1
|
DI Pierro F. Can we predict the natural evolution of probiotics? Minerva Med 2024; 115:614-616. [PMID: 39264320 DOI: 10.23736/s0026-4806.24.09568-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Affiliation(s)
- Francesco DI Pierro
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy -
- Microbiota International Clinical Society, Turin, Italy -
- Scientific and Research Department, Velleja Research, Milan, Italy -
| |
Collapse
|
2
|
Nguyen HA, Tran P T, Dam HT, Nguyen HV, Le TH, Ho PH, Lan Huong N. Whole genome sequence analysis of Bacillus amyloliquefaciens strain S2.5 as a potential probiotic for feed supplement in livestock production. J Genet Eng Biotechnol 2024; 22:100404. [PMID: 39179321 PMCID: PMC11338101 DOI: 10.1016/j.jgeb.2024.100404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Supplementing probiotics in livestock feed is increasing due to concerns over the potential harm caused by antibiotics and other chemical growth promoters. Several Bacillus sp. have been used as probiotic supplements for livestock. In this study, Bacillus amyloliquefaciens S2.5 was isolated from freshwater and its potential probiotic characteristics were evaluated in vitro. The whole genome of strain S2.5 was sequenced, and its probiotic traits were annotated using bioinformatic tools. RESULTS Both vegetative cells and spores of strain S2.5 remained stable throughout the 1.5 h of gastric juice and 48 h of intestine simulation. The strain S2.5 harbored the ability to produce glucoamylase, carboxymethyl cellulase, protease, and chitinase. It is also susceptible to all six tested antibiotics. The complete genome sequence shows genes related to acid-bile tolerance, environmental stress resistance, hydrolases, and adhesion to gut mucosa, confirming probiotic traits in the in vitro experiments. CONCLUSIONS B. amyloliquefaciens S2.5 demonstrated potential probiotic characteristics and its genetic profile in the in vitro experiments. Further in vivo assessments of B. amyloliquefaciens S2.5 on livestock and poultry should be performed to assess its practical application.
Collapse
Affiliation(s)
- Ha-Anh Nguyen
- School of Chemistry and Life Sciences (former School of Biotechnology and Food Technology), Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Thao Tran P
- School of Chemistry and Life Sciences (former School of Biotechnology and Food Technology), Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Hang Thuy Dam
- School of Chemistry and Life Sciences (former School of Biotechnology and Food Technology), Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Hai Van Nguyen
- School of Chemistry and Life Sciences (former School of Biotechnology and Food Technology), Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Thanh Ha Le
- School of Chemistry and Life Sciences (former School of Biotechnology and Food Technology), Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Phu-Ha Ho
- School of Chemistry and Life Sciences (former School of Biotechnology and Food Technology), Hanoi University of Science and Technology, Hanoi, Viet Nam.
| | - Nguyen Lan Huong
- School of Chemistry and Life Sciences (former School of Biotechnology and Food Technology), Hanoi University of Science and Technology, Hanoi, Viet Nam.
| |
Collapse
|
3
|
Dhakephalkar T, Pisu V, Margale P, Chandras S, Shetty D, Wagh S, Dagar SS, Kapse N, Dhakephalkar PK. Strain-Dependent Adhesion Variations of Shouchella clausii Isolated from Healthy Human Volunteers: A Study on Cell Surface Properties and Potential Probiotic Benefits. Microorganisms 2024; 12:1771. [PMID: 39338446 PMCID: PMC11434523 DOI: 10.3390/microorganisms12091771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
The probiotic potential of Shouchella clausii is widely recognized, but little is known about its adhesive properties. Hence, this study aims to investigate the adhesion potential and cell surface properties of four human-origin S. clausii strains (B619/R, B603/Nb, B106, and B637/Nm). We evaluated epithelial adhesion, Extracellular Matrix (ECM) binding, aggregation ability, and cell surface hydrophobicity and used genome analysis for validation. Our results demonstrate that adhesion capability is a strain-specific attribute, with significant variations observed among the four strains. B619/R, B603/Nb, and B106 displayed stronger adhesion properties than B637/Nm. Supplementary adhesion assays showed that B637/Nm displayed high hydrophobicity, significant auto-aggregation, and significant mucin-binding abilities. Conversely, B619/R, B603/Nb, and B106 had mildly hydrophobic surfaces and low aggregation abilities. Genome annotation revealed the presence of various adhesion proteins in four strains. Notably, the reduced adhesion potential of B637/Nm was supported by the absence of the cell wall surface anchor family protein (LPxTG motif), which is crucial for interactions with intestinal epithelial cells or mucus components. Further, docking studies provided insights into the interaction of adhesion proteins with gut mucins. These findings contribute to a better understanding of how S. clausii strains interact with the gut environment, facilitating the development of probiotic formulations tailored for improved gut health and well-being.
Collapse
Affiliation(s)
- Tanisha Dhakephalkar
- Hi Tech BioSciences India Ltd., Research & Development Centre, Plot No. 6 and 8, Ambadvet Industrial Estate, PO Paud, Pune 412108, Maharashtra, India
| | - Vaidehi Pisu
- Bioenergy Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, Maharashtra, India
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind Rd., Aundh, Pune 411007, Maharashtra, India
| | - Prajakta Margale
- Bioenergy Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, Maharashtra, India
| | - Siddhi Chandras
- Bioenergy Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, Maharashtra, India
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind Rd., Aundh, Pune 411007, Maharashtra, India
| | - Deepa Shetty
- Bioenergy Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, Maharashtra, India
| | - Shilpa Wagh
- Hi Tech BioSciences India Ltd., Research & Development Centre, Plot No. 6 and 8, Ambadvet Industrial Estate, PO Paud, Pune 412108, Maharashtra, India
| | - Sumit Singh Dagar
- Bioenergy Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, Maharashtra, India
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind Rd., Aundh, Pune 411007, Maharashtra, India
| | - Neelam Kapse
- Bioenergy Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, Maharashtra, India
| | - Prashant K Dhakephalkar
- Bioenergy Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, Maharashtra, India
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind Rd., Aundh, Pune 411007, Maharashtra, India
| |
Collapse
|
4
|
Di Pierro F, Zerbinati N, Cazzaniga M, Bertuccioli A, Palazzi CM, Cavecchia I, Matera M, Labrini E, Sagheddu V, Soldi S. The Anti-Constipation Effect of Bifidobacterium Longum W11 Is Likely Due to a Key Genetic Factor Governing Arabinan Utilization. Microorganisms 2024; 12:1626. [PMID: 39203468 PMCID: PMC11356487 DOI: 10.3390/microorganisms12081626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Recent investigations have highlighted, both experimentally and clinically, that probiotic strains equipped with arabinofuranosidase, in particular abfA and abfB, favor regular intestinal motility, thus counteracting constipation. By analyzing the gene expression and the proliferative response in the presence of arabinan of the probiotic B. longum W11, a strain previously validated as an anti-constipation probiotic, we have speculated that its response mechanism to arabinan can effectively explain its clinical action. Our approach could be used in the future to select probiotics endowed with arabinofuranosidase-related anti-constipation effects.
Collapse
Affiliation(s)
- Francesco Di Pierro
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.B.)
- Scientific & Research Department, Velleja Research, 20125 Milano, Italy
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Nicola Zerbinati
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | | | - Alexander Bertuccioli
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.B.)
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy
| | | | - Ilaria Cavecchia
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.B.)
- Microbiomic Department, Koelliker Hospital, 10134 Turin, Italy
| | - Mariarosaria Matera
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.B.)
- Department of Paediatric Emergencies, Misericordia Hospital, 58100 Grosseto, Italy
| | - Edoardo Labrini
- AAT—Advanced Analytical Technologies, Fiorenzuola d’Arda, 29017 Piacenza, Italy; (E.L.); (S.S.)
| | - Valeria Sagheddu
- AAT—Advanced Analytical Technologies, Fiorenzuola d’Arda, 29017 Piacenza, Italy; (E.L.); (S.S.)
| | - Sara Soldi
- AAT—Advanced Analytical Technologies, Fiorenzuola d’Arda, 29017 Piacenza, Italy; (E.L.); (S.S.)
| |
Collapse
|
5
|
Liang X, Dai N, Yang F, Zhu H, Zhang G, Wang Y. Molecular identification and safety assessment of the potential probiotic strain Bacillus paralicheniformis HMPM220325 isolated from artisanal fruit dairy products. Food Funct 2024; 15:747-765. [PMID: 38117188 DOI: 10.1039/d3fo04625g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Bacillus probiotics exhibit considerable economic potential owing to their heightened resilience to external stressors and relatively lower costs related to production and preservation. Although Bacillus paralicheniformis has been acknowledged as a plant-promoting bacterium for a long time, understanding its potential as a probiotic is still in its nascent stages. In this study, the safety and probiotic characteristics of a strain of HMPM220325, isolated from artisanal fruit dairy products, were examined through whole-genome sequencing and phenotypic analysis. The whole genome of HMPM220325 was analyzed for antimicrobial resistance genes, pathogenicity factors, and genes associated with probiotic traits including stress resistance, spore formation, gut adhesion, competitive exclusion of pathogens, bacteriocin expression, and carbohydrate metabolism related to prebiotic utilization. Also, wet lab experiments were conducted for the characterization of probiotics. The identification of the organism as B. paralicheniformis was verified. Its safety was assessed through in silico analysis, the haemolytic activity test, and the acute oral toxicity test. B. paralicheniformis HMPM220325 demonstrated its ability to survive in the pH range of 4-10 and bile salt concentrations of 0-0.9% (w/v), tolerate temperatures between 20 and 60 °C, and exhibit a robust antioxidant capacity. Moreover, B. paralicheniformis HMPM220325 demonstrated a moderate level of hydrophobicity, had the ability to form biofilms, achieved a self-aggregation rate of 51.77 ± 1.01% within 6 hours, and successfully colonized the mouse intestine for a duration of up to 17 days. Additionally, the genome of B. paralicheniformis HMPM220325 contains three gene clusters associated with the biosynthesis of bacteriocins and exhibits co-aggregation with Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella enterica serovar Typhimurium. The findings of the genomic analysis align with those obtained from the experimental investigation, thereby substantiating the potential of B. paralicheniformis HMPM220325 as a probiotic suitable for incorporation in dairy functional foods and feed applications.
Collapse
Affiliation(s)
- Xiao Liang
- School of Life Sciences, Anhui University, Hefei, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Nini Dai
- School of Life Sciences, Anhui University, Hefei, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Fan Yang
- School of Life Sciences, Anhui University, Hefei, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Haimei Zhu
- School of Life Sciences, Anhui University, Hefei, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Guanghui Zhang
- School of Life Sciences, Anhui University, Hefei, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| |
Collapse
|
6
|
Bin Hafeez A, Pełka K, Worobo R, Szweda P. In Silico Safety Assessment of Bacillus Isolated from Polish Bee Pollen and Bee Bread as Novel Probiotic Candidates. Int J Mol Sci 2024; 25:666. [PMID: 38203838 PMCID: PMC10780176 DOI: 10.3390/ijms25010666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Bacillus species isolated from Polish bee pollen (BP) and bee bread (BB) were characterized for in silico probiotic and safety attributes. A probiogenomics approach was used, and in-depth genomic analysis was performed using a wide array of bioinformatics tools to investigate the presence of virulence and antibiotic resistance properties, mobile genetic elements, and secondary metabolites. Functional annotation and Carbohydrate-Active enZYmes (CAZYme) profiling revealed the presence of genes and a repertoire of probiotics properties promoting enzymes. The isolates BB10.1, BP20.15 (isolated from bee bread), and PY2.3 (isolated from bee pollen) genome mining revealed the presence of several genes encoding acid, heat, cold, and other stress tolerance mechanisms, adhesion proteins required to survive and colonize harsh gastrointestinal environments, enzymes involved in the metabolism of dietary molecules, antioxidant activity, and genes associated with the synthesis of vitamins. In addition, genes responsible for the production of biogenic amines (BAs) and D-/L-lactate, hemolytic activity, and other toxic compounds were also analyzed. Pan-genome analyses were performed with 180 Bacillus subtilis and 204 Bacillus velezensis genomes to mine for any novel genes present in the genomes of our isolates. Moreover, all three isolates also consisted of gene clusters encoding secondary metabolites.
Collapse
Affiliation(s)
- Ahmer Bin Hafeez
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| | - Karolina Pełka
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| | - Randy Worobo
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA;
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| |
Collapse
|
7
|
Singh RP, Kumari K, Sharma PK, Ma Y. Characterization and in-depth genome analysis of a halotolerant probiotic bacterium Paenibacillus sp. S-12, a multifarious bacterium isolated from Rauvolfia serpentina. BMC Microbiol 2023; 23:192. [PMID: 37464310 PMCID: PMC10353221 DOI: 10.1186/s12866-023-02939-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Members of Paenibacillus genus from diverse habitats have attracted great attention due to their multifarious properties. Considering that members of this genus are mostly free-living in soil, we characterized the genome of a halotolerant environmental isolate belonging to the genus Paenibacillus. The genome mining unravelled the presence of CAZymes, probiotic, and stress-protected genes that suggested strain S-12 for industrial and agricultural purposes. RESULTS Molecular identification by 16 S rRNA gene sequencing showed its closest match to other Paenibacillus species. The complete genome size of S-12 was 5.69 Mb, with a GC-content 46.5%. The genome analysis of S-12 unravelled the presence of an open reading frame (ORF) encoding the functions related to environmental stress tolerance, adhesion processes, multidrug efflux systems, and heavy metal resistance. Genome annotation identified the various genes for chemotaxis, flagellar motility, and biofilm production, illustrating its strong colonization ability. CONCLUSION The current findings provides the in-depth investigation of a probiotic Paenibacillus bacterium that possessed various genome features that enable the bacterium to survive under diverse conditions. The strain shows the strong ability for probiotic application purposes.
Collapse
Affiliation(s)
- Rajnish Prakash Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India.
| | - Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Parva Kumar Sharma
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD-20742, USA
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Saroj DB, Ahire JJ, Shukla R. Genetic and phenotypic assessments for the safety of probiotic Bacillus clausii 088AE. 3 Biotech 2023; 13:238. [PMID: 37333714 PMCID: PMC10275836 DOI: 10.1007/s13205-023-03662-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/05/2023] [Indexed: 06/20/2023] Open
Abstract
In this study, we report on whole genome sequence analysis of clinically documented, commercial probiotic Bacillus clausii 088AE and genome features contributing to probiotic properties. The whole genome sequence of B. clausii 088AE generated a single scaffold of 4,598,457 bp with 44.74 mol% G + C. This assembled genome sequence annotated by the RAST resulted in 4371 coding genes, 75 tRNAs, and 22 rRNAs. Gene ontology classification indicated 39.5% proteins with molecular function, 44.24% cellular component, and 16.25% proteins involved in biological processes. In taxonomic analysis, B. clausii 088AE shared 99% identity with B. clausii DSM 8716. The gene sequences related to safety and genome stability such as antibiotic resistance (840), virulence factors (706), biogenic amines (1), enterotoxin (0), emetic toxin (0), lanthipeptides (4), prophage (4) and clustered regularly interspaced short palindromic repeats (CRISPR) sequences (11), were identified and evaluated for safety and functions. The absence of functional prophage sequences and the presence of CRISPR indicated an advantage in genome stability. Moreover, the presence of genome features contributing to probiotic characteristics such as acid, and bile salt tolerance, adhesion to the gut mucosa, and environmental resistance ensure the strains survivability when consumed as a probiotic. In conclusion, the absence of risks associated with sequences/genes in the B. clausii 088AE genome and the presence of essential probiotic traits confirm the strain to be safe for use as a probiotic.
Collapse
Affiliation(s)
- Dina B. Saroj
- Advanced Enzyme Technologies Limited, Sun Magnetica, Louiswadi, Thane-West, Maharashtra 400 604 India
| | - Jayesh J. Ahire
- Advanced Enzyme Technologies Limited, Sun Magnetica, Louiswadi, Thane-West, Maharashtra 400 604 India
| | - Rohit Shukla
- Advanced Enzyme Technologies Limited, Sun Magnetica, Louiswadi, Thane-West, Maharashtra 400 604 India
| |
Collapse
|
9
|
Chen H, Sun X, He H, Ren H, Duan H, Zhang C, Chang Q, Zhang R, Ge J. Lysinibacillus capsici 38,328 isolated from agricultural soils as a promising probiotic candidate for intestinal health. Arch Microbiol 2023; 205:251. [PMID: 37249701 DOI: 10.1007/s00203-023-03593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/06/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023]
Abstract
There is an increasing interest in the use of spore-forming Bacillus spp. as probiotic ingredients on the market. However, probiotics Bacillus species are insufficient, and more safe Bacillus species were required. In the study, traditional fermented foods and soil samples were collected from more than ten provinces in China, and 506 Bacillus were selected from 109 samples. Using the optimized procedure, we screened nine strains, which successfully passed the acid, alkali, bile salt, and trypsin resistance test. Drug sensitivity test results showed that three Bacillus out of the nine isolates exhibited antibiotic sensitivity to more than 29 antibiotics. The three strains sensitive to antibiotics were identified by 16S ribosomal RNA, recA, and gyrB gene analysis, two isolates (38,327 and 38,328) belong to the species Lysinibacillus capsici and one isolate (37,326) belong to Bacillus halotolerans. Moreover, the three strains were confirmed safe through animal experiments. Finally, L. capsici 38,327 and 38,328 showed protections in the Salmonella typhimurium infection mouse model, which slowed down weight loss, reduced bacterial load, and improved antioxidant capacity. Altogether, our data demonstrated that selected L. capsici strains can be used as novel probiotics for intestinal health.
Collapse
Affiliation(s)
- Huinan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoyi Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Huilin He
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Hongkun Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Haoyuan Duan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Chuankun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qingru Chang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin, 150030, China.
| |
Collapse
|
10
|
Khokhlova E, Colom J, Simon A, Mazhar S, García-Lainez G, Llopis S, Gonzalez N, Enrique-López M, Álvarez B, Martorell P, Tortajada M, Deaton J, Rea K. Immunomodulatory and Antioxidant Properties of a Novel Potential Probiotic Bacillus clausii CSI08. Microorganisms 2023; 11:microorganisms11020240. [PMID: 36838205 PMCID: PMC9962608 DOI: 10.3390/microorganisms11020240] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Spore-forming bacteria of the Bacillus genus have demonstrated potential as probiotics for human use. Bacillus clausii have been recognized as efficacious and safe agents for preventing and treating diarrhea in children and adults, with pronounced immunomodulatory properties during several in vitro and clinical studies. Herein, we characterize the novel strain of B. clausii CSI08 (Munispore®) for probiotic attributes including resistance to gastric acid and bile salts, the ability to suppress the growth of human pathogens, the capacity to assimilate wide range of carbohydrates and to produce potentially beneficial enzymes. Both spores and vegetative cells of this strain were able to adhere to a mucous-producing intestinal cell line and to attenuate the LPS- and Poly I:C-triggered pro-inflammatory cytokine gene expression in HT-29 intestinal cell line. Vegetative cells of B. clausii CSI08 were also able to elicit a robust immune response in U937-derived macrophages. Furthermore, B. clausii CSI08 demonstrated cytoprotective effects in in vitro cell culture and in vivo C. elegans models of oxidative stress. Taken together, these beneficial properties provide strong evidence for B. clausii CSI08 as a promising potential probiotic.
Collapse
Affiliation(s)
- Ekaterina Khokhlova
- Deerland Ireland R&D, Ltd., ADM, Bio-Innovation Unit, Rm. 331 Food Science Building, College Rd., University College Cork, T12 K8AF Cork, Ireland
| | - Joan Colom
- Deerland Ireland R&D, Ltd., ADM, Bio-Innovation Unit, Rm. 331 Food Science Building, College Rd., University College Cork, T12 K8AF Cork, Ireland
| | - Annie Simon
- Deerland Ireland R&D, Ltd., ADM, Bio-Innovation Unit, Rm. 331 Food Science Building, College Rd., University College Cork, T12 K8AF Cork, Ireland
| | - Shahneela Mazhar
- Deerland Ireland R&D, Ltd., ADM, Bio-Innovation Unit, Rm. 331 Food Science Building, College Rd., University College Cork, T12 K8AF Cork, Ireland
| | - Guillermo García-Lainez
- Archer Daniels Midland, Nutrition, Health&Wellness, Biopolis S.L. Parc Científic Universitat de València, C/ Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain
| | - Silvia Llopis
- Archer Daniels Midland, Nutrition, Health&Wellness, Biopolis S.L. Parc Científic Universitat de València, C/ Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain
| | - Nuria Gonzalez
- Archer Daniels Midland, Nutrition, Health&Wellness, Biopolis S.L. Parc Científic Universitat de València, C/ Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain
| | - María Enrique-López
- Archer Daniels Midland, Nutrition, Health&Wellness, Biopolis S.L. Parc Científic Universitat de València, C/ Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain
| | - Beatriz Álvarez
- Archer Daniels Midland, Nutrition, Health&Wellness, Biopolis S.L. Parc Científic Universitat de València, C/ Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain
| | - Patricia Martorell
- Archer Daniels Midland, Nutrition, Health&Wellness, Biopolis S.L. Parc Científic Universitat de València, C/ Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain
| | - Marta Tortajada
- Archer Daniels Midland, Nutrition, Health&Wellness, Biopolis S.L. Parc Científic Universitat de València, C/ Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain
| | - John Deaton
- Deerland Probiotics & Enzymes, ADM, Science and Technology Department, 3800 Cobb International Blvd., Kennesaw, GA 30152, USA
| | - Kieran Rea
- Deerland Ireland R&D, Ltd., ADM, Bio-Innovation Unit, Rm. 331 Food Science Building, College Rd., University College Cork, T12 K8AF Cork, Ireland
- Correspondence:
| |
Collapse
|
11
|
Mazzantini D, Calvigioni M, Celandroni F, Lupetti A, Ghelardi E. In vitro assessment of probiotic attributes for strains contained in commercial formulations. Sci Rep 2022; 12:21640. [PMID: 36517529 PMCID: PMC9751119 DOI: 10.1038/s41598-022-25688-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Although probiotics are often indiscriminately prescribed, they are not equal and their effects on the host may profoundly differ. In vitro determination of the attributes of probiotics should be a primary concern and be performed even before clinical studies are designed. In fact, knowledge on the biological properties a microbe possesses is crucial for selecting the most suitable bacteriotherapy for each individual. Herein, nine strains (Bacillus clausii NR, OC, SIN, T, Bacillus coagulans ATCC 7050, Bifidobacterium breve DSM 16604, Limosilactobacillus reuteri DSM 17938, Lacticaseibacillus rhamnosus ATCC 53103, and Saccharomyces boulardii CNCM I-745) declared to be contained in six commercial formulations were tested for their ability to tolerate simulated intestinal conditions, adhere to mucins, and produce β-galactosidase, antioxidant enzymes, riboflavin, and D-lactate. With the exception of B. breve, all microbes survived in simulated intestinal fluid. L. rhamnosus was unable to adhere to mucins and differences in mucin adhesion were evidenced for L. reuteri and S. boulardii depending on oxygen levels. All microorganisms produced antioxidant enzymes, but only B. clausii, B. coagulans, B. breve, and L. reuteri synthesize β-galactosidase. Riboflavin secretion was observed for Bacillus species and L. rhamnosus, while D-lactate production was restricted to L. reuteri and L. rhamnosus. Our findings indicate that the analyzed strains possess different in vitro biological properties, thus highlighting the usefulness of in vitro tests as prelude for clinical research.
Collapse
Affiliation(s)
- Diletta Mazzantini
- grid.5395.a0000 0004 1757 3729Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marco Calvigioni
- grid.5395.a0000 0004 1757 3729Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesco Celandroni
- grid.5395.a0000 0004 1757 3729Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonella Lupetti
- grid.5395.a0000 0004 1757 3729Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Emilia Ghelardi
- grid.5395.a0000 0004 1757 3729Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy ,grid.5395.a0000 0004 1757 3729Research Center Nutraceuticals and Food for Health-Nutrafood, University of Pisa, Pisa, Italy
| |
Collapse
|
12
|
Acosta-Rodríguez-Bueno CP, Abreu Y Abreu AT, Guarner F, Guno MJV, Pehlivanoğlu E, Perez M. Bacillus clausii for Gastrointestinal Disorders: A Narrative Literature Review. Adv Ther 2022; 39:4854-4874. [PMID: 36018495 PMCID: PMC9525334 DOI: 10.1007/s12325-022-02285-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/26/2022] [Indexed: 01/30/2023]
Abstract
The gut microbiota is intrinsically linked to human health; disturbances in microbial homeostasis are implicated in both intestinal and extraintestinal disorders. Probiotics are "live microorganisms that, when administered in adequate amounts, confer a health benefit on the host," and many commercial preparations comprising a diverse range of species are available. While probiotics have been much researched, better understanding of the probiotic effects and applications of species such as Bacillus clausii is warranted. In this narrative literature review, we review the characteristics and mechanisms of action supporting B. clausii as a probiotic and discuss the evidence from clinical studies evaluating B. clausii probiotics for the management of a variety of gastrointestinal disorders and symptoms in children and adults. Finally, we highlight the challenges of future research and the need for more robust and diverse clinical evidence to guide physicians in the clinical application of probiotics for gastrointestinal disorders and other conditions.
Collapse
Affiliation(s)
| | | | | | - Mary Jean V Guno
- Ateneo School of Medicine and Public Health, Pasig City, Metro Manila, Philippines
| | | | - Marcos Perez
- Sanofi, Industriepark Höchst, Bldg. K607, Room 5327, 65926, Frankfurt am Main, Germany.
| |
Collapse
|
13
|
Kharwar A, Bazaz MR, Dandekar MP. Quantitative and qualitative characterization of commercially available oral suspension of probiotic products containing Bacillus Clausii spores. BMC Microbiol 2022; 22:217. [PMID: 36114449 PMCID: PMC9482283 DOI: 10.1186/s12866-022-02631-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/02/2022] [Indexed: 11/15/2022] Open
Abstract
Probiotics contain beneficial live bacteria that confer several health benefits to the host. For the past 50 years, spore-forming Bacillus species have been used in the form of probiotics. Among these, Bacillus clausii strains are used for the management of acute and antibiotic-associated diarrhoea. In the present work, we have evaluated the asserted label information on randomly chosen commercial Bacillus clausii spore suspension of probiotic products. The quality and number of viable bacteria were evaluated based on the colony count, antibiotic resistance, and hemolytic activity assays. The colony fingerprinting and 16S rRNA gene-sequencing techniques were used to confirm the presence of a univariate strain (Bacillus clausii). Our results corroborated the label count of 2 × 109 CFU/5 mL in BACIPRO®, ENTEROGERMINA®, and TUFPRO® products. However, vegetative spore count was not found to match with the given label count in BENEGUT®, PROALANA-B®, β-LOCK®, and PROCILLUS® Bacillus clausii brands. In the hemolytic activity assay, except for β-LOCK®, the other 6 products showed gamma-hemolysis activity. Bacillus clausii isolated from all 7 probiotic products demonstrated resistance to several broad-spectrum antibiotics. The 16S rRNA gene-sequencing data detected genera of Bacillus and Bacillus clausii strain in the BACIPRO®, ENTEROGERMINA®, PROALANA-B®, BENEGUT®, and TUFPRO® products; however, Ralstonia mannitolilytica and Paenibacillus dendritiformis species were identified in β-LOCK® and PROCILLUS®, respectively. As correct label information was observed only in BACIPRO®, ENTEROGERMINA®, and TUFPRO® products, it is proposed that a more stringent quality check would minimize the possibility of mismatch concerning the label information.
Collapse
|
14
|
Dindhoria K, Kumar S, Baliyan N, Raphel S, Halami PM, Kumar R. Bacillus licheniformis MCC 2514 genome sequencing and functional annotation for providing genetic evidence for probiotic gut adhesion properties and its applicability as a bio-preservative agent. Gene 2022; 840:146744. [PMID: 35863717 DOI: 10.1016/j.gene.2022.146744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/04/2022] [Accepted: 07/14/2022] [Indexed: 11/04/2022]
Abstract
Bacillus licheniformis is a well-known probiotic that can be found in a variety of foods. The strain Bacillus licheniformis MCC 2514 was previously characterized by our group for its bio-physiological capabilities establishing it as a promising probiotic, but information on the genetic evidence for its attributes was lacking. In the current study, whole genome analysis identified the underlying molecular determinants responsible for its probiotic potential. The circular genome of MCC 2514 was 4,230,480 bp with 46.2% GC content, 24 rRNA, and 83 tRNA genes. The pangenome analysis between B. licheniformis MCC 2514 and 12 other B. licheniformis strains revealed a pangenome of 6008 genes and core genome of 3775 genes. Genome mining revealed NRPS and bacteriocins producing gene clusters indicating its biocontrol properties. Several genes encoding carbohydrate degrading enzymes, which aid in proper food degradation in the intestine, were also observed. Stress tolerance, vitamin, and essential amino acids biosynthesis related genes were found, which are important characteristics of a probiotic strain. Additionally, vital genes responsible for gut adhesion and biofilm formation were observed in its genome. The bacterium has been shown to improve the shelf life of idli batter by preventing whey separation, CO2, and odour production while maintaining the pH of 3.96-4.29, especially at cold temperatures. It has significantly reduced coliform contamination at both room and low temperatures, demonstrating its bio-preservative ability, which is also corroborated by the presence of the NRPS and bacteriocin gene clusters in its genome. The present study helped to understand both, the ability of B. licheniformis MCC 2514 to adapt the intestinal gut environment and its probiotic functionality for food preservation.
Collapse
Affiliation(s)
- Kiran Dindhoria
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh 201 002, India
| | - Sanjeet Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Neha Baliyan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh 201 002, India
| | - Steji Raphel
- Department of Microbiology & Fermentation Technology, CSIR- Central Food Technological Research Institute, Mysore 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh 201 002, India
| | - Prakash M Halami
- Department of Microbiology & Fermentation Technology, CSIR- Central Food Technological Research Institute, Mysore 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh 201 002, India.
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
15
|
Wong-Chew RM, de Castro JAA, Morelli L, Perez M, Ozen M. Gut immune homeostasis: the immunomodulatory role of Bacillus clausii, from basic to clinical evidence. Expert Rev Clin Immunol 2022; 18:717-729. [PMID: 35674642 DOI: 10.1080/1744666x.2022.2085559] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The gut microbiota affects the development of the gut immune system in early life. Perturbations to microbiota structure and composition during this period can have long-term consequences on the health of the individual, through its effects on the immune system. Research in the last few decades has shown that probiotic administration can reverse these effects in strain- and environment-specific ways. Bacillus clausii (B. clausii) has been in use for many decades as a safe and efficacious probiotic, but its mode of action has not yet been completely elucidated. AREAS COVERED In this review, we discuss how the gut immune system works, the factors that affect its functioning, and the plethora of research highlighting its role in various diseases. We also discuss the known modes of action of Bacillus probiotics, and highlight the preclinical and clinical evidence that reveal how B. clausii acts to bolster gut defense. EXPERT OPINION We anticipate that the treatment and/or prevention of dysbiosis will be central to managing human health and disease in the future. Discovering the pathophysiology of autoimmune diseases, infections, allergies, and some cancers will aid our understanding of the key role played by microbial communities in these diseases.
Collapse
Affiliation(s)
- Rosa María Wong-Chew
- Facultad de Medicina, División de Investigación, Universidad Nacional Autónoma de México, Coyoacán, Cdmx
| | - Jo-Anne A de Castro
- Department of Pediatrics de la Salle Medical and Health Sciences Institute (DLSMHSI), Dasmariñas Cavite, Philippines; Department of Microbiology and Parasitology, Pamantasan ng Lunsod ng Maynila (PLM), College of Medicine Intramuros, Manila, Philippines
| | - Lorenzo Morelli
- Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore Piacenza - Cremona, Italy
| | | | - Metehan Ozen
- Division of Pediatric Infectious Diseases, Acıbadem Mehmet Ali Aydınlar University, School of Medicine, Istanbul Turkey
| |
Collapse
|
16
|
Current Progress and Future Perspectives on the Use of Bacillus clausii. Microorganisms 2022; 10:microorganisms10061246. [PMID: 35744764 PMCID: PMC9230978 DOI: 10.3390/microorganisms10061246] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
Bacillus clausii is a probiotic that benefits human health. Its key characteristics include the ability to form spores; the resulting tolerance to heat, acid, and salt ensures safe passage through the human gastrointestinal tract with no loss of cells. Although B. clausii has been widely used for many decades, the beneficial properties of other probiotics, such as Lactobacillus spp. and Bifidobacterium spp., are better disseminated in the literature. In this review, we summarize the physiological, antimicrobial, and immunomodulatory properties of probiotic B. clausii strains. We also describe findings from studies that have investigated B. clausii probiotics from the perspective of quality and safety. We highlight innovative properties based on biochemical investigations of non-probiotic strains of B. clausii, revealing that B. clausii may have further health benefits in other therapeutic areas.
Collapse
|
17
|
Ziegler MC, Garbim Junior EE, Jahnke VS, Lisbôa Moura JG, Brasil CS, Schimitt da Cunha PH, Lora PS, Gemelli T. Impact of probiotic supplementation in a patient with type 2 diabetes on glycemic and lipid profile. Clin Nutr ESPEN 2022; 49:264-269. [DOI: 10.1016/j.clnesp.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/22/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
|
18
|
Maity C, Bagkar P, Dixit Y, Tiwari A. Alkalihalobacillus clausii
088AE as a functional and medical food ingredient: assessment of
in vitro
protein digestibility and food calorie reduction. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Chiranjit Maity
- Advanced Enzyme Technologies Ltd. 5Th Floor, A‐Wing, Sun Magnetica Thane (W) ‐ 400 604 Maharashtra India
| | - Pratik Bagkar
- Advanced Enzyme Technologies Ltd. 5Th Floor, A‐Wing, Sun Magnetica Thane (W) ‐ 400 604 Maharashtra India
| | - Yogini Dixit
- Advanced Enzyme Technologies Ltd. 5Th Floor, A‐Wing, Sun Magnetica Thane (W) ‐ 400 604 Maharashtra India
| | - Amit Tiwari
- Advanced Enzyme Technologies Ltd. 5Th Floor, A‐Wing, Sun Magnetica Thane (W) ‐ 400 604 Maharashtra India
| |
Collapse
|
19
|
Soni R, Keharia H, Dunlap C, Pandit N, Doshi J. Functional annotation unravels probiotic properties of a poultry isolate, Bacillus velezensis CGS1.1. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
20
|
Tamang JP, Kharnaior P, Pariyar P, Thapa N, Lar N, Win KS, Mar A, Nyo N. Shotgun sequence-based metataxonomic and predictive functional profiles of Pe poke, a naturally fermented soybean food of Myanmar. PLoS One 2021; 16:e0260777. [PMID: 34919575 PMCID: PMC8682898 DOI: 10.1371/journal.pone.0260777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/09/2021] [Indexed: 11/19/2022] Open
Abstract
Pe poke is a naturally fermented sticky soybean food of Myanmar. The present study was aimed to profile the whole microbial community structure and their predictive gene functionality of pe poke samples prepared in different fermentation periods viz. 3 day (3ds), 4 days (4ds), 5 days (5ds) and sun-dried sample (Sds). The pH of samples was 7.6 to 8.7, microbial load was 2.1-3.9 x 108 cfu/g with dynamic viscosity of 4.0±1.0 to 8.0±1.0cP. Metataxonomic profile of pe poke samples showed different domains viz. bacteria (99.08%), viruses (0.65%), eukaryota (0.08%), archaea (0.03%) and unclassified sequences (0.16%). Firmicutes (63.78%) was the most abundant phylum followed by Proteobacteria (29.54%) and Bacteroidetes (5.44%). Bacillus thermoamylovorans was significantly abundant in 3ds and 4ds (p<0.05); Ignatzschineria larvae was significantly abundant in 5ds (p<0.05), whereas, Bacillus subtilis was significantly abundant in Sds (p <0.05). A total of 172 species of Bacillus was detected. In minor abundance, the existence of bacteriophages, archaea, and eukaryotes were also detected. Alpha diversity analysis showed the highest Simpson's diversity index in Sds comparable to other samples. Similarly, a non-parametric Shannon's diversity index was also highest in Sds. Good's coverage of 0.99 was observed in all samples. Beta diversity analysis using PCoA showed no significant clustering. Several species were shared between samples and many species were unique to each sample. In KEGG database, a total number of 33 super-pathways and 173 metabolic sub-pathways were annotated from the metagenomic Open Reading Frames. Predictive functional features of pe poke metagenome revealed the genes for the synthesis and metabolism of wide range of bioactive compounds including various essential amino acids, different vitamins, and enzymes. Spearman's correlation was inferred between the abundant species and functional features.
Collapse
Affiliation(s)
- Jyoti Prakash Tamang
- Department of Microbiology, DAICENTER (DBT-AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, School of Life Sciences, Sikkim University, Gangtok, Sikkim, India
| | - Pynhunlang Kharnaior
- Department of Microbiology, DAICENTER (DBT-AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, School of Life Sciences, Sikkim University, Gangtok, Sikkim, India
| | - Priyambada Pariyar
- Department of Microbiology, DAICENTER (DBT-AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, School of Life Sciences, Sikkim University, Gangtok, Sikkim, India
| | - Namrata Thapa
- Department of Zoology, Biotech Hub, Nar Bahadur Bhandari Degree College, Sikkim University, Tadong, Sikkim, India
| | - Ni Lar
- Department of Industrial Chemistry, University of Mandalay, Mandalay, Myanmar
| | - Khin Si Win
- Department of Industrial Chemistry, University of Mandalay, Mandalay, Myanmar
| | - Ae Mar
- Department of Industrial Chemistry, University of Mandalay, Mandalay, Myanmar
| | - Nyo Nyo
- Department of Geography, University of Mandalay, Mandalay, Myanmar
| |
Collapse
|
21
|
The Edible Plant Microbiome represents a diverse genetic reservoir with functional potential in the human host. Sci Rep 2021; 11:24017. [PMID: 34911987 PMCID: PMC8674285 DOI: 10.1038/s41598-021-03334-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Plant microbiomes have been extensively studied for their agricultural relevance on growth promotion and pathogenesis, but little is known about their role as part of the diet when fresh fruits and vegetables are consumed raw. Most studies describing these communities are based on 16S rRNA gene amplicon surveys, limiting our understanding of the taxonomic resolution at the species level and functional capabilities. In this study, we characterized microbes colonizing tomatoes, spinach, brined olives, and dried figs using shotgun metagenomics. We recovered metagenome-assembled genomes of novel lactic acid bacteria from green olives and identified high intra- and inter-specific diversity of Pseudomonas in tomatoes. All samples were colonized by Pseudomonas, consistent with other reports with distinct community structure. Functional characterization showed the presence of enzymes involved in vitamin and short chain fatty acid metabolism and degradation of diverse carbohydrate substrates including plant fibers. The dominant bacterial members were isolated, sequenced, and mapped to its metagenome confirming their identity and indicating the microbiota is culturable. Our results reveal high genetic diversity, previously uncultured genera, and specific functions reflecting a likely plant host association. This study highlights the potential that plant microbes can play when consumed as part of our diet and proposes these as transient contributors to the gut microbiome.
Collapse
|
22
|
Diale MO, Kayitesi E, Serepa-Dlamini MH. Genome In Silico and In Vitro Analysis of the Probiotic Properties of a Bacterial Endophyte, Bacillus Paranthracis Strain MHSD3. Front Genet 2021; 12:672149. [PMID: 34858466 PMCID: PMC8631869 DOI: 10.3389/fgene.2021.672149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/11/2021] [Indexed: 01/25/2023] Open
Abstract
Spore-forming Bacillus species are gaining interest in human health recently, due to their ability to withstand the harsh environment of the gastrointestinal tract. The present study explores probiotic features of Bacillus paranthracis strain MHSD3 through genomic analysis and in vitro probiotic assays. The draft genome of strain MHSD3 contained genes associated with tolerance to gastrointestinal stress and adhesion. Cluster genes responsible for the synthesis of antimicrobial non-ribosomal peptide synthetases, bacteriocins, and linear azole-containing peptides were identified. Additionally, strain MHSD3 was able to survive in an acidic environment, had the tolerance to bile salt, and exhibited the capability to tolerate gastric juices. Moreover, the isolate was found to possess strong cell surface traits such as high auto-aggregation and hydrophobicity indices of 79 and 54%, respectively. Gas chromatography-mass spectrometry analysis showed that the strain produced secondary metabolites such as amino acids, phenolic compounds, and organic acid, known to exert health-promoting properties, including the improvement of gastrointestinal tract health.
Collapse
Affiliation(s)
- Mamonokane Olga Diale
- Department of Biotechnology and Food Technology, University of Johannesburg, Johannesburg, South Africa
| | - Eugenie Kayitesi
- Department of Consumer and Food Science, University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
23
|
Soni R, Keharia H, Bose A, Pandit N, Doshi J, Rao SVR, Paul SS, Raju MVLN. Genome assisted probiotic characterization and application of Bacillus velezensis ZBG17 as an alternative to antibiotic growth promoters in broiler chickens. Genomics 2021; 113:4061-4074. [PMID: 34678442 DOI: 10.1016/j.ygeno.2021.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/12/2021] [Accepted: 10/15/2021] [Indexed: 11/25/2022]
Abstract
The present study describes genome annotation and phenotypic characterization of Bacillus velezensis ZBG17 and evaluation of its performance as antibiotic growth promoter substitute in broiler chickens. ZBG17 comprises 3.89 Mbp genome with GC content of 46.5%. ZBG17 could tolerate simulated gastrointestinal juices prevalent in the animal gut. Some adhesion-associated genomic features of ZBG17 supported the experimentally determined cell surface hydrophobicity and cell aggregation results. ZBG17 encoded multiple secondary metabolite gene clusters correlating with its broad-spectrum antibacterial activity. Interestingly, ZBG17 completely inhibited Salmonella enterica and Escherichia coli within 6 h and 8 h in liquid co-culture assay, respectively. ZBG17 genome analysis did not reveal any genetic determinant associated with reported safety hazards for use as a poultry direct-fed microbial. Dietary supplementation of ZBG17 significantly improved feed utilization efficiency and humoral immune response in broiler chickens, suggesting its prospective application as a direct-fed microbial in broiler chickens.
Collapse
Affiliation(s)
- Riteshri Soni
- Post Graduate Department of Biosciences, Sardar Patel University, Gujarat, India
| | - Hareshkumar Keharia
- Post Graduate Department of Biosciences, Sardar Patel University, Gujarat, India.
| | - Anjali Bose
- Zytex Biotech Pvt. Ltd., 702/B Polaris, Marol, Andheri (E), Mumbai 400059, Maharashtra, India
| | - Ninad Pandit
- Zytex Biotech Pvt. Ltd., 702/B Polaris, Marol, Andheri (E), Mumbai 400059, Maharashtra, India
| | - Jayraj Doshi
- Zytex Biotech Pvt. Ltd., 702/B Polaris, Marol, Andheri (E), Mumbai 400059, Maharashtra, India
| | - S V Rama Rao
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, Telangana 500 030, India
| | - S S Paul
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, Telangana 500 030, India
| | - M V L N Raju
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, Telangana 500 030, India
| |
Collapse
|
24
|
Todorov SD, Ivanova IV, Popov I, Weeks R, Chikindas ML. Bacillus spore-forming probiotics: benefits with concerns? Crit Rev Microbiol 2021; 48:513-530. [PMID: 34620036 DOI: 10.1080/1040841x.2021.1983517] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Representatives of the genus Bacillus are multifunctional microorganisms with a broad range of applications in both traditional fermentation and modern biotechnological processes. Bacillus spp. has several beneficial properties. They serve as starter cultures for various traditional fermented foods and are important biotechnological producers of enzymes, antibiotics, and bioactive peptides. They are also used as probiotics for humans, in veterinary medicine, and as feed additives for animals of agricultural importance. The beneficial effects of bacilli are well-reported and broadly acknowledged. However, with a better understanding of their positive role, many questions have been raised regarding their safety and the relevance of spore formation in the practical application of this group of microorganisms. What is the role of Bacillus spp. in the human microbial consortium? When and why did they start colonizing the gastrointestinal tract (GIT) of humans and other animals? Can spore-forming probiotics be considered as truly beneficial organisms, or should they still be approached with caution and regarded as "benefits with concerns"? In this review, we not only hope to answer the above questions but to expand the scope of the conversation surrounding bacilli probiotics.
Collapse
Affiliation(s)
| | - Iskra Vitanova Ivanova
- Department of General and Applied Microbiology, Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia, Bulgaria
| | - Igor Popov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA
| | - Michael Leonidas Chikindas
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia.,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
25
|
Maity C, Gupta AK. Therapeutic efficacy of probiotic Alkalihalobacillus clausii 088AE in antibiotic-associated diarrhea: A randomized controlled trial. Heliyon 2021; 7:e07993. [PMID: 34585011 PMCID: PMC8453216 DOI: 10.1016/j.heliyon.2021.e07993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 09/10/2021] [Indexed: 01/22/2023] Open
Abstract
The use of probiotics in gastrointestinal ailments has shown therapeutic effects. The imbalance of the microbiota caused by antibiotic treatment or others has been shown to be restored to normal with probiotic treatment. In this study, a genomically and phenotypically safe probiotic Alkalihalobacillus clausii 088AE has been evaluated for ameliorating antibiotic-associated diarrhea (AAD) in pediatrics (PE, n = 60, 2-10 years), adolescent and adults (AA, n = 60, 11-65 years) through a randomized controlled clinical trial. A. clausii 088AE was administered for seven days (PE, 4 and AA, 6 billion/day) and primary and secondary endpoints were evaluated on different visits. Compared to the respective placebo arms, A. clausii 088AE improved the diarrheal (time to last unformed stool and diarrheal frequency) conditions in children, adolescents and adults. A. clausii 088AE treatment decreased AAD-severity score on visit 5 in both pediatric (0.12 ± 0.33, 12.39 folds), adult and adolescent (0.54 ± 0.36, 2.34 folds) groups compared to those respective placebo arm (p < 0.05). A. clausii 088AE was well tolerated, did not cause significant changes in vital and clinical safety parameters and subjects reported no adverse effects or serious adverse reactions. A. clausii 088AE is safe and therapeutically effective against AAD, reducing onset of diarrhea and related severity symptoms including abdominal discomfort and pain, bloating and flatulence. A. clausii 088AE may be recommended as a live bio-therapeutic agent for improving clinical pathophysiology of gastrointestinal ailments, in particular antibiotic-associated diarrhea and related symptoms.
Collapse
Affiliation(s)
- Chiranjit Maity
- Probiotics Laboratory, Advanced Enzyme Technologies Ltd., 5Th Floor, A-Wing, Sun Magnetica, LIC Service Road, Louiswadi, Thane (W), 400 604, Maharashtra, India
| | - Anil Kumar Gupta
- Probiotics Laboratory, Advanced Enzyme Technologies Ltd., 5Th Floor, A-Wing, Sun Magnetica, LIC Service Road, Louiswadi, Thane (W), 400 604, Maharashtra, India
| |
Collapse
|
26
|
Quach NT, Vu THN, Nguyen NA, Nguyen VT, Bui TL, Ky SC, Le TL, Hoang H, Ngo CC, Le TTM, Nguyen TN, Chu HH, Phi QT. Phenotypic features and analysis of genes supporting probiotic action unravel underlying perspectives of Bacillus velezensis VTX9 as a potential feed additive for swine. ANN MICROBIOL 2021. [DOI: 10.1186/s13213-021-01646-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
Purpose
To date, a total of 13 probiotic Bacillus species are considered as a Generally Recognized as Safe organism (GRAS) approved by the US Federal Food, Drug, and Cosmetic Act (FDCA), which are used for food and feed additives. However, Bacillus velezensis is not considered as a probiotic candidate in swine farming due to a lack of genetic basis of probiotic action-related traits. Therefore, the present study was undertaken to exploit the genetic basis underlying the probiotic traits of B. velezensis VTX9.
Methods
The genome sequencing of B. velezensis VTX9 was performed on a PacBio Sequel platform. The probiotic properties including biosafety, antioxidative capacity, and riboflavin and exopolysaccharide production were evaluated by using genotypic and phenotypic analysis. The secondary metabolite potentials were also predicted.
Results
Strain VTX9 isolated from swine feces proved some probiotic properties including resistance to 3 mM H2O2, 0.6 mM bile salt, low pH, and antipathogenic activity. The complete genome of B. velezensis VTX9 consists of a 3,985,800 bp chromosome that housed 3736 protein-coding genes and 5 plasmids with the size ranging from 7261 to 20,007 bp. Genome analysis revealed no functional genes encoding enterotoxins and transferable antibiotic resistance, which confirmed the safety of VTX9. A total of 82 genes involved in gastrointestinal stress tolerance were predicted, which has not been reported previously. The maximum production of riboflavin reached 769 ± 7.5 ng/ml in LB medium after 72 h, which was in agreement with the complete de novo riboflavin biosynthetic pathway exploited for the first time in the B. velezensis genome. Antagonistic activity against pathogenic bacteria was attributed to 10 secondary metabolites clusters. The presence of a large gene cluster involved in biosynthesis of exopolysaccharides underscored further the adhesion and biofilm-forming capabilities of VTX9 in swine intestines.
Conclusion
Our results revealed for the first time that B. velezensis VTX9 has the potential to be a probiotic candidate. The information provided here on the genome of B. velezensis VTX9 opens new opportunities for using B. velezensis as a feed additive for swine farming in the future.
Collapse
|
27
|
Bacteriocinogenic Bacillus spp. Isolated from Korean Fermented Cabbage (Kimchi)—Beneficial or Hazardous? FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacillus velezensis ST03 and ST32, Bacillus amyloliquefaciens ST06 and ST109, and Bacillus subtilis ST08 were isolated from artisanal-produced kimchi and were identified based on 16S rRNA partial sequencing. DNA obtained from the investigated bacilli generated positive results for lichenicidin, iturin, subtilosin, and surfactin on a strain-specific basis. The strains were found to produce antimicrobial metabolites with activity levels ranging between 800 and 1600 AU/mL on a strain-specific basis, as determined against Listeria monocytogenes ATCC15313. Moreover, all tested strains in this study were still active after treatment with proteolytic enzymes, even with reduced inhibition zones compared to the controls, pointing to additional antimicrobial activity possibly related to a non-proteinaceous molecular structure. Most probably these strains may express surfactin as an additional factor in their complex antimicrobial activity. B. amyloliquefaciens ST09 and B. velezensis ST03 and ST32 were characterized as positive for β-hemolysis. B. subtilis ST08 was shown to be positive for hblC and nheC and B. amyloliquefaciens ST109 for nheB. B. amyloliquefaciens ST109 generated positive results for gelatinase activity. The ability of the studied Bacillus strains to metabolize different carbohydrate sources was done based on the API50CHB test, while the enzyme production profile was recorded by the APIZym kit. All studied strains were positive producers for biogenic amines production. Studied Bacillus spp. strains were resistant to some of the evaluated antibiotics, tested according to recommendations of CLSI and EFSA.
Collapse
|
28
|
Jung S, Woo C, Fugaban JII, Vazquez Bucheli JE, Holzapfel WH, Todorov SD. Bacteriocinogenic Potential of Bacillus amyloliquefaciens Isolated from Kimchi, a Traditional Korean Fermented Cabbage. Probiotics Antimicrob Proteins 2021; 13:1195-1212. [PMID: 33721203 DOI: 10.1007/s12602-021-09772-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2021] [Indexed: 12/24/2022]
Abstract
Bacteriocin production is considered a favorable property for various beneficial cultures. In addition to their potential as biopreservatives, bacteriocins are also promising alternatives for the control of multidrug-resistant pathogens and the inhibition of some viruses and cancer cells. The objective of this study was to screen and characterize a bacteriocin-producing strain with the aim of its future application for control of Listeria monocytogenes, an important food-borne pathogen. A total of 22 potentially bacteriocinogenic strains active against L. monocytogenes ATCC15313 were isolated from locally produced kimchi through a three-level approach. Pure cultures were obtained according to good microbiological practices and differentiated through RAPD-PCR using the primers OPL01, OPL09, and OPL11. Altogether, 5 strains were selected for further study. Specific focus was given to strain ST05DL based on its specific inhibitory activity against L. monocytogenes ATCC15313, while not affecting different strains belonging to the genera Lactobacillus, Pediococcus, Leuconostoc, and Weissella, most of which are beneficial microorganisms. The strain ST05DL was identified as Bacillus amyloliquefaciens based on its sugar fermentation profile obtained through API50CHB analysis and 16S rRNA partial sequencing. The antimicrobial compound produced by B. amyloliquefaciens ST05DL was found to be sensitive to pepsin and α-chymotrypsin, evidence of its proteinaceous nature. The presence of skim milk, NaCl, Tween 80, glycerol, and SDS did not affect the antimicrobial activity. The addition of 20% cell-free supernatant (CFS) obtained from a 24-h culture of B. amyloliquefaciens ST05DL to an exponentially growing culture of L. monocytogenes ATCC15313 successfully inhibited the test microorganisms during the monitored 10-h incubation. Optimal bacteriocin production by B. amyloliquefaciens ST05DL was observed during the stationary phase at 12 h (800 AU/mL) and remained stable for the next 15 h. The ratio between live and dead cells during this period was 74.37% and 25.66%, respectively, as determined by flow cytometry. The presence of the virulence genes hblA, hblB, hblC, nheA, nheB, and nheC was not detected in the total DNA of B. amyloliquefaciens ST05DL, and the strain was resistant only to ampicillin out of 10 tested antibiotics. Future evaluation of expressed bacteriocin/s by B. amyloliquefaciens ST05DL (amino acid sequence, molecular mass, cytotoxicity, detailed mode of action, etc.), will be the next step in the characterization and its potential application as biopreservative and/or pharmaceutical product.
Collapse
Affiliation(s)
- Sungmin Jung
- ProBacLab, Graduate School of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Chaerin Woo
- ProBacLab, Graduate School of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Joanna Ivy Irorita Fugaban
- ProBacLab, Graduate School of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Jorge Enrique Vazquez Bucheli
- ProBacLab, Graduate School of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Wilhelm Heinrich Holzapfel
- ProBacLab, Graduate School of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Graduate School of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk, 37554, Republic of Korea.
| |
Collapse
|
29
|
Comparative accounts of probiotic properties of spore and vegetative cells of Bacillus clausii UBBC07 and in silico analysis of probiotic function. 3 Biotech 2021; 11:116. [PMID: 33604232 DOI: 10.1007/s13205-021-02668-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/27/2021] [Indexed: 10/22/2022] Open
Abstract
In this study, the spores and vegetative cells of B. clausii were independently evaluated for probiotic properties such as acid, gastric juice, bile, and intestinal fluid tolerance, adhesion to solvents/mucin and zeta potential. In addition, in silico identification of genome features contributing to probiotic properties were investigated. The results showed that spores were highly stable at gastric acidity and capable to germinate and multiply under intestinal conditions as compared to vegetative cells. The higher hydrophobicity of spores, compared to vegetative cells, is advantageous for colonization and persistence in the intestine. Furthermore, the presence of F 0 F 1 ATP synthase, amino acid decarboxylase, bile acid symporter, mucin/collagen/fibronectin-binding proteins, heat/cold shock proteins, and universal stress proteins suggests that the strain is able to survive stress. In conclusion, the results demonstrate that B. clausii UBBC07 spores show significantly higher survival and adhesion in in vitro gastrointestinal conditions as compared to vegetative cells. Besides, this study provides a comparative analysis of the in vitro probiotic properties of spores and vegetative cells of Bacillus clausii UBBC07.
Collapse
|
30
|
|
31
|
Soni R, Nanjani S, Keharia H. Genome analysis reveals probiotic propensities of Paenibacillus polymyxa HK4. Genomics 2020; 113:861-873. [PMID: 33096257 DOI: 10.1016/j.ygeno.2020.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/24/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022]
Abstract
The legislations on the usage of antibiotics as growth promoters and prophylactic agents have compelled to develop alternative tools to upsurge the animal protection and contain antibiotic usage. Probiotics have emerged as an effective antibiotic substitute in animal farming. The present study explores the probiotic perspective of Paenibacillus polymyxa HK4 interlinking the genotypic and phenotypic characteristics. The draft genome of HK4 revealed the presence of ORFs encoding the functions associated with tolerance to gastrointestinal stress and adhesion. The biosynthetic gene clusters encoding non-ribosomally synthesized peptides, polyketides and lanthipeptides such as fusaricidin, tridecaptin, polymyxin, paenilan and paenibacillin were annotated in HK4 genome. The strain harbored the chromosomal gene conferring the resistance to lincosamides. No functional gene encoding virulence or toxins could be identified in the genome of HK4. The genome analysis data was complemented by the in vitro experiments confirming its survival during gastrointestinal transit, antimicrobial potential and antibiotic sensitivity. NUCLEOTIDE SEQUENCE ACCESSION NUMBER: The draft-genome sequence of Paenibacillus polymyxa HK4 has been deposited as whole-genome shotgun project at GenBank under the accession number PRJNA603023.
Collapse
Affiliation(s)
- Riteshri Soni
- Post Graduate Department of Biosciences, UGC Center of Advanced Study, Sardar Patel University, Vadtal road, Bakrol 388315, Gujarat, India
| | - Sandhya Nanjani
- Post Graduate Department of Biosciences, UGC Center of Advanced Study, Sardar Patel University, Vadtal road, Bakrol 388315, Gujarat, India
| | - Hareshkumar Keharia
- Post Graduate Department of Biosciences, UGC Center of Advanced Study, Sardar Patel University, Vadtal road, Bakrol 388315, Gujarat, India.
| |
Collapse
|
32
|
Secaira-Morocho H, Castillo JA, Driks A. Diversity and evolutionary dynamics of spore-coat proteins in spore-forming species of Bacillales. Microb Genom 2020; 6. [PMID: 33052805 PMCID: PMC7725329 DOI: 10.1099/mgen.0.000451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Among members of the Bacillales order, there are several species capable of forming a structure called an endospore. Endospores enable bacteria to survive under unfavourable growth conditions and germinate when environmental conditions are favourable again. Spore-coat proteins are found in a multilayered proteinaceous structure encasing the spore core and the cortex. They are involved in coat assembly, cortex synthesis and germination. Here, we aimed to determine the diversity and evolutionary processes that have influenced spore-coat genes in various spore-forming species of Bacillales using an in silico approach. For this, we used sequence similarity searching algorithms to determine the diversity of coat genes across 161 genomes of Bacillales. The results suggest that among Bacillales, there is a well-conserved core genome, composed mainly by morphogenetic coat proteins and spore-coat proteins involved in germination. However, some spore-coat proteins are taxa-specific. The best-conserved genes among different species may promote adaptation to changeable environmental conditions. Because most of the Bacillus species harbour complete or almost complete sets of spore-coat genes, we focused on this genus in greater depth. Phylogenetic reconstruction revealed eight monophyletic groups in the Bacillus genus, of which three are newly discovered. We estimated the selection pressures acting over spore-coat genes in these monophyletic groups using classical and modern approaches and detected horizontal gene transfer (HGT) events, which have been further confirmed by scanning the genomes to find traces of insertion sequences. Although most of the genes are under purifying selection, there are several cases with individual sites evolving under positive selection. Finally, the HGT results confirm that sporulation is an ancestral feature in Bacillus.
Collapse
Affiliation(s)
- Henry Secaira-Morocho
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Imbabura, Ecuador
| | - José A Castillo
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Imbabura, Ecuador
| | - Adam Driks
- Department of Microbiology and Immunology, Loyola University Chicago, Chicago, IL, USA
| |
Collapse
|
33
|
Discovery of a Novel Multi-Strains Probiotic Formulation with Improved Efficacy toward Intestinal Inflammation. Nutrients 2020; 12:nu12071945. [PMID: 32629887 PMCID: PMC7400193 DOI: 10.3390/nu12071945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Dysbiosis is commonly detected in patients with inflammatory bowel disease (IBD), supporting the concept that a dysregulated immune reaction to bacterial antigens has a pathogenic role in the development of intestinal inflammation. In the present study, we have investigated the beneficial effects of a novel probiotic formulation assembled by combining four probiotics (Streptococcus thermophilus, Lactobacillus casei, Bifidobacterium breve, Bifidobacterium animalis subsp. Lactis) with Bacillus subtilis, a Gram-positive bacterium, with extensive bio-applications. Mice rendered colitic by administration of TNBS or DSS were administered with Bacillus subtilis alone, Vivomixx® or the novel Five strains formulation. Vivomixx® attenuated the severity of inflammation and reduced the development of signs and symptoms of colitis in both models. Adding Bacillus subtilis to Vivomixx® improved the beneficial effects of the bacterial therapy. The novel Five strains formulation was as effective as Vivomixx® in reducing the development of signs and symptoms of colitis and reduced the expression of pro-inflammatory mediators including Il-6 and Tnf-α while increased the expression of Il-10 mRNA and the number of Treg. In summary, we have shown that a novel Five strains probiotics formulation exerts beneficial effects on two chemical models of colitis, establishing Bacillus subtilis as a probiotic in rodent models of inflammation.
Collapse
|