dark. Further, our results indicate a link between the circadian clock and phototaxis.
Collapse
Affiliation(s)
- Christin Köbler
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Siri-Jasmin Schultz
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Dominik Kopp
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Karsten Voigt
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Annegret Wilde
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, University of Freiburg, 79106, Freiburg, Germany
| |
Collapse
|
23
|
Abstract
ABSTRACT
Although bacterial genomes are usually densely protein-coding, genome-wide mapping approaches of transcriptional start sites revealed that a significant fraction of the identified promoters drive the transcription of noncoding RNAs. These can be
trans
-acting RNAs, mainly originating from intergenic regions and, in many studied examples, possessing regulatory functions. However, a significant fraction of these noncoding RNAs consist of natural antisense transcripts (asRNAs), which overlap other transcriptional units. Naturally occurring asRNAs were first observed to play a role in bacterial plasmid replication and in bacteriophage λ more than 30 years ago. Today’s view is that asRNAs abound in all three domains of life. There are several examples of asRNAs in bacteria with clearly defined functions. Nevertheless, many asRNAs appear to result from pervasive initiation of transcription, and some data point toward global functions of such widespread transcriptional activity, explaining why the search for a specific regulatory role is sometimes futile. In this review, we give an overview about the occurrence of antisense transcription in bacteria, highlight particular examples of functionally characterized asRNAs, and discuss recent evidence pointing at global relevance in RNA processing and transcription-coupled DNA repair.
Collapse
|
24
|
Koskinen S, Hakkila K, Kurkela J, Tyystjärvi E, Tyystjärvi T. Inactivation of group 2 σ factors upregulates production of transcription and translation machineries in the cyanobacterium Synechocystis sp. PCC 6803. Sci Rep 2018; 8:10305. [PMID: 29985458 PMCID: PMC6037674 DOI: 10.1038/s41598-018-28736-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/26/2018] [Indexed: 11/17/2022] Open
Abstract
We show that the formation of the RNAP holoenzyme with the primary σ factor SigA increases in the ΔsigBCDE strain of the cyanobacterium Synechocystis sp. PCC 6803 lacking all group 2 σ factors. The high RNAP-SigA holoenzyme content directly induces transcription of a particular set of housekeeping genes, including ones encoding transcription and translation machineries. In accordance with upregulated transcripts, ΔsigBCDE contain more RNAPs and ribosomal subunits than the control strain. Extra RNAPs are fully active, and the RNA content of ΔsigBCDE cells is almost tripled compared to that in the control strain. Although ΔsigBCDE cells produce extra rRNAs and ribosomal proteins, functional extra ribosomes are not formed, and translation activity and protein content remained similar in ΔsigBCDE as in the control strain. The arrangement of the RNA polymerase core genes together with the ribosomal protein genes might play a role in the co-regulation of transcription and translation machineries. Sequence logos were constructed to compare promoters of those housekeeping genes that directly react to the RNAP-SigA holoenzyme content and those ones that do not. Cyanobacterial strains with engineered transcription and translation machineries might provide solutions for construction of highly efficient production platforms for biotechnical applications in the future.
Collapse
Affiliation(s)
- Satu Koskinen
- Department of Biochemistry, University of Turku, FI-20014, Turku, Finland
| | - Kaisa Hakkila
- Department of Biochemistry, University of Turku, FI-20014, Turku, Finland
| | - Juha Kurkela
- Department of Biochemistry, University of Turku, FI-20014, Turku, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry, University of Turku, FI-20014, Turku, Finland
| | - Taina Tyystjärvi
- Department of Biochemistry, University of Turku, FI-20014, Turku, Finland.
| |
Collapse
|
25
|
Comparative Targeted Proteomics of the Central Metabolism and Photosystems in SigE Mutant Strains of Synechocystis sp. PCC 6803. Molecules 2018; 23:molecules23051051. [PMID: 29723969 PMCID: PMC6102573 DOI: 10.3390/molecules23051051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 12/17/2022] Open
Abstract
A targeted proteome analysis was conducted to investigate the SigE dependent-regulation of central metabolism in Synechocystis sp. PCC 6803 by directly comparing the protein abundance profiles among the wild type, a sigE deletion mutant (ΔsigE), and a sigE over-expression (sigEox) strains. Expression levels of 112 target proteins, including the central metabolism related-enzymes and the subunits of the photosystems, were determined by quantifying the tryptic peptides in the multiple reaction monitoring (MRM) mode of liquid-chromatography–triple quadrupole mass spectrometry (LC–MS/MS). Comparison with gene-expression data showed that although the abundance of Gnd protein was closely correlated with that of gnd mRNA, there were poor correlations for GdhA/gdhA and glycogen degradation-related genes such as GlgX/glgX and GlgP/glgP pairs. These results suggested that the regulation of protein translation and degradation played a role in regulating protein abundance. The protein abundance profile suggested that SigE overexpression reduced the proteins involved in photosynthesis and increased GdhA abundance, which is involved in the nitrogen assimilation pathway using NADPH. The results obtained in this study successfully demonstrated that targeted proteome analysis enables direct comparison of the abundance of central metabolism- and photosystem-related proteins.
Collapse
|
26
|
Wassarman KM. 6S RNA, a Global Regulator of Transcription. Microbiol Spectr 2018; 6:10.1128/microbiolspec.RWR-0019-2018. [PMID: 29916345 PMCID: PMC6013841 DOI: 10.1128/microbiolspec.rwr-0019-2018] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Indexed: 01/06/2023] Open
Abstract
6S RNA is a small RNA regulator of RNA polymerase (RNAP) that is present broadly throughout the bacterial kingdom. Initial functional studies in Escherichia coli revealed that 6S RNA forms a complex with RNAP resulting in regulation of transcription, and cells lacking 6S RNA have altered survival phenotypes. The last decade has focused on deepening the understanding of several aspects of 6S RNA activity, including (i) addressing questions of how broadly conserved 6S RNAs are in diverse organisms through continued identification and initial characterization of divergent 6S RNAs; (ii) the nature of the 6S RNA-RNAP interaction through examination of variant proteins and mutant RNAs, cross-linking approaches, and ultimately a cryo-electron microscopic structure; (iii) the physiological consequences of 6S RNA function through identification of the 6S RNA regulon and promoter features that determine 6S RNA sensitivity; and (iv) the mechanism and cellular impact of 6S RNA-directed synthesis of product RNAs (i.e., pRNA synthesis). Much has been learned about this unusual RNA, its mechanism of action, and how it is regulated; yet much still remains to be investigated, especially regarding potential differences in behavior of 6S RNAs in diverse bacteria.
Collapse
Affiliation(s)
- Karen M Wassarman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53562
| |
Collapse
|