1
|
Jeong Y, Kim J, Lee J, Seo S, Roh S, Lee G, Choi BG, Bae NH, Jung J, Kang T, Lee KG, Lim EK. Thermo-responsive 3D nanostructures for enhanced performance in food-poisoning bacterial analysis. MATERIALS HORIZONS 2025; 12:451-457. [PMID: 39620254 DOI: 10.1039/d4mh01062k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
The growing risk of bacterial food poisoning due to global warming has necessitated the development of methods for accurate detection of food-poisoning bacteria. Despite extensive efforts to develop enhanced bacterial-capture methods, challenges associated with the release of the captured bacteria have limited the sensitivity of bacterial detection. In this study, thermo-responsive intelligent 3D nanostructures to improve food-poisoning bacterial analysis performance were fabricated by introducing a thermo-responsive polymer onto an urchin-like 3D nanopillar substrate (URCHANO). A co-polymer of methacryloyl glycinamide and benzyl acrylate (MNAGA-Bn 5%) was introduced as a thermo-responsive co-polymer onto URCHANO using an electron-transfer atom-transfer radical-polymerization method to fabricate Thermo-URCHANO. A temperature-related analysis of the surface properties of Thermo-URCHANO revealed a hydrophobic-to-hydrophilic transition at 37 °C, which facilitated the release of bacteria captured within the nanostructure. In a one-pot analysis to capture and analyze various food-poisoning bacteria in kitchenware (gloves and aprons) and food items (eggs and sausages), mimicking real-life environments, specimens collected using Thermo-URCHANO showed lower Ct values than those collected with uncoated URCHANO, indicating greater bacterial detection. This method could effectively release captured bacteria through temperature changes, improving extraction efficiency during swab collection. While Thermo-URCHANO needs further optimization, it is expected to enhance bacterial analysis performance and sensitivity.
Collapse
Affiliation(s)
- Yeonwoo Jeong
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Jueun Kim
- Department of Chemical Engineering, Kangwon National University, Samcheok 25913, Republic of Korea
| | - Jina Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
- Department of Nanobiotechnology, KRIBB School, University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Seungbeom Seo
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
- Department of Cogno-Mechatronics Engineering, Pusan National University, Pusan 46241, Republic of Korea
| | - Seokbeom Roh
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Bong Gill Choi
- Department of Chemical Engineering, Kangwon National University, Samcheok 25913, Republic of Korea
| | - Nam Ho Bae
- Center for Nano Bio Development, National NanoFab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
- Department of Nanobiotechnology, KRIBB School, University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyoung G Lee
- Center for Nano Bio Development, National NanoFab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
- Department of Nanobiotechnology, KRIBB School, University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
2
|
Lee JY, Jang H, Kim S, Kang T, Park SG, Lee MY. Nanoplasmonic microarray-based solid-phase amplification for highly sensitive and multiplexed molecular diagnostics: application for detecting SARS-CoV-2. Mikrochim Acta 2024; 191:715. [PMID: 39472332 PMCID: PMC11522150 DOI: 10.1007/s00604-024-06723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/21/2024] [Indexed: 11/02/2024]
Abstract
A novel approach is introduced using nanoplasmonic microarray-based solid-phase recombinase polymerase amplification (RPA) that offers high sensitivity and multiplexing capabilities for gene detection. Nanoplasmonic microarrays were developed through one-step immobilization of streptavidin/biotin primers and fine-tuning the amplicon size to achieve high plasmon-enhanced fluorescence (PEF) on the nanoplasmonic substrate, thereby improving sensitivity. The specificity and sensitivity of solid-phase RPA on nanoplasmonic microarrays was evaluated in detecting E, N, and RdRP genes of SARS-CoV-2. High specificity was achieved by minimizing primer-dimer formation and employing a stringent washing process and high sensitivity obtained with a limit of detection of four copies per reaction within 30 min. In clinical testing with nasopharyngeal swab samples (n = 30), the nanoplasmonic microarrays demonstrated a 100% consistency with the PCR results for detecting SARS-CoV-2, including differentiation of Omicron mutations BA.1 and BA.2. This approach overcomes the sensitivity issue of solid-phase amplification, as well as offers rapidity, high multiplexing capabilities, and simplified equipment by using isothermal reaction, making it a valuable tool for on-site molecular diagnostics.
Collapse
Affiliation(s)
- Ji Young Lee
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), 797, Changwon-Daero, Seongsan-Gu, Changwon-Si, Gyeongsangnam-Do, 51508, Republic of Korea
| | - Hyowon Jang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Sunjoo Kim
- Department of Laboratory Medicine, Gyeongsang National University College of Medicine, 79 Gangnam-Ro, Jinju, Gyeongsangnam-Do, 52727, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Sung-Gyu Park
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), 797, Changwon-Daero, Seongsan-Gu, Changwon-Si, Gyeongsangnam-Do, 51508, Republic of Korea.
| | - Min-Young Lee
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), 797, Changwon-Daero, Seongsan-Gu, Changwon-Si, Gyeongsangnam-Do, 51508, Republic of Korea.
| |
Collapse
|
3
|
Dey P, Raza MJ, Khera A, Sharma A, Khajuria A, Pandey A, Pandey CM, Sharma RK, Singh G, Barnwal RP. Recent progress of functionalized nanomaterials-based biosensing for monitoring of food- and water-borne pathogens. ENVIRONMENTAL NANOTECHNOLOGY, MONITORING & MANAGEMENT 2024; 21:100914. [DOI: 10.1016/j.enmm.2024.100914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Adewusi OO, Waldner CL, Hanington PC, Hill JE, Freeman CN, Otto SJG. Laboratory tools for the direct detection of bacterial respiratory infections and antimicrobial resistance: a scoping review. J Vet Diagn Invest 2024; 36:400-417. [PMID: 38456288 PMCID: PMC11110769 DOI: 10.1177/10406387241235968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Rapid laboratory tests are urgently required to inform antimicrobial use in food animals. Our objective was to synthesize knowledge on the direct application of long-read metagenomic sequencing to respiratory samples to detect bacterial pathogens and antimicrobial resistance genes (ARGs) compared to PCR, loop-mediated isothermal amplification, and recombinase polymerase amplification. Our scoping review protocol followed the Joanna Briggs Institute and PRISMA Scoping Review reporting guidelines. Included studies reported on the direct application of these methods to respiratory samples from animals or humans to detect bacterial pathogens ±ARGs and included turnaround time (TAT) and analytical sensitivity. We excluded studies not reporting these or that were focused exclusively on bioinformatics. We identified 5,636 unique articles from 5 databases. Two-reviewer screening excluded 3,964, 788, and 784 articles at 3 levels, leaving 100 articles (19 animal and 81 human), of which only 7 studied long-read sequencing (only 1 in animals). Thirty-two studies investigated ARGs (only one in animals). Reported TATs ranged from minutes to 2 d; steps did not always include sample collection to results, and analytical sensitivity varied by study. Our review reveals a knowledge gap in research for the direct detection of bacterial respiratory pathogens and ARGs in animals using long-read metagenomic sequencing. There is an opportunity to harness the rapid development in this space to detect multiple pathogens and ARGs on a single sequencing run. Long-read metagenomic sequencing tools show potential to address the urgent need for research into rapid tests to support antimicrobial stewardship in food animal production.
Collapse
Affiliation(s)
- Olufunto O. Adewusi
- HEAT-AMR (Human-Environment-Animal Transdisciplinary Antimicrobial Resistance) Research Group, University of Alberta, Edmonton, AB, Canada
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Cheryl L. Waldner
- Departments of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Janet E. Hill
- Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Claire N. Freeman
- Departments of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Simon J. G. Otto
- HEAT-AMR (Human-Environment-Animal Transdisciplinary Antimicrobial Resistance) Research Group, University of Alberta, Edmonton, AB, Canada
- Healthy Environments Thematic Area Lead, Centre for Healthy Communities, University of Alberta, Edmonton, AB, Canada
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Sakharnov N, Filatova E, Popkova M, Slavin S, Utkin O. Development of DNA Microarray for Parallel Detection of Community-Acquired Pneumonia Bacterial Pathogens. Sovrem Tekhnologii Med 2024; 16:16-26. [PMID: 39539749 PMCID: PMC11556048 DOI: 10.17691/stm2024.16.2.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Indexed: 11/16/2024] Open
Abstract
The aim of the study was to develop an experimental version of a DNA microarray for parallel detection of community-acquired pneumonia bacterial pathogens. Materials and Methods We studied the samples of the pharyngeal mucosa smears taken from children aged 1-15 years with X-ray confirmed pneumonia. The selection of DNA probes for specific detection of community-acquired pneumonia pathogens (S. pneumoniae, H. influenzae, M. pneumoniae, C. pneumonia, and L. pneumophila) and development of the microarray design were carried out using the disprose program. The nucleotide sequences of pathogens were obtained from NCBI Nucleotide database. In the research we used CustomArray microarrays (USA). For a pooled sample containing S. pneumoniae and H. influenzae DNA, we performed a sequential selection of the best combinations of hybridization parameters: DNA fragment size, DNA amount, hybridization temperature. The selection criteria were: the percentage of effective probes with a standardized hybridization signal (SHS) ≥3 Z, and the excess of SHS levels of effective specific probes compared to SHS of effective nonspecific probes. We selected the probes to detect of S. pneumoniae and H. influenzae characterized by an effective hybridization signal under optimal conditions. The developed microarray was tested under the selected conditions on clinical samples containing S. pneumoniae or H. influenzae DNA. Using ROC analysis there were established threshold values for the signals of specific probes at optimal sensitivity points and the test specificity, the excess of which was interpreted as the evidence of pathogen presence in a sample. Results A microarray design included 142 DNA probes to detect S. pneumoniae, H. influenzae, M. pneumoniae, C. pneumoniae, and L. pneumophila, the probes being synthesized onto slides. Using the example of clinical samples containing S. pneumoniae and/or H. influenza DNA, we selected optimal parameters for DNA hybridization on microarrays, which enabled to identify bacterial pathogens of community-acquired pneumonia with sufficient efficiency, specificity and reproducibility: the amount of hybridized DNA was 2 μg, the DNA fragment size: 300 nt, hybridization temperature: 47°C. There was selected a list of probes for specific detection of S. pneumoniae and H. influenzae characterized by an effective hybridization signal under the identified conditions. We determined the threshold values of standardized probe signals for specific detection of S. pneumoniae (4.5 Z) and H. influenzae (4.9 Z) in clinical samples. Conclusion A DNA microarray was developed and synthesized for parallel indication of bacterial pathogens of community-acquired pneumonia. There were selected the optimal parameters for DNA hybridization on a microarray to identify bacterial pathogens - S. pneumoniae and H. influenzae, and determined the threshold values of significant probe signals for their specific detection. The interpretation of the microarray hybridization results corresponds to those obtained by PCR. The microarray can be used to improve laboratory diagnostics of community-acquired pneumonia pathogens.
Collapse
Affiliation(s)
- N.A. Sakharnov
- PhD, Senior Researcher, Laboratory of Molecular Biology and Biotechnology; Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor (Russian Federal Consumer Rights Protection and Human Health Control Service), 71 Malaya Yamskaya St., Nizhny Novgorod, 603950, Russia
| | - E.N. Filatova
- PhD, Leading Researcher, Laboratory of Molecular Biology and Biotechnology; Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor (Russian Federal Consumer Rights Protection and Human Health Control Service), 71 Malaya Yamskaya St., Nizhny Novgorod, 603950, Russia
| | - M.I. Popkova
- MD, PhD, Leading Researcher, Laboratory of Molecular Biology and Biotechnology; Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor (Russian Federal Consumer Rights Protection and Human Health Control Service), 71 Malaya Yamskaya St., Nizhny Novgorod, 603950, Russia
| | - S.L. Slavin
- Student; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603950, Russia
| | - O.V. Utkin
- PhD, Head of the Laboratory of Molecular Biology and Biotechnology; Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor (Russian Federal Consumer Rights Protection and Human Health Control Service), 71 Malaya Yamskaya St., Nizhny Novgorod, 603950, Russia
| |
Collapse
|
6
|
Costa D, Pereira-Silva P, Sousa P, Pinto V, Borges J, Vaz F, Minas G, Sampaio P. Critical Issues on the Surface Functionalization of Plasmonic Au-Ag/TiO 2 Thin Films with Thiolated Oligonucleotide-Based Biorecognition Elements. BIOSENSORS 2024; 14:159. [PMID: 38667152 PMCID: PMC11048063 DOI: 10.3390/bios14040159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
This work reports on the surface functionalization of a nanomaterial supporting localized surface plasmon resonances (LSPRs) with (synthetic) thiolated oligonucleotide-based biorecognition elements, envisaging the development of selective LSPR-based DNA biosensors. The LSPR thin-film transducers are composed of noble metal nanoparticles (NPs) embedded in a TiO2 dielectric matrix, produced cost-effectively and sustainably by magnetron sputtering. The study focused on the immobilization kinetics of thiolated oligonucleotide probes as biorecognition elements, followed by the evaluation of hybridization events with the target probe. The interaction between the thiolated oligonucleotide probe and the transducer's surface was assessed by monitoring the LSPR signal with successive additions of probe solution through a microfluidic device. The device was specifically designed and fabricated for this work and adapted to a high-resolution LSPR spectroscopy system with portable characteristics. Benefiting from the synergetic characteristics of Ag and Au in the form of bimetallic nanoparticles, the Au-Ag/TiO2 thin film proved to be more sensitive to thiolated oligonucleotide binding events. Despite the successful surface functionalization with the biorecognition element, the detection of complementary oligonucleotides revealed electrostatic repulsion and steric hindrance, which hindered hybridization with the target oligonucleotide. This study points to an effect that is still poorly described in the literature and affects the design of LSPR biosensors based on nanoplasmonic thin films.
Collapse
Affiliation(s)
- Diogo Costa
- Center of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal (P.P.-S.); (P.S.)
- Physics Center of Minho and Porto Universities (CF-UM-UP), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
- Center for Microelectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (P.S.); (V.P.); (G.M.)
| | - Patrícia Pereira-Silva
- Center of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal (P.P.-S.); (P.S.)
- Physics Center of Minho and Porto Universities (CF-UM-UP), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
| | - Paulo Sousa
- Center for Microelectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (P.S.); (V.P.); (G.M.)
- LABBELS—Associate Laboratory, 4800-122 Braga, Portugal, and 4800-058 Guimarães, Portugal
| | - Vânia Pinto
- Center for Microelectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (P.S.); (V.P.); (G.M.)
- LABBELS—Associate Laboratory, 4800-122 Braga, Portugal, and 4800-058 Guimarães, Portugal
| | - Joel Borges
- Physics Center of Minho and Porto Universities (CF-UM-UP), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
| | - Filipe Vaz
- Physics Center of Minho and Porto Universities (CF-UM-UP), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
- Material Science Department, Transilvania University of Brasov, 29 Eroilor Blvd., 500036 Brasov, Romania
| | - Graça Minas
- Center for Microelectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (P.S.); (V.P.); (G.M.)
- LABBELS—Associate Laboratory, 4800-122 Braga, Portugal, and 4800-058 Guimarães, Portugal
| | - Paula Sampaio
- Center of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal (P.P.-S.); (P.S.)
| |
Collapse
|
7
|
Guo H, Liang J, Lin H, Zhou X, Zhang Z, Lai L, Zhang T, Wang Z, Zhou J, Sun J, Liao J, Jiang M, Yang Z. Differentiate Clinical Characteristics Between Viral Pneumonia and Mycoplasma pneumoniae and Nomograms for Predicting Mycoplasma pneumoniae : A Retrospective Study in Primary Hospitals. Pediatr Infect Dis J 2023; 42:1035-1040. [PMID: 37820276 PMCID: PMC10629606 DOI: 10.1097/inf.0000000000004082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 10/13/2023]
Abstract
OBJECTIVE To identify the difference in clinical characteristics between viral pneumonia and Mycoplasma pneumoniae , providing cues on their differential diagnosis for primary hospitals with the insufficient pathogen detection capacity. METHODS We retrospectively reviewed the medical records of hospitalized children with acute respiratory tract infections, and pathogenic microbes test results were analyzed. Clinical characteristics, routine blood parameters and hospitalization duration and fee were compared between M. pneumoniae and viral pneumonia. We used in the multivariable logistic regression to predict the probability of children with M. pneumoniae and graphically represented by a dynamic nomogram. The discrimination and clinical utility of the model were confirmed by receiver operating characteristic and decision curve analysis curves. RESULT A total of 375 children with community-acquired pneumonia were included. Mycoplasma infection accounted for the largest proportion (22.13%). The incidence of both hypothermia and vomiting was lower in M. pneumoniae compared to viral pneumonia (hypothermia: 10.50% vs. 0.00%; vomiting: 7.90% vs. 0.00%). The prevalence of hyperthermia was higher in M. pneumoniae (hyperthermia: 89.5% vs. 100%). Procalcitonin, peripheral blood white blood cell count and lymphocyte levels were higher in the viral pneumonia group, and eosinophil levels were conversely lower. As for the duration of illness, the mean length of stay was 5.20 ± 2.12 (viral pneumonia) and 6.27 ± 2.48 days ( M. pneumoniae ). Children with M. pneumoniae had higher overall hospital costs and required more medical treatment. The above were all statistically significant with a P < 0.05. The scoring system was established based on the above results. Receiver operating characteristic curves showed good model-discrimination ability with 0.844 of the area under the curve in the training set and 0.778 in the test set. Decision curve analysis curves demonstrated the discriminative superiority of this model. The web-based dynamic nomogram calculator is accessible at https://zhxylxy0160128.shinyapps.io/Nomogram/ . CONCLUSION Nomograms have satisfactory discrimination, and clinical utility may benefit in predicting the probability of developing M. pneumoniae in children. Children with M. pneumoniae have a higher burden than those with viral pneumonia and may require more intensive in-hospital monitoring.
Collapse
Affiliation(s)
- Huixian Guo
- From the Department of Respiration, Guangzhou Yuexiu District Children’s Hospital, Guangzhou, China
| | - Jingyi Liang
- Department of Respiratory Research, National Center for Respiratory medicine, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Haowen Lin
- Department of Clinical Medicine, The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xingyou Zhou
- Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhou Zhang
- From the Department of Respiration, Guangzhou Yuexiu District Children’s Hospital, Guangzhou, China
| | - Laiqing Lai
- From the Department of Respiration, Guangzhou Yuexiu District Children’s Hospital, Guangzhou, China
| | - Tao Zhang
- From the Department of Respiration, Guangzhou Yuexiu District Children’s Hospital, Guangzhou, China
| | - Zhufeng Wang
- Department of Respiratory Research, National Center for Respiratory medicine, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Junhou Zhou
- Department of Respiratory Research, National Center for Respiratory medicine, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Jiaxi Sun
- Department of Respiratory Research, National Center for Respiratory medicine, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Jiayi Liao
- From the Department of Respiration, Guangzhou Yuexiu District Children’s Hospital, Guangzhou, China
| | - Mei Jiang
- Department of Respiratory Research, National Center for Respiratory medicine, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Zifeng Yang
- Department of Respiratory Research, National Center for Respiratory medicine, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
8
|
Sánchez-Costa M, López-Gallego F. Solid-Phase Cell-Free Protein Synthesis and Its Applications in Biotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 185:21-46. [PMID: 37306703 DOI: 10.1007/10_2023_226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cell-free systems for the in vitro production of proteins have revolutionized the synthetic biology field. In the last decade, this technology is gaining momentum in molecular biology, biotechnology, biomedicine and even education. Materials science has burst into the field of in vitro protein synthesis to empower the value of existing tools and expand its applications. In this sense, the combination of solid materials (normally functionalized with different biomacromolecules) together with cell-free components has made this technology more versatile and robust. In this chapter, we discuss the combination of solid materials with DNA and transcription-translation machinery to synthesize proteins within compartments, to immobilize and purify in situ the nascent protein, to transcribe and transduce DNAs immobilized on solid surfaces, and the combination of all or some of these strategies.
Collapse
Affiliation(s)
- Mercedes Sánchez-Costa
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain.
| |
Collapse
|
9
|
Barani M, Fathizadeh H, Arkaban H, Kalantar-Neyestanaki D, Akbarizadeh MR, Turki Jalil A, Akhavan-Sigari R. Recent Advances in Nanotechnology for the Management of Klebsiella pneumoniae-Related Infections. BIOSENSORS 2022; 12:1155. [PMID: 36551122 PMCID: PMC9776335 DOI: 10.3390/bios12121155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Klebsiella pneumoniae is an important human pathogen that causes diseases such as urinary tract infections, pneumonia, bloodstream infections, bacteremia, and sepsis. The rise of multidrug-resistant strains has severely limited the available treatments for K. pneumoniae infections. On the other hand, K. pneumoniae activity (and related infections) urgently requires improved management strategies. A growing number of medical applications are using nanotechnology, which uses materials with atomic or molecular dimensions, to diagnose, eliminate, or reduce the activity of different infections. In this review, we start with the traditional treatment and detection method for K. pneumoniae and then concentrate on selected studies (2015-2022) that investigated the application of nanoparticles separately and in combination with other techniques against K. pneumoniae.
Collapse
Affiliation(s)
- Mahmood Barani
- Student Research Committee, Kerman University of Medical Sciences, Kerman 7616913555, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Hadis Fathizadeh
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan 7616916338, Iran
| | - Hassan Arkaban
- Department of Chemistry, University of Isfahan, Isfahan 8174673441, Iran
| | - Davood Kalantar-Neyestanaki
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Majid Reza Akbarizadeh
- Department of Pediatric, Amir Al Momenin Hospital, Zabol University of Medical Sciences, Zabol 9861663335, Iran
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, 72076 Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, 00014 Warsaw, Poland
| |
Collapse
|
10
|
Zhang Z, Li X, Liu H, Zamyadi A, Guo W, Wen H, Gao L, Nghiem LD, Wang Q. Advancements in detection and removal of antibiotic resistance genes in sludge digestion: A state-of-art review. BIORESOURCE TECHNOLOGY 2022; 344:126197. [PMID: 34710608 DOI: 10.1016/j.biortech.2021.126197] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Sludge from wastewater treatment plants can act as a repository and crucial environmental provider of antibiotic resistance genes (ARGs). Over the past few years, people's knowledge regarding the occurrence and removal of ARGs in sludge has broadened remarkably with advancements in molecular biological techniques. Anaerobic and aerobic digestion were found to effectively achieve sludge reduction and ARGs removal. This review summarized advanced detection and removal techniques of ARGs, in the last decade, in the sludge digestion field. The fate of ARGs due to different sludge digestion strategies (i.e., anaerobic and aerobic digestion under mesophilic or thermophilic conditions, and in combination with relevant pretreatment technologies (e.g., thermal hydrolysis pretreatment, microwave pretreatment and alkaline pretreatment) and additives (e.g., ferric chloride and zero-valent iron) were systematically summarized and compared in this review. To date, this is the first review that provides a comprehensive assessment of the state-of-the-art technologies and future recommendations.
Collapse
Affiliation(s)
- Zehao Zhang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Xuan Li
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia.
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Arash Zamyadi
- Water Research Australia Limited, Melbourne & Adelaide SA 5001, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Haiting Wen
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, PR China
| | - Li Gao
- South East Water, 101 Wells Street, Frankston, VIC 3199, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|