1
|
Eini O, Pfitzer R, Varrelmann M. Rapid and specific detection of Pentastiridius leporinus by recombinase polymerase amplification assay. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:309-316. [PMID: 38708571 DOI: 10.1017/s0007485324000099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Pentastiridius leporinus (Hemiptera: Cixiidae) is the main vector of an emerging and fast spreading sugar beet disease, the syndrome 'basses richesses' (SBR), in different European countries. The disease is caused by the γ-3-proteobacterium 'Candidatus Arsenophonus phytopathogenicus' and the phytoplasma 'Candidatus Phytoplasma solani' which are exclusively transmitted by planthoppers and can lead to a significant loss of sugar content and yield. Monitoring of this insect vector is important for disease management. However, the morphological identification is time consuming and challenging as two additional cixiid species Reptalus quinquecostatus and Hyalesthes obsoletus with a very close morphology have been reported in sugar beet fields. Further, identification of females and nymphs of P. leporinus at species level based on taxonomic key is not possible. In this study, an isothermal nucleic acid amplification based on recombinase polymerase amplification (RPA) was developed to specifically detect P. leporinus. In addition, real-time RPA was developed to detect both adults (male and female) and nymph stages using pure or crude nucleic acid extracts. The sensitivity of the real-time RPA for detection of P. leporinus was comparable to real-time PCR, but a shorter time (< 7 min) was required. This is a first report for real-time RPA application for P. leporinus detection using crude nucleic acid templates which can be applied for fast and specific detection of this vector in the field.
Collapse
Affiliation(s)
- Omid Eini
- Institute of Sugar Beet Research, Holtenser Landstraße 77, 37079 Göttingen, Germany
| | - René Pfitzer
- Institute of Sugar Beet Research, Holtenser Landstraße 77, 37079 Göttingen, Germany
- Agricultural Entomology, Department of Crop Sciences, Faculty of Agricultural Sciences, University of Göttingen, Grisebachstrasse 6, 37077 Göttingen, Germany
| | - Mark Varrelmann
- Institute of Sugar Beet Research, Holtenser Landstraße 77, 37079 Göttingen, Germany
| |
Collapse
|
2
|
Zhu Y, Xia B, Xu H, Liu Z, Wang R, Cai Q, Zhao P, Qi Z. Rapid detection of human adenovirus subgroup B using recombinase polymerase amplification assay. Virus Genes 2024; 60:18-24. [PMID: 38175387 DOI: 10.1007/s11262-023-02044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024]
Abstract
Human adenovirus subgroup B (HAdV B) is one of the major pathogens of human respiratory virus infections, which has considerable transmission and morbidity in a variety of populations. Therefore, rapid and specific detection of HAdV B in clinical samples is essential for diagnosis. This study aimed to develop a product for rapid nucleic acid detection of HAdV B using recombinase polymerase amplification assay (RPA) and validate the performance of this method by using clinical samples. Results showed that this method achieved a lower limit of detection (LOD) of 10 copies/μL and had no cross-reactivity with other adenovirus subgroups or respiratory pathogens. In addition to high sensitivity, it can be completed within 30 min at 40 °C. There is no need to perform nucleic acid extraction on clinical samples. Taking qPCR as the gold standard, the RPA assay possessed a high concordance (Cohen's kappa, 0.896; 95% CI 0.808-0.984; P < 0.001), with a sensitivity of 87.80% and a specificity of 100.00%. The RPA assay developed in this study provided a simple and highly specific method, making it an important tool for rapid adenovirus nucleic acid detection and facilitating large-scale population screening in resource-limited settings.
Collapse
Affiliation(s)
- Yongzhe Zhu
- Department of Microbiology, Naval Medical University, No. 800, Xiangyin Road, Shanghai, 200433, China
| | - Binghui Xia
- Department of Microbiology, Naval Medical University, No. 800, Xiangyin Road, Shanghai, 200433, China
| | - Haizhou Xu
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Zengxin Liu
- Genoxor Medical Science and Technology Inc., Shanghai, 201112, China
| | - Ru Wang
- Genoxor Medical Science and Technology Inc., Shanghai, 201112, China
| | - Qingqing Cai
- Genoxor Medical Science and Technology Inc., Shanghai, 201112, China
| | - Ping Zhao
- Department of Microbiology, Naval Medical University, No. 800, Xiangyin Road, Shanghai, 200433, China.
| | - Zhongtian Qi
- Department of Microbiology, Naval Medical University, No. 800, Xiangyin Road, Shanghai, 200433, China.
| |
Collapse
|
3
|
Li J, Zhong Q, Shang MY, Li M, Jiang YS, Zou JJ, Ma SS, Huang Q, Lu WP. Preliminary Evaluation of Rapid Visual Identification of Burkholderia pseudomallei Using a Newly Developed Lateral Flow Strip-Based Recombinase Polymerase Amplification (LF-RPA) System. Front Cell Infect Microbiol 2022; 11:804737. [PMID: 35118011 PMCID: PMC8804217 DOI: 10.3389/fcimb.2021.804737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022] Open
Abstract
Burkholderia pseudomallei is an important infectious disease pathogen that can cause melioidosis. Melioidosis is mainly prevalent in Thailand, northern Australia and southern China and has become a global public health problem. Early identification of B. pseudomallei is of great significance for the diagnosis and prognosis of melioidosis. In this study, a simple and visual device combined with lateral flow strip-based recombinase polymerase amplification (LF-RPA) was developed, and the utility of the LF-RPA assay for identifying B. pseudomallei was evaluated. In order to screen out the optimal primer probe, a total of 16 pairs of specific primers targeting the orf2 gene of B. pseudomallei type III secretion system (T3SS) cluster genes were designed for screening, and F1/R3 was selected as an optimal set of primers for the identification of B. pseudomallei, and parameters for LF-RPA were optimized. The LF-RPA can be amplified at 30-45°C and complete the entire reaction in 5-30 min. This reaction does not cross-amplify the DNA of other non-B. pseudomallei species. The limit of detection (LOD) of this assay for B. pseudomallei genomic DNA was as low as 30 femtograms (fg), which was comparable to the results of real-time PCR. Moreover, 21 clinical B. pseudomallei isolates identified by 16S rRNA gene sequencing were retrospectively confirmed by the newly developed LF-RPA system. Our results showed that the newly developed LF-RPA system has a simple and short time of operation and has good application prospect in the identification of B. pseudomallei.
Collapse
Affiliation(s)
- Jin Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Laboratory Medicine, Ministry of Education (M.O.E.) Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing, China
| | - Qiu Zhong
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mei-Yun Shang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuan-Su Jiang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jia-Jun Zou
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shan-Shan Ma
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qing Huang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Wei-Ping Lu, ; Qing Huang,
| | - Wei-Ping Lu
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Wei-Ping Lu, ; Qing Huang,
| |
Collapse
|
4
|
Zhang Z, Ma P, Ahmed R, Wang J, Akin D, Soto F, Liu BF, Li P, Demirci U. Advanced Point-of-Care Testing Technologies for Human Acute Respiratory Virus Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103646. [PMID: 34623709 DOI: 10.1002/adma.202103646] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/25/2021] [Indexed: 04/14/2023]
Abstract
The ever-growing global threats to human life caused by the human acute respiratory virus (RV) infections have cost billions of lives, created a significant economic burden, and shaped society for centuries. The timely response to emerging RVs could save human lives and reduce the medical care burden. The development of RV detection technologies is essential for potentially preventing RV pandemic and epidemics. However, commonly used detection technologies lack sensitivity, specificity, and speed, thus often failing to provide the rapid turnaround times. To address this problem, new technologies are devised to address the performance inadequacies of the traditional methods. These emerging technologies offer improvements in convenience, speed, flexibility, and portability of point-of-care test (POCT). Herein, recent developments in POCT are comprehensively reviewed for eight typical acute respiratory viruses. This review discusses the challenges and opportunities of various recognition and detection strategies and discusses these according to their detection principles, including nucleic acid amplification, optical POCT, electrochemistry, lateral flow assays, microfluidics, enzyme-linked immunosorbent assays, and microarrays. The importance of limits of detection, throughput, portability, and specificity when testing clinical samples in resource-limited settings is emphasized. Finally, the evaluation of commercial POCT kits for both essential RV diagnosis and clinical-oriented practices is included.
Collapse
Affiliation(s)
- Zhaowei Zhang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Peng Ma
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Rajib Ahmed
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Jie Wang
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Demir Akin
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Fernando Soto
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Peiwu Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| |
Collapse
|
5
|
Hong L, Li J, Lv J, Chao S, Xu Y, Zou D, Du J, Lu B, Pang Z, Li W, Liu W, Ke Y, Hou S. Development and evaluation of a loop-mediated isothermal amplification assay for clinical diagnosis of respiratory human adenoviruses emergent in China. Diagn Microbiol Infect Dis 2021; 101:115401. [PMID: 34087512 DOI: 10.1016/j.diagmicrobio.2021.115401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/30/2022]
Abstract
Three human adenovirus (HAdV) genotypes, HAdV-7, HAdV-14, and HAdV-55, emerged as the most prevalent variants in China over the past decade and caused both sporadic, fatal cases and frequent, large outbreaks. Early diagnosis is essential to control infections and endemics. Here, we established a loop-mediated isothermal amplification (LAMP) assay coupled with an instrument-free nucleic acid extraction device recently developed by our group; the assay could detect all the 3 prevalent HAdV genotypes. Specificity analysis showed no cross-reactivity with other common respiratory pathogens and the analytical sensitivity was as low as 10 copies/μL. All detection steps could be completed within 1 hour. The assay's performance was evaluated using clinical samples and compared with the gold standard RT-PCR method, showing highly consistent results. The LAMP assay developed here could be readily used in basic laboratory facilities and with minimal DNA extraction equipment, and as a reliable screening test in a resource-limited setting.
Collapse
Affiliation(s)
- Lei Hong
- Department of Orthopedic Surgery, Chinese PLA General Hospital, Beijing, P. R. China; Department of Orthopedic Surgery, Fourth center of Chinese PLA General Hospital, Beijing, P. R. China
| | - Jingyuan Li
- Department of Orthopaedics, Air Force Clinical College(Air Force Medical Center) of Anhui Medical University, Beijing, P. R. China
| | - Junping Lv
- Institute of Chinese Minority Traditional Medicine, Minzu University of China, Beijing, P. R. China
| | - Siqi Chao
- Center for Disease Prevention and Control of PLA, Beijing, P. R. China
| | - Yaqing Xu
- Center for Disease Prevention and Control of PLA, Beijing, P. R. China
| | - Dayang Zou
- Center for Disease Prevention and Control of PLA, Beijing, P. R. China
| | - Junjie Du
- Department of Orthopaedics, Air Force Clinical College(Air Force Medical Center) of Anhui Medical University, Beijing, P. R. China
| | - Binan Lu
- Institute of Chinese Minority Traditional Medicine, Minzu University of China, Beijing, P. R. China
| | - Zongran Pang
- Institute of Chinese Minority Traditional Medicine, Minzu University of China, Beijing, P. R. China
| | - Wenfeng Li
- Department of Orthopedic Surgery, Chinese PLA General Hospital, Beijing, P. R. China; Department of Orthopedic Surgery, Fourth center of Chinese PLA General Hospital, Beijing, P. R. China
| | - Wei Liu
- Center for Disease Prevention and Control of PLA, Beijing, P. R. China.
| | - Yuehua Ke
- Center for Disease Prevention and Control of PLA, Beijing, P. R. China.
| | - Shuxun Hou
- Department of Orthopedic Surgery, Chinese PLA General Hospital, Beijing, P. R. China; Department of Orthopedic Surgery, Fourth center of Chinese PLA General Hospital, Beijing, P. R. China.
| |
Collapse
|
6
|
Brunauer A, Verboket RD, Kainz DM, von Stetten F, Früh SM. Rapid Detection of Pathogens in Wound Exudate via Nucleic Acid Lateral Flow Immunoassay. BIOSENSORS-BASEL 2021; 11:bios11030074. [PMID: 33800856 PMCID: PMC8035659 DOI: 10.3390/bios11030074] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022]
Abstract
The rapid detection of pathogens in infected wounds can significantly improve the clinical outcome. Wound exudate, which can be collected in a non-invasive way, offers an attractive sample material for the detection of pathogens at the point-of-care (POC). Here, we report the development of a nucleic acid lateral flow immunoassay for direct detection of isothermally amplified DNA combined with fast sample preparation. The streamlined protocol was evaluated using human wound exudate spiked with the opportunistic pathogen Pseudomonas aeruginosa that cause severe health issues upon wound colonization. A detection limit of 2.1 × 105 CFU per mL of wound fluid was achieved, and no cross-reaction with other pathogens was observed. Furthermore, we integrated an internal amplification control that excludes false negative results and, in combination with the flow control, ensures the validity of the test result. The paper-based approach with only three simple hands-on steps has a turn-around time of less than 30 min and covers the complete analytical process chain from sample to answer. This newly developed workflow for wound fluid diagnostics has tremendous potential for reliable pathogen POC testing and subsequent target-oriented therapy.
Collapse
Affiliation(s)
- Anna Brunauer
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - René D Verboket
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Daniel M Kainz
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Felix von Stetten
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Susanna M Früh
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|
7
|
Kumar Y. Isothermal amplification-based methods for assessment of microbiological safety and authenticity of meat and meat products. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|