1
|
Meyer AC, McIlvin MR, Lopez P, Searle BC, Saito MA. Proteomic profiling of zinc homeostasis mechanisms in Pseudomonas aeruginosa through data-dependent and data-independent acquisition mass spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632865. [PMID: 39868216 PMCID: PMC11761036 DOI: 10.1101/2025.01.13.632865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Zinc is central to the function of many proteins, yet the mechanisms of zinc homeostasis and their interplay with other cellular systems remain underexplored. In this study, we employ data-dependent acquisition (DDA) and data-independent acquisition (DIA) mass spectrometry to investigate proteome changes in Pseudomonas aeruginosa under conditions of different zinc availability. Using these methods, we detected 2143 unique proteins, 1578 of which were identified by both DDA and DIA. We demonstrated that most of the previously described Zn homeostasis systems exhibit proteomic responses that follow similar trends to those seen in transcriptomics studies. However, some proteins that are considered instrumental in Zn homeostasis, notably those in Zn transporter ZnuABC, were not detected by our methods, although other proteins of other uptake systems were abundant. Furthermore, changes in abundance of multiple Zn-metalloproteins and Zn-independent homologs were clearly observable, with respective increases and decreases when Zn was provided, though the magnitude of these changes varied. Most of the Zn-metalloproteins observed were located in one of two Zur-regulated operons between PA5534 and PA5541. This study provides a view of Zn homeostasis mechanisms that is complementary to existing transcriptomics investigations: as gene transcripts are not strictly proportional to the actual distribution of proteins within a cell, analysis of the proteome offers another way to assess the relative use and importance of similar or ostensibly redundant systems in different conditions and can highlight shifts in metal prioritization between metalloproteins.
Collapse
|
2
|
Liu H, Chen WJ, Xu Z, Chen SF, Song H, Huang Y, Bhatt K, Mishra S, Ghorab MA, Zhang LH, Chen S. Unraveling the degradation mechanism of multiple pyrethroid insecticides by Pseudomonas aeruginosa and its environmental bioremediation potential. ENVIRONMENT INTERNATIONAL 2025; 195:109221. [PMID: 39721570 DOI: 10.1016/j.envint.2024.109221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Extensive use of pyrethroid insecticides poses significant risks to both ecological ecosystems and human beings. Herein, Pseudomonas aeruginosa PAO1 exhibited exceptional degradation capabilities towards a range of pyrethroid family insecticides including etofenprox, bifenthrin, tetramethrin, D-cypermethrin, allethrin, and permethrin, with a degradation efficiency reaching over 84 % within 36 h (50 mg·L-1). Strain PAO1 demonstrated effective soil bioremediation by removing etofenprox across different concentrations (25-100 mg·kg-1), with a degradation efficiency over 77 % within 15 days. Additionally, 16S rDNA high-throughput sequencing analysis revealed that introduction of strain PAO1 and etofenprox had a notable impact on the soil microbial community. Strain PAO1 displayed a synergistic effect with local degrading bacteria or flora to degrade etofenprox. UPLC-MS/MS analysis identified 2-(4-ethoxyphenyl) propan-2-ol and 3-phenoxybenzoic acid as the major metabolites of etofenprox biodegradation. A new esterase gene (estA) containing conserved motif (GDSL) and catalytic triad (Ser38, Asp310 and His313) was cloned from strain PAO1. Enzyme activity and gene knockout experiments confirmed the pivotal role of estA in pyrethroid biodegradation. The findings from this study shed a new light on elucidating the degradation mechanism of P. aeruginosa PAO1 and present a useful agent for development of effective pyrethroid bioremediation strategies.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Wen-Juan Chen
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zeling Xu
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Shao-Fang Chen
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Haoran Song
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yaohua Huang
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Kalpana Bhatt
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute (NBRI), Rana Pratap Marg, Lucknow 226001, India
| | - Mohamed A Ghorab
- Wildlife Toxicology Lab, Department of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University, East Lansing, MI 48824, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616-8741, USA
| | - Lian-Hui Zhang
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Shaohua Chen
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Bizzarri L, Steinbrunn D, Quennesson T, Lacour A, Bianchino GI, Bravo P, Chaignon P, Lohse J, Mäser P, Seemann M, Calenbergh SV, Hirsch AKH, Hahne H. Studying Target-Engagement of Anti-Infectives by Solvent-Induced Protein Precipitation and Quantitative Mass Spectrometry. ACS Infect Dis 2024; 10:4087-4102. [PMID: 39566904 DOI: 10.1021/acsinfecdis.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Antimicrobial resistance (AMR) poses a serious threat to global health. The rapid emergence of resistance contrasts with the slow pace of antimicrobial development, emphasizing the urgent need for innovative drug discovery approaches. This study addresses a critical bottleneck in early drug development by introducing integral solvent-induced protein precipitation (iSPP) to rapidly assess the target-engagement of lead compounds in extracts of pathogenic microorganisms under close-to-physiological conditions. iSPP measures the change in protein stability against solvent-induced precipitation in the presence of ligands. The iSPP method for bacteria builds upon established SPP procedures and features optimized denaturation gradients and minimized sample input amounts. The effectiveness of the iSPP workflow was initially demonstrated through a multidrug target-engagement study. Using quantitative mass spectrometry (LC-MS/MS), we successfully identified known drug targets of seven different antibiotics in cell extracts of four AMR-related pathogens: the three Gram-negative bacteria Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and the Gram-positive bacterium Staphylococcus aureus. The iSPP method was ultimately applied to demonstrate target-engagement of compounds derived from target-based drug discovery. We employed five small molecules targeting three enzymes in the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway─a promising focus for anti-infective drug development. The study showcases iSPP adaptability and efficiency in identifying anti-infective drug targets, advancing early-stage drug discovery against AMR.
Collapse
Affiliation(s)
- Lorenzo Bizzarri
- OmicScouts GmbH, Lise-Meitner-Straße 30, Freising D-85354, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, Saarbrücken D-66123, Germany
| | - Dominik Steinbrunn
- OmicScouts GmbH, Lise-Meitner-Straße 30, Freising D-85354, Germany
- TUM School of Natural Sciences, Department of Bioscience, Technical University of Munich, Center for Functional Protein Assemblies (CPA), Garching bei München D-85748, Germany
| | - Thibaut Quennesson
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, Gent B-9000, Belgium
| | - Antoine Lacour
- Department of Pharmacy, Saarland University, Campus E8.1, Saarbrücken D-66123, Germany
- Helmholtz Institute for Pharmaceutical Research (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8.1, Saarbrücken D-66123, Germany
| | - Gabriella Ines Bianchino
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg, UMR 7177, Université de Strasbourg/CNRS, 4, Rue Blaise Pascal, Strasbourg F-67070, France
| | - Patricia Bravo
- Swiss Tropical and Public Health Institute (Swiss TPH), Kreuzstrasse 2, Allschwil CH-4123, Switzerland
- University of Basel, Petersgraben 1, Basel CH-4001, Switzerland
| | - Philippe Chaignon
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg, UMR 7177, Université de Strasbourg/CNRS, 4, Rue Blaise Pascal, Strasbourg F-67070, France
| | - Jonas Lohse
- OmicScouts GmbH, Lise-Meitner-Straße 30, Freising D-85354, Germany
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute (Swiss TPH), Kreuzstrasse 2, Allschwil CH-4123, Switzerland
- University of Basel, Petersgraben 1, Basel CH-4001, Switzerland
| | - Myriam Seemann
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg, UMR 7177, Université de Strasbourg/CNRS, 4, Rue Blaise Pascal, Strasbourg F-67070, France
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, Gent B-9000, Belgium
| | - Anna K H Hirsch
- Department of Pharmacy, Saarland University, Campus E8.1, Saarbrücken D-66123, Germany
- Helmholtz Institute for Pharmaceutical Research (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8.1, Saarbrücken D-66123, Germany
| | - Hannes Hahne
- OmicScouts GmbH, Lise-Meitner-Straße 30, Freising D-85354, Germany
| |
Collapse
|
4
|
Goodyear MC, Seidel L, Krieger JR, Geddes-McAlister J, Levesque RC, Khursigara CM. Quantitative proteomics reveals unique responses to antimicrobial treatments in clinical Pseudomonas aeruginosa isolates. mSystems 2023; 8:e0049123. [PMID: 37623324 PMCID: PMC10654054 DOI: 10.1128/msystems.00491-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/05/2023] [Indexed: 08/26/2023] Open
Abstract
IMPORTANCE Pseudomonas aeruginosa is an important pathogen often associated with hospital-acquired infections and chronic lung infections in people with cystic fibrosis. P. aeruginosa possesses a wide array of intrinsic and adaptive mechanisms of antibiotic resistance, and the regulation of these mechanisms is complex. Label-free quantitative proteomics is a powerful tool to compare susceptible and resistant strains of bacteria and their responses to antibiotic treatments. Here we compare the proteomes of three isolates of P. aeruginosa with different antibiotic resistance profiles in response to five challenge conditions. We uncover unique and shared proteome changes for the widely used laboratory strain PAO1 and two isolates of the Liverpool epidemic strain of P. aeruginosa, LESlike1 and LESB58. Our data set provides insight into antibiotic resistance in clinically relevant Pseudomonas isolates and highlights proteins, including those with uncharacterized functions, which can be further investigated for their role in adaptive responses to antibiotic treatments.
Collapse
Affiliation(s)
- Mara C. Goodyear
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Laura Seidel
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | | | | - Roger C. Levesque
- Institut de biologie integrative et des systems (IBIS), Département de microbiologie-infectiologie et d'immunologie, Université Laval, Laval, Quebec, Canada
| | - Cezar M. Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
5
|
Pseudomonas aeruginosa and Staphylococcus aureus Display Differential Proteomic Responses to the Silver(I) Compound, SBC3. Antibiotics (Basel) 2023; 12:antibiotics12020348. [PMID: 36830259 PMCID: PMC9952281 DOI: 10.3390/antibiotics12020348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
The urgent need to combat antibiotic resistance and develop novel antimicrobial therapies has triggered studies on novel metal-based formulations. N-heterocyclic carbene (NHC) complexes coordinate transition metals to generate a broad range of anticancer and/or antimicrobial agents, with ongoing efforts being made to enhance the lipophilicity and drug stability. The lead silver(I) acetate complex, 1,3-dibenzyl-4,5-diphenylimidazol-2-ylidene (NHC*) (SBC3), has previously demonstrated promising growth and biofilm-inhibiting properties. In this work, the responses of two structurally different bacteria to SBC3 using label-free quantitative proteomics were characterised. Multidrug-resistant Pseudomonas aeruginosa (Gram-negative) and Staphylococcus aureus (Gram-positive) are associated with cystic fibrosis lung colonisation and chronic wound infections, respectively. SBC3 increased the abundance of alginate biosynthesis, the secretion system and drug detoxification proteins in P. aeruginosa, whilst a variety of pathways, including anaerobic respiration, twitching motility and ABC transport, were decreased in abundance. This contrasted the affected pathways in S. aureus, where increased DNA replication/repair and cell redox homeostasis and decreased protein synthesis, lipoylation and glucose metabolism were observed. Increased abundance of cell wall/membrane proteins was indicative of the structural damage induced by SBC3 in both bacteria. These findings show the potential broad applications of SBC3 in treating Gram-positive and Gram-negative bacteria.
Collapse
|
6
|
Structural Analyses of the Multicopper Site of CopG Support a Role as a Redox Enzyme. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1414:97-121. [PMID: 36637718 DOI: 10.1007/5584_2022_753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metal ions can be both essential components of cells as well as potential toxins if present in excess. Organisms utilize a variety of protein systems to maintain the concentration of metal ions within the appropriate range for cellular function, and to avoid concentrations where cellular damage can occur. In bacteria, numerous proteins contribute to copper homeostasis, including copper transporters, chelators, and redox enzymes. The genes that encode these proteins are often found in clusters, thus providing modular components that work together to achieve homeostasis. A better understanding of how these components function and cooperate to achieve metal ion resistance is needed, given the extensive use of metal ions, including copper, as broad-spectrum biocides in a variety of clinical and environmental settings. The copG gene is a common component of such copper resistance clusters, but its contribution to copper resistance is not well understood. In this review the available information about the CopG protein encoded by this gene is summarized. Comparison of the recent structure to diverse copper-containing metallochaperones, metalloenzymes, and electron transfer proteins suggests that CopG is a redox enzyme that uses multiple copper ions as active site redox cofactors to act on additional copper ion substrates. Mechanisms for both oxidase and reductase activity are proposed, and the biological advantages that these activities can contribute in conjunction with existing systems are described.
Collapse
|
7
|
Virieux-Petit M, Hammer-Dedet F, Aujoulat F, Jumas-Bilak E, Romano-Bertrand S. From Copper Tolerance to Resistance in Pseudomonas aeruginosa towards Patho-Adaptation and Hospital Success. Genes (Basel) 2022; 13:genes13020301. [PMID: 35205346 PMCID: PMC8872213 DOI: 10.3390/genes13020301] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
The hospital environment constitutes a reservoir of opportunistic pathogens responsible for healthcare-associated infections (HCAI) such as Pseudomonas aeruginosa (Pa). Pa persistence within technological niches, the increasing emergence of epidemic high-risk clones in HCAI, the epidemiological link between plumbing strains and clinical strains, make it a major nosocomial pathogen. Therefore, understanding the mechanisms of Pa adaptation to hospital water systems would be useful in preventing HCAI. This review deciphers how copper resistance contributes to Pa adaptation and persistence in a hospital environment, especially within copper water systems, and ultimately to its success as a causative agent of HCAI. Numerous factors are involved in copper homeostasis in Pa, among which active efflux conferring copper tolerance, and copper-binding proteins regulating the copper compartmentalization between periplasm and cytoplasm. The functional harmony of copper homeostasis is regulated by several transcriptional regulators. The genomic island GI-7 appeared as especially responsible for the copper resistance in Pa. Mechanisms of copper and antibiotic cross-resistance and co-resistance are also identified, with potential co-regulation processes between them. Finally, copper resistance of Pa confers selective advantages in colonizing and persisting in hospital environments but also appears as an asset at the host/pathogen interface that helps in HCAI occurrence.
Collapse
Affiliation(s)
- Maxine Virieux-Petit
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
| | - Florence Hammer-Dedet
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
| | - Fabien Aujoulat
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
| | - Estelle Jumas-Bilak
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
- Hospital Hygiene and Infection Control Team, University Hospital of Montpellier, 34093 Montpellier, France
| | - Sara Romano-Bertrand
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
- Hospital Hygiene and Infection Control Team, University Hospital of Montpellier, 34093 Montpellier, France
- UMR 5151 HSM, Equipe Pathogènes Hydriques Santé et Environnements, U.F.R. des Sciences Pharmaceutiques et Biologiques, Université Montpellier, 15, Avenue Charles Flahault, BP 14491, CEDEX 5, 34093 Montpellier, France
- Correspondence: ; Tel.: +33-4-11-75-94-30
| |
Collapse
|
8
|
Durand A, Fouesnard M, Bourbon ML, Steunou AS, Lojou E, Dorlet P, Ouchane S. A periplasmic cupredoxin with a green CuT1.5 center is involved in bacterial copper tolerance. Metallomics 2021; 13:6428408. [PMID: 34791351 DOI: 10.1093/mtomcs/mfab067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/05/2021] [Indexed: 12/26/2022]
Abstract
The importance of copper resistance pathways in pathogenic bacteria is now well recognized, since macrophages use copper to fight bacterial infections. Additionally, considering the increase of antibiotic resistance, growing attention is given to the antimicrobial properties of copper. It is of primary importance to understand how bacteria deal with copper. The Cu-resistant cuproprotein CopI is present in many human bacterial pathogens and environmental bacteria and crucial under microaerobiosis (conditions for most pathogens to thrive within their host). Hence, understanding its mechanism of function is essential. CopI proteins share conserved histidine, cysteine, and methionine residues that could be ligands for different copper binding sites, among which the cupredoxin center could be involved in the protein function. Here, we demonstrated that Vibrio cholerae and Pseudomonas aeruginosa CopI restore the Cu-resistant phenotype in the Rubrivivax gelatinosus ΔcopI mutant. We identified that Cys125 (ligand in the cupredoxin center) and conserved histidines and methionines are essential for R. gelatinosus CopI (RgCopI) function. We also performed spectroscopic analyses of the purified RgCopI protein and showed that it is a green cupredoxin able to bind a maximum of three Cu(II) ions: (i) a green Cu site (CuT1.5), (ii) a type 2 Cu binding site (T2) located in the N-terminal region, and (iii) a third site with a yet unidentified location. CopI is therefore one member of the poorly described CuT1.5 center cupredoxin family. It is unique, since it is a single-domain cupredoxin with more than one Cu site involved in Cu resistance.
Collapse
Affiliation(s)
- Anne Durand
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Mélanie Fouesnard
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Marie-Line Bourbon
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Anne-Soisig Steunou
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | - Pierre Dorlet
- CNRS, Aix-Marseille Université, BIP, IMM, Marseille, France
| | - Soufian Ouchane
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
9
|
Carvalho IGB, Merfa MV, Teixeira-Silva NS, Martins PMM, Takita MA, de Souza AA. Overexpression of mqsR in Xylella fastidiosa Leads to a Priming Effect of Cells to Copper Stress Tolerance. Front Microbiol 2021; 12:712564. [PMID: 34616378 PMCID: PMC8488296 DOI: 10.3389/fmicb.2021.712564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Copper-based compounds are widely used in agriculture as a chemical strategy to limit the spread of multiple plant diseases; however, the continuous use of this heavy metal has caused environmental damage as well as the development of copper-resistant strains. Thus, it is important to understand how the bacterial phytopathogens evolve to manage with this metal in the field. The MqsRA Toxin-Antitoxin system has been recently described for its function in biofilm formation and copper tolerance in Xylella fastidiosa, a plant-pathogen bacterium responsible for economic damage in several crops worldwide. Here we identified differentially regulated genes by X. fastidiosa MqsRA by assessing changes in global gene expression with and without copper. Results show that mqsR overexpression led to changes in the pattern of cell aggregation, culminating in a global phenotypic heterogeneity, indicative of persister cell formation. This phenotype was also observed in wild-type cells but only in the presence of copper. This suggests that MqsR regulates genes that alter cell behavior in order to prime them to respond to copper stress, which is supported by RNA-Seq analysis. To increase cellular tolerance, proteolysis and efflux pumps and regulator related to multidrug resistance are induced in the presence of copper, in an MqsR-independent response. In this study we show a network of genes modulated by MqsR that is associated with induction of persistence in X. fastidiosa. Persistence in plant-pathogenic bacteria is an important genetic tolerance mechanism still neglected for management of phytopathogens in agriculture, for which this work expands the current knowledge and opens new perspectives for studies aiming for a more efficient control in the field.
Collapse
Affiliation(s)
| | - Marcus Vinicius Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | | | | | - Marco Aurélio Takita
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis, Brazil
| | | |
Collapse
|
10
|
Hofmann L, Hirsch M, Ruthstein S. Advances in Understanding of the Copper Homeostasis in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:2050. [PMID: 33669570 PMCID: PMC7922089 DOI: 10.3390/ijms22042050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Thirty-five thousand people die as a result of more than 2.8 million antibiotic-resistant infections in the United States of America per year. Pseudomonas aeruginosa (P. aeruginosa) is classified a serious threat, the second-highest threat category of the U.S. Department of Health and Human Services. Among others, the World Health Organization (WHO) encourages the discovery and development of novel antibiotic classes with new targets and mechanisms of action without cross-resistance to existing classes. To find potential new target sites in pathogenic bacteria, such as P. aeruginosa, it is inevitable to fully understand the molecular mechanism of homeostasis, metabolism, regulation, growth, and resistances thereof. P. aeruginosa maintains a sophisticated copper defense cascade comprising three stages, resembling those of public safety organizations. These stages include copper scavenging, first responder, and second responder. Similar mechanisms are found in numerous pathogens. Here we compare the copper-dependent transcription regulators cueR and copRS of Escherichia coli (E. coli) and P. aeruginosa. Further, phylogenetic analysis and structural modelling of mexPQ-opmE reveal that this efflux pump is unlikely to be involved in the copper export of P. aeruginosa. Altogether, we present current understandings of the copper homeostasis in P. aeruginosa and potential new target sites for antimicrobial agents or a combinatorial drug regimen in the fight against multidrug resistant pathogens.
Collapse
Affiliation(s)
| | | | - Sharon Ruthstein
- Institute of Nanotechnology and Advanced Materials & Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (M.H.)
| |
Collapse
|
11
|
Leandro MR, Vespoli LDS, Andrade LF, Soares FS, Boechat AL, Pimentel VR, Moreira JR, Passamani LZ, Silveira V, de Souza Filho GA. DegP protease is essential for tolerance to salt stress in the plant growth-promoting bacterium Gluconacetobacter diazotrophicus PAL5. Microbiol Res 2020; 243:126654. [PMID: 33285429 DOI: 10.1016/j.micres.2020.126654] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 11/19/2022]
Abstract
The use of plant growth-promoting bacteria represents an alternative to the massive use of mineral fertilizers in agriculture. However, some abiotic stresses commonly found in the environment, like salinity, can affect the efficiency of this approach. Here, we investigated the key mechanisms involved in the response of the plant growth-promoting bacterium Gluconacetobacter diazotrophicus to salt stress by using morphological and cell viability analyses, comparative proteomics, and reverse genetics. Our results revealed that the bacteria produce filamentous cells in response to salt at 100 mM and 150 mM NaCl. However, such a response was not observed at higher concentrations, where cell viability was severely affected. Proteomic analysis showed that salt stress modulates proteins involved in several pathways, including iron uptake, outer membrane efflux, osmotic adjustment, cell division and elongation, and protein transport and quality control. Proteomic data also revealed the repression of several extracytoplasmic proteins, especially those located at periplasm and outer membrane. The role of such pathways in the tolerance to salt stress was analyzed by the use of mutant defectives for Δtbdr (iron uptake), ΔmtlK and ΔotsA (compatible solutes synthesis), and ΔdegP (quality control of nascent extracytoplasmic proteins). ΔdegP presented the highest sensitivity to salt stress, Δtbdr, andΔmtlK also showed increased sensitivity, but ΔotsA was not affected. This is the first demonstration that DegP protein, a protease with minor chaperone activity, is essential for tolerance to salt stress in G. diazotrophicus. Our data contribute to a better understanding of the molecular bases that control the bacterial response/tolerance to salt stress, shedding light on quality control of nascent extracytoplasmic proteins.
Collapse
Affiliation(s)
- Mariana Ramos Leandro
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte, Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Luciano de Souza Vespoli
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte, Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Leandro Fernandes Andrade
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte, Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Fabiano Silva Soares
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte, Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Ana Laura Boechat
- Instituto de Química (Departamento de Bioquímica), Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP, Brazil
| | - Vivian Ribeiro Pimentel
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte, Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Julia Rosa Moreira
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte, Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Lucas Zanchetta Passamani
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte, Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte, Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Gonçalo Apolinário de Souza Filho
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte, Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Mohammadi Barzelighi H, Bakhshi B, Daraei B, Fazeli H, Nasr Esfahani B. Global Sequence Analysis and Expression of Azurin Gene in Different Clinical Specimens of Burn Patients with Pseudomonas aeruginosa Infection. Infect Drug Resist 2020; 13:2261-2275. [PMID: 32765002 PMCID: PMC7367926 DOI: 10.2147/idr.s248043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/25/2020] [Indexed: 11/23/2022] Open
Abstract
Aim The purpose of this study was to analyze the sequence of azurin gene in relation to its expression in Pseudomanas aeruginosa strains isolated from different clinical specimens of burn patients. Moreover, in silico sequence analysis of azurin gene using globally reported sequences was intended. Materials and Methods Fifty-nine multidrug-resistant P. aeruginosa isolates were selected from different clinical specimens of patients suffering from burn wound infections in two university hospitals and subjected to antibacterial susceptibility testing. The frequency and genetic diversity of the azurin gene was determined by polymerase chain reaction (PCR) and Sanger sequencing. The azurin gene sequences were compared with the sequence data from other countries. The expression level of azurin gene in P. aeruginosa isolates with different azurin sequences from different clinical specimens was evaluated by real-time PCR. Results and Conclusion About 98%-100% of the isolates were resistant to gentamicin, tobramycin, cefoxitin, ciprofloxacin, amikacin, and imipenem, while 100% and 23.9% of the isolates were susceptible to colistin and ceftazidime, respectively. Only eight point mutations were detected with amino acid substitutions in only two positions (81 and 102). In global analysis, 93% of strains showed missense mutation at positions 81 (alanine to threonine). The majority (81%) of Iranian strains were allocated to two major clusters distinct from the rest of world, which may suggest that strains from Iran have made a distinct genetic stockpile through point mutations which has established them separate from the other counties. However, 19% were distributed in different clusters together with the strains from different countries of North and South America, Europe, South and East Asia. The expression level of the azurin gene was statistically higher in the isolates collected from the blood of burns patients with systemic infection compared to the isolates collected from other specimens (wound, catheter and tissue), which shows a positive correlation between azurin gene expression and increased pathogenicity and capability for dissemination. This study may open new insight about azurin genetic variation and significance in P. aeruginosa pathogenesis.
Collapse
Affiliation(s)
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram Daraei
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Fazeli
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahram Nasr Esfahani
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Hausrath AC, Ramirez NA, Ly AT, McEvoy MM. The bacterial copper resistance protein CopG contains a cysteine-bridged tetranuclear copper cluster. J Biol Chem 2020; 295:11364-11376. [PMID: 32571874 DOI: 10.1074/jbc.ra120.013907] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/08/2020] [Indexed: 01/31/2023] Open
Abstract
CopG is an uncharacterized protein ubiquitous in Gram-negative bacteria whose gene frequently occurs in clusters of copper resistance genes and can be recognized by the presence of a conserved CxCC motif. To investigate its contribution to copper resistance, here we undertook a structural and biochemical characterization of the CopG protein from Pseudomonas aeruginosa Results from biochemical analyses of CopG purified under aerobic conditions indicate that it is a green copper-binding protein that displays absorbance maxima near 411, 581, and 721 nm and is monomeric in solution. Determination of the three-dimensional structure by X-ray crystallography revealed that CopG consists of a thioredoxin domain with a C-terminal extension that contributes to metal binding. We noted that adjacent to the CxCC motif is a cluster of four copper ions bridged by cysteine sulfur atoms. Structures of CopG in two oxidation states support the assignment of this protein as an oxidoreductase. On the basis of these structural and spectroscopic findings and also genetic evidence, we propose that CopG has a role in interconverting Cu(I) and Cu(II) to minimize toxic effects and facilitate export by the Cus RND transporter efflux system.
Collapse
Affiliation(s)
- Andrew C Hausrath
- Institute for Society and Genetics, University of California, Los Angeles, California, USA.,Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Nicholas A Ramirez
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Alan T Ly
- Institute for Society and Genetics, University of California, Los Angeles, California, USA
| | - Megan M McEvoy
- Institute for Society and Genetics, University of California, Los Angeles, California, USA .,Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
14
|
Fernández M, Rico-Jiménez M, Ortega Á, Daddaoua A, García García AI, Martín-Mora D, Torres NM, Tajuelo A, Matilla MA, Krell T. Determination of Ligand Profiles for Pseudomonas aeruginosa Solute Binding Proteins. Int J Mol Sci 2019; 20:ijms20205156. [PMID: 31627455 PMCID: PMC6829864 DOI: 10.3390/ijms20205156] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 01/05/2023] Open
Abstract
Solute binding proteins (SBPs) form a heterogeneous protein family that is found in all kingdoms of life. In bacteria, the ligand-loaded forms bind to transmembrane transporters providing the substrate. We present here the SBP repertoire of Pseudomonas aeruginosa PAO1 that is composed of 98 proteins. Bioinformatic predictions indicate that many of these proteins have a redundant ligand profile such as 27 SBPs for proteinogenic amino acids, 13 proteins for spermidine/putrescine, or 9 proteins for quaternary amines. To assess the precision of these bioinformatic predictions, we have purified 17 SBPs that were subsequently submitted to high-throughput ligand screening approaches followed by isothermal titration calorimetry studies, resulting in the identification of ligands for 15 of them. Experimentation revealed that PA0222 was specific for γ-aminobutyrate (GABA), DppA2 for tripeptides, DppA3 for dipeptides, CysP for thiosulphate, OpuCC for betaine, and AotJ for arginine. Furthermore, RbsB bound D-ribose and D-allose, ModA bound molybdate, tungstate, and chromate, whereas AatJ recognized aspartate and glutamate. The majority of experimentally identified ligands were found to be chemoattractants. Data show that the ligand class recognized by SPBs can be predicted with confidence using bioinformatic methods, but experimental work is necessary to identify the precise ligand profile.
Collapse
Affiliation(s)
- Matilde Fernández
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
- present address: Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.
| | - Miriam Rico-Jiménez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Álvaro Ortega
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Abdelali Daddaoua
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Ana Isabel García García
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Noel Mesa Torres
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Ana Tajuelo
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| |
Collapse
|