1
|
Leistikow KR, May DS, Suh WS, Vargas Asensio G, Schaenzer AJ, Currie CR, Hristova KR. Bacillus subtilis-derived peptides disrupt quorum sensing and biofilm assembly in multidrug-resistant Staphylococcus aureus. mSystems 2024; 9:e0071224. [PMID: 38990088 PMCID: PMC11334493 DOI: 10.1128/msystems.00712-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 07/12/2024] Open
Abstract
Multidrug-resistant Staphylococcus aureus is one of the most clinically important pathogens in the world, with infections leading to high rates of morbidity and mortality in both humans and animals. The ability of S. aureus to form biofilms protects cells from antibiotics and promotes the transfer of antibiotic resistance genes; therefore, new strategies aimed at inhibiting biofilm growth are urgently needed. Probiotic species, including Bacillus subtilis, are gaining interest as potential therapies against S. aureus for their ability to reduce S. aureus colonization and virulence. Here, we search for strains and microbially derived compounds with strong antibiofilm activity against multidrug-resistant S. aureus by isolating and screening Bacillus strains from a variety of agricultural environments. From a total of 1,123 environmental isolates, we identify a single strain B. subtilis 6D1, with a potent ability to inhibit biofilm growth, disassemble mature biofilm, and improve antibiotic sensitivity of S. aureus biofilms through an Agr quorum sensing interference mechanism. Biochemical and molecular networking analysis of an active organic fraction revealed multiple surfactin isoforms, and an uncharacterized peptide was driving this antibiofilm activity. Compared with commercial high-performance liquid chromatography grade surfactin obtained from B. subtilis, we show these B. subtilis 6D1 peptides are significantly better at inhibiting biofilm formation in all four S. aureus Agr backgrounds and preventing S. aureus-induced cytotoxicity when applied to HT29 human intestinal cells. Our study illustrates the potential of exploring microbial strain diversity to discover novel antibiofilm agents that may help combat multidrug-resistant S. aureus infections and enhance antibiotic efficacy in clinical and veterinary settings. IMPORTANCE The formation of biofilms by multidrug-resistant bacterial pathogens, such as Staphylococcus aureus, increases these microorganisms' virulence and decreases the efficacy of common antibiotic regimens. Probiotics possess a variety of strain-specific strategies to reduce biofilm formation in competing organisms; however, the mechanisms and compounds responsible for these phenomena often go uncharacterized. In this study, we identified a mixture of small probiotic-derived peptides capable of Agr quorum sensing interference as one of the mechanisms driving antibiofilm activity against S. aureus. This collection of peptides also improved antibiotic killing and protected human gut epithelial cells from S. aureus-induced toxicity by stimulating an adaptive cytokine response. We conclude that purposeful strain screening and selection efforts can be used to identify unique probiotic strains that possess specially desired mechanisms of action. This information can be used to further improve our understanding of the ways in which probiotic and probiotic-derived compounds can be applied to prevent bacterial infections or improve bacterial sensitivity to antibiotics in clinical and agricultural settings.
Collapse
Affiliation(s)
- Kyle R. Leistikow
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Daniel S. May
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, Washington College, Chestertown, Maryland, USA
| | - Won Se Suh
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Adam J. Schaenzer
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
2
|
Majumder S, Sackey T, Viau C, Park S, Xia J, Ronholm J, George S. Genomic and phenotypic profiling of Staphylococcus aureus isolates from bovine mastitis for antibiotic resistance and intestinal infectivity. BMC Microbiol 2023; 23:43. [PMID: 36803552 PMCID: PMC9940407 DOI: 10.1186/s12866-023-02785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Staphylococcus aureus is one of the prevalent etiological agents of contagious bovine mastitis, causing a significant economic burden on the global dairy industry. Given the emergence of antibiotic resistance (ABR) and possible zoonotic spillovers, S aureus from mastitic cattle pose threat to both veterinary and public health. Therefore, assessment of their ABR status and pathogenic translation in human infection models is crucial. RESULTS In this study, 43 S. aureus isolates associated with bovine mastitis obtained from four different Canadian provinces (Alberta, Ontario, Quebec, and Atlantic provinces) were tested for ABR and virulence through phenotypic and genotypic profiling. All 43 isolates exhibited crucial virulence characteristics such as hemolysis, and biofilm formation, and six isolates from ST151, ST352, and ST8 categories showed ABR. Genes associated with ABR (tetK, tetM, aac6', norA, norB, lmrS, blaR, blaZ, etc.), toxin production (hla, hlab, lukD, etc.), adherence (fmbA, fnbB, clfA, clfB, icaABCD, etc.), and host immune invasion (spa, sbi, cap, adsA, etc.) were identified by analyzing whole-genome sequences. Although none of the isolates possessed human adaptation genes, both groups of ABR and antibiotic-susceptible isolates demonstrated intracellular invasion, colonization, infection, and death of human intestinal epithelial cells (Caco-2), and Caenorhabditis elegans. Notably, the susceptibilities of S. aureus towards antibiotics such as streptomycin, kanamycin, and ampicillin were altered when the bacteria were internalized in Caco-2 cells and C. elegans. Meanwhile, tetracycline, chloramphenicol, and ceftiofur were comparatively more effective with ≤ 2.5 log10 reductions of intracellular S. aureus. CONCLUSIONS This study demonstrated the potential of S. aureus isolated from mastitis cows to possess virulence characteristics enabling invasion of intestinal cells thus calling for developing therapeutics capable of targeting drug-resistant intracellular pathogens for effective disease management.
Collapse
Affiliation(s)
- Satwik Majumder
- grid.14709.3b0000 0004 1936 8649Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Macdonald-Stewart Building, Room-1039, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada
| | - Trisha Sackey
- grid.14709.3b0000 0004 1936 8649Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Macdonald-Stewart Building, Room-1039, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada
| | - Charles Viau
- grid.14709.3b0000 0004 1936 8649Institute of Parasitology, Macdonald Campus, McGill University, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada
| | - Soyoun Park
- grid.14709.3b0000 0004 1936 8649Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Macdonald-Stewart Building, Room-1039, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada
| | - Jianguo Xia
- grid.14709.3b0000 0004 1936 8649Institute of Parasitology, Macdonald Campus, McGill University, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada ,grid.14709.3b0000 0004 1936 8649Department of Animal Science, Macdonald Campus, McGill University, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada
| | - Jennifer Ronholm
- grid.14709.3b0000 0004 1936 8649Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Macdonald-Stewart Building, Room-1039, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada ,grid.14709.3b0000 0004 1936 8649Department of Animal Science, Macdonald Campus, McGill University, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada
| | - Saji George
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Macdonald-Stewart Building, Room-1039, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9, Canada.
| |
Collapse
|
3
|
Park S, Jung D, Altshuler I, Kurban D, Dufour S, Ronholm J. A longitudinal census of the bacterial community in raw milk correlated with Staphylococcus aureus clinical mastitis infections in dairy cattle. Anim Microbiome 2022; 4:59. [PMID: 36434660 PMCID: PMC9701008 DOI: 10.1186/s42523-022-00211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is a common cause of clinical mastitis (CM) in dairy cattle. Optimizing the bovine mammary gland microbiota to resist S. aureus colonization is a growing area of research. However, the details of the interbacterial interactions between S. aureus and commensal bacteria, which would be required to manipulate the microbiome to resist infection, are still unknown. This study aims to characterize changes in the bovine milk bacterial community before, during, and after S. aureus CM and to compare bacterial communities present in milk between infected and healthy quarters. METHODS We collected quarter-level milk samples from 698 Holstein dairy cows over an entire lactation. A total of 11 quarters from 10 cows were affected by S. aureus CM and milk samples from these 10 cows (n = 583) regardless of health status were analyzed by performing 16S rRNA gene amplicon sequencing. RESULTS The milk microbiota of healthy quarters was distinguishable from that of S. aureus CM quarters two weeks before CM diagnosis via visual inspection. Microbial network analysis showed that 11 OTUs had negative associations with OTU0001 (Staphylococcus). A low diversity or dysbiotic milk microbiome did not necessarily correlate with increased inflammation. Specifically, Staphylococcus xylosus, Staphylococcus epidermidis, and Aerococcus urinaeequi were each abundant in milk from the quarters with low levels of inflammation. CONCLUSION Our results show that the udder microbiome is highly dynamic, yet a change in the abundance in certain bacteria can be a potential indicator of future S. aureus CM. This study has identified potential prophylactic bacterial species that could act as a barrier against S. aureus colonization and prevent future instances of S. aureus CM.
Collapse
Affiliation(s)
- Soyoun Park
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada
- Mastitis Network, Saint-Hyacinthe, QC, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, QC, Canada
| | - Dongyun Jung
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada
- Mastitis Network, Saint-Hyacinthe, QC, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, QC, Canada
| | - Ianina Altshuler
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada
| | - Daryna Kurban
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Mastitis Network, Saint-Hyacinthe, QC, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, QC, Canada
| | - Simon Dufour
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Mastitis Network, Saint-Hyacinthe, QC, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, QC, Canada
| | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada.
- Mastitis Network, Saint-Hyacinthe, QC, Canada.
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, QC, Canada.
| |
Collapse
|
4
|
Complete Genome Sequence of Staphylococcus arlettae AHKW2e, Isolated from a Dog’s Paws in Hong Kong. Microbiol Resour Announc 2022; 11:e0035022. [PMID: 35758690 PMCID: PMC9302096 DOI: 10.1128/mra.00350-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus arlettae is commonly found on the skin of animals. Here, we describe the complete genome sequence of S. arlettae AHKW2e (2,649,260 bp; GC content, 33.6%), isolated from a dog’s paws in Hong Kong, established through hybrid assembly and representing the second complete genome sequence of this species.
Collapse
|
5
|
Park S, Jung D, O'Brien B, Ruffini J, Dussault F, Dube-Duquette A, Demontier É, Lucier JF, Malouin F, Dufour S, Ronholm J. Comparative genomic analysis of Staphylococcus aureus isolates associated with either bovine intramammary infections or human infections demonstrates the importance of restriction-modification systems in host adaptation. Microb Genom 2022; 8. [PMID: 35179459 PMCID: PMC8942034 DOI: 10.1099/mgen.0.000779] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus is a major etiological agent of clinical and subclinical bovine mastitis. The versatile and adaptative evolutionary strategies of this bacterium have challenged mastitis control and prevention globally, and the high incidence of S. aureus mastitis increases concerns about antimicrobial resistance (AMR) and zoonosis. This study aims to describe the evolutionary relationship between bovine intramammary infection (IMI)-associated S. aureus and human pathogenic S. aureus and further elucidate the specific genetic composition that leads to the emergence of successful bovine IMI-associated S. aureus lineages. We performed a phylogenomic analysis of 187 S. aureus isolates that originated from either dairy cattle or humans. Our results revealed that bovine IMI-associated S. aureus isolates showed distinct clades compared to human-originated S. aureus isolates. From a pan-genome analysis, 2070 core genes were identified. Host-specific genes and clonal complex (CC)-specific genes were also identified in bovine S. aureus isolates, mostly located in mobile genetic elements (MGEs). Additionally, the genome sequences of three apparent human-adapted isolates (two from CC97 and one from CC8), isolated from bovine mastitis samples, may provide an snapshot of the genomic characteristics in early host spillover events. Virulence and AMR genes were not conserved among bovine IMI-associated S. aureus isolates. Restriction-modification (R-M) genes in bovine IMI-associated S. aureus demonstrated that the Type I R-M system was lineage-specific and Type II R-M system was sequence type (ST)-specific. The distribution of exclusive, virulence, and AMR genes were closely correlated with the presence of R-M systems in S. aureus, suggesting that R-M systems may contribute to shaping clonal diversification by providing a genetic barrier to the horizontal gene transfer (HGT). Our findings indicate that the CC or ST lineage-specific R-M systems may limit genetic exchange between bovine-adapted S. aureus isolates from different lineages.
Collapse
Affiliation(s)
- Soyoun Park
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Québec, Canada.,Mastitis Network, Saint-Hyacinthe, Québec, Canada.,Regroupement FRQNT Op+Lait, Saint-Hyacinthe, Québec, Canada
| | - Dongyun Jung
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Québec, Canada.,Mastitis Network, Saint-Hyacinthe, Québec, Canada.,Regroupement FRQNT Op+Lait, Saint-Hyacinthe, Québec, Canada
| | - Bridget O'Brien
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Québec, Canada
| | - Janina Ruffini
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Québec, Canada
| | | | - Alexis Dube-Duquette
- Mastitis Network, Saint-Hyacinthe, Québec, Canada.,Regroupement FRQNT Op+Lait, Saint-Hyacinthe, Québec, Canada.,Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Élodie Demontier
- Mastitis Network, Saint-Hyacinthe, Québec, Canada.,Regroupement FRQNT Op+Lait, Saint-Hyacinthe, Québec, Canada.,Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Jean-François Lucier
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - François Malouin
- Mastitis Network, Saint-Hyacinthe, Québec, Canada.,Regroupement FRQNT Op+Lait, Saint-Hyacinthe, Québec, Canada.,Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Simon Dufour
- Mastitis Network, Saint-Hyacinthe, Québec, Canada.,Regroupement FRQNT Op+Lait, Saint-Hyacinthe, Québec, Canada.,Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Québec, Canada.,Mastitis Network, Saint-Hyacinthe, Québec, Canada.,Regroupement FRQNT Op+Lait, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
6
|
Simultaneous Production of Antibacterial Protein and Lipopeptides in Bacillus tequilensis, Detected by MALDI-TOF and GC Mass Analyses. Probiotics Antimicrob Proteins 2022; 15:749-760. [PMID: 35034324 DOI: 10.1007/s12602-021-09883-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/29/2022]
Abstract
As antibiotic resistance is nowadays one of the important challenges, efforts are crucial for the discovery of novel antibacterial drugs. This study aimed to evaluate antimicrobial/anticancerous activities of halophilic bacilli from the human microbiota. A spore-forming halotolerant bacterium with antibacterial effect against Staphylococcus aureus was isolated from healthy human feces. The antibacterial protein components of the extracted supernatant were identified by SDS-PAGE and zymography. The MALDI-TOF, GC mass, and FTIR analyses were used for peptide and lipopeptide identification, respectively. The stability, toxicity, and anticancerous effects were investigated using MTT and Flow cytometry methods. According to the molecular analysis, the strain was identified as Bacillus tequilensis and showed potential probiotic properties, such as bile and acid resistance, as well as eukaryotic cell uptake. SDS-PAGE and zymography showed that 15 and 10-kDa fragments had antibacterial effects. The MALDI-TOF mass analysis indicated that the 15-kDa fragment was L1 ribosomal protein, which was the first report of the RpL1 in bacilli. GC-mass and FTIR analyses confirmed the lipopeptide nature of the 10-kDa fragment. Both the extracted fractions (precipitation or "P" and chloroform or "C" fractions) were stable at < 100 °C for 10 min, and their antibacterial effects were preserved for more than 6 months. Despite its non-toxicity, the P fraction had anticancer activities against MCF7 cells. The anticancer and antibacterial properties of B. tequilensis, along with its non-toxicity and stability, have made it a potential candidate for studying the beneficial probiotic properties for humans and drug production.
Collapse
|