1
|
Tian B, Ye P, Zhou X, Hu J, Wang P, Cai M, Yang K, Sun P, Zou X. Gallic Acid Ameliorated Chronic DSS-Induced Colitis Through Gut Microbiota Modulation, Intestinal Barrier Improvement, and Inflammation. Mol Nutr Food Res 2025:e70024. [PMID: 40123223 DOI: 10.1002/mnfr.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/05/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025]
Abstract
SCOPE Gallic acid (GA) is recognized for its purported antiinflammatory properties. GA has been demonstrated to prevent and alleviate the symptoms of chronic colitis through the modulation of the gut microbiota, improvement of the intestinal barrier, and reduction of inflammation. METHODS AND RESULTS In order to determine the mechanism by which GA exerts its protective effect against chronic colitis, mice were induced by dextran sulfate sodium (DSS). The reduction in the disease activity index by 25% and the decrease in colon tissue damage indicated that 36 days of GA intervention alleviated chronic DSS-induced colitis symptoms. GA was observed to mitigate weight loss by 2.5% and the shortening of colon by 17.3%, and to diminish the expression of pivotal proteins within the TLR4/nuclear factor κB (NF-κB) signaling cascades, consequently lowering the generation of inflammatory cytokines. Furthermore, GA effectively corrected the gut microbiota imbalance, increased the content of short-chain fatty acids (SCFAs), which in turn suppressed inflammation, and enhanced tight junction protein expression, thereby strengthening the intestinal barrier. CONCLUSION GA has the capacity to enhance the efficacy of chronic colitis through a multifaceted mechanism, influencing the gut microbiota, intestinal barrier function, and inflammatory processes. The findings highlight the potential of GA as a preventative strategy for chronic colitis.
Collapse
Affiliation(s)
- Baoming Tian
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
- Eco-Industrial Innovation Institute of Zhejiang University of Technology, Quzhou, PR China
| | - Peng Ye
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
- Eco-Industrial Innovation Institute of Zhejiang University of Technology, Quzhou, PR China
| | - Xue Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
| | - Jiangning Hu
- Zhejiang Institute of Modern TCM and Natural Medicine Co., Ltd, Hangzhou, PR China
| | - Peiyi Wang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
| | - Ming Cai
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
- Eco-Industrial Innovation Institute of Zhejiang University of Technology, Quzhou, PR China
| | - Xianguo Zou
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
| |
Collapse
|
2
|
Yang G, Tan X, Zhai Q, Wang Y, Zhang X, Zhao P, Liang F, Lu J, Bao L. Plasma Lipidomics, Gut Microbiota Profile, and Phenotype of Adipose Tissue in an ApoE-/- Mouse Model of Plaque Instability. FRONT BIOSCI-LANDMRK 2025; 30:27236. [PMID: 40152393 DOI: 10.31083/fbl27236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/12/2025] [Accepted: 02/08/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND An appropriate animal model that can simulate the pathological process of atherosclerosis is urgently needed to improve treatment strategies. This study aimed to develop a new atherosclerosis model using ApoE-/- mice and to characterize lipidomics, gut microbiota profiles, and phenotypic alterations in adipose tissue using this model. METHODS After a 14- or 18-week high-fat diet (HFD), male ApoE-/- mice were randomly divided into four groups and treated separately with or without short-term and strong co-stimulation, including ice water bath and intraperitoneal injection of lipopolysaccharide and phenylephrine. As a control group, C57BL/6 mice were fed with conventional chow. The serum lipid levels, aortic arch pathology, adipose tissue phenotypic changes, plasma lipidomics, and 16S rDNA gene sequencing of colon feces were investigated. RESULTS The serum lipid levels were significantly lowered following extended HFD feeding for four weeks. However, co-stimulation increased serum interleukin (IL)-1β levels but did not affect serum lipid profiles. Co-stimulation revealed typical vulnerable atherosclerotic plaque characteristics and defective adipose hypertrophy associated with peroxisome proliferator-activated receptor γ (PPARγ) regulation in adipose tissue and a reduction in mitochondrial uncoupling protein 1 (UCP1) within brown adipose tissue. Plasma lipidomic analysis showed that sphingomyelin (SM), ceramide (Cer), and monohexosylceramide (HexCer) levels in plasma were significantly elevated by HFD feeding, whereas co-stimulation further elevated HexCer levels. Additionally, glycerophosphocholines (16:0/16:0, 18:2/20:4, 18:1/18:1) and HexCer (C12:1, C16:0), Cer (d18:1/16:0), and SM (C16:0) were the most sensitive to co-stimulation. Combined co-stimulation and HFD-fed increased the abundance of Firmicutes, the abundance of f_Erysipelotrichaceae, and the Firmicutes/Bacteroidota ratio but decreased the abundance of microflora promoting bile acid metabolism and short-chain fatty acids (SCFAs) in mouse feces. The results were consistent with the findings of epidemiologic atherosclerotic cardiovascular disease studies. CONCLUSIONS This study established an ApoE-/- mouse atherosclerotic vulnerable plaque model using a multi-index evaluation method. Adipogenic disorders, dysregulation of lipid metabolism at the molecular level, and increasing harmful gut microbiota are significant risk factors for vulnerable plaques, with sphingolipid metabolism receiving the most attention.
Collapse
Affiliation(s)
- Guanlin Yang
- Laboratory of Pharmacology, Zaozhuang Thoracic Hospital, 277500 Zaozhuang, Shandong, China
- School of Basic Medicine, Inner Mongolia Medical University, 010107 Hohhot, Inner Mongolia, China
| | - Xin Tan
- School of Basic Medicine, Inner Mongolia Medical University, 010107 Hohhot, Inner Mongolia, China
| | - Qiong Zhai
- School of Basic Medicine, Inner Mongolia Medical University, 010107 Hohhot, Inner Mongolia, China
| | - Yuewu Wang
- School of Pharmacy, Inner Mongolia Medical University, 010107 Hohhot, Inner Mongolia, China
| | - Xuan Zhang
- School of Basic Medicine, Inner Mongolia Medical University, 010107 Hohhot, Inner Mongolia, China
| | - Pengwei Zhao
- School of Basic Medicine, Inner Mongolia Medical University, 010107 Hohhot, Inner Mongolia, China
| | - Fangyuan Liang
- School of Pharmacy, Inner Mongolia Medical University, 010107 Hohhot, Inner Mongolia, China
| | - Jingkun Lu
- School of Basic Medicine, Inner Mongolia Medical University, 010107 Hohhot, Inner Mongolia, China
| | - LiLi Bao
- School of Basic Medicine, Inner Mongolia Medical University, 010107 Hohhot, Inner Mongolia, China
| |
Collapse
|
3
|
Zhang X, Chan DCL, Zhu J, Sin DZY, Peng Y, Wong MKL, Zhu W, Tsui Y, Haqq AM, Ting JY, Kozyrskyj A, Chan FKL, Ng SC, Tun HM. Early-life antibiotic exposure aggravates hepatic steatosis through enhanced endotoxemia and lipotoxic effects driven by gut Parabacteroides. MedComm (Beijing) 2025; 6:e70104. [PMID: 39968496 PMCID: PMC11832435 DOI: 10.1002/mco2.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 11/13/2024] [Accepted: 12/19/2024] [Indexed: 02/20/2025] Open
Abstract
Compelling evidence supports a link between early-life gut microbiota and the metabolic outcomes in later life. Using an early-life antibiotic exposure model in BALB/c mice, we investigated the life-course impact of prenatal and/or postnatal antibiotic exposures on the gut microbiome of offspring and the development of metabolic dysfunction-associated steatotic liver disease (MASLD). Compared to prenatal antibiotic exposure alone, postnatal antibiotic exposure more profoundly affected gut microbiota development and succession, which led to aggravated endotoxemia and metabolic dysfunctions. This was primarily resulted from the overblooming of gut Parabacteroides and hepatic accumulation of cytotoxic lysophosphatidyl cholines (LPCs), which acted in conjunction with LPS derived from Parabacteroides distasonis (LPS_PA) to induce cholesterol metabolic dysregulations, endoplasmic reticulum (ER) stress and apoptosis. Integrated serum metabolomics, hepatic lipidomics and transcriptomics revealed enhanced glycerophospholipid hydrolysis and LPC production in association with the upregulation of PLA2G10, the gene controlling the expression of the group X secretory Phospholipase A2s (sPLA2-X). Taken together, our results show microbial modulations on the systemic MASLD pathogenesis and hepatocellular lipotoxicity pathways following early-life antibiotic exposure, hence help inform refined clinical practices to avoid any prolonged maternal antibiotic administration in early life and potential gut microbiota-targeted intervention strategies.
Collapse
Affiliation(s)
- Xi Zhang
- Microbiota I‐Center (MagIC)Hong Kong SARChina
- Jockey Club School of Public Health and Primary CareFaculty of Medicine, The Chinese University of Hong KongHong Kong SARChina
- Li Ka Shing Institute of Health SciencesFaculty of Medicine, The Chinese University of Hong KongHong Kong SARChina
- HKU‐Pasteur Research Pole, School of Public HealthLKS Faculty of Medicine, The University of Hong KongHong Kong SARChina
| | - Darren Chak Lun Chan
- HKU‐Pasteur Research Pole, School of Public HealthLKS Faculty of Medicine, The University of Hong KongHong Kong SARChina
| | - Jie Zhu
- Microbiota I‐Center (MagIC)Hong Kong SARChina
| | - Daniel Zhen Ye Sin
- Jockey Club School of Public Health and Primary CareFaculty of Medicine, The Chinese University of Hong KongHong Kong SARChina
- Li Ka Shing Institute of Health SciencesFaculty of Medicine, The Chinese University of Hong KongHong Kong SARChina
| | - Ye Peng
- Microbiota I‐Center (MagIC)Hong Kong SARChina
- Jockey Club School of Public Health and Primary CareFaculty of Medicine, The Chinese University of Hong KongHong Kong SARChina
- Li Ka Shing Institute of Health SciencesFaculty of Medicine, The Chinese University of Hong KongHong Kong SARChina
| | | | - Wenyi Zhu
- Microbiota I‐Center (MagIC)Hong Kong SARChina
- Li Ka Shing Institute of Health SciencesFaculty of Medicine, The Chinese University of Hong KongHong Kong SARChina
- Department of Medicine and TherapeuticsFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Yee Tsui
- HKU‐Pasteur Research Pole, School of Public HealthLKS Faculty of Medicine, The University of Hong KongHong Kong SARChina
| | - Andrea M. Haqq
- Department of PediatricsUniversity of AlbertaEdmontonCanada
| | - Joseph Y. Ting
- Department of PediatricsUniversity of AlbertaEdmontonCanada
| | | | - Francis Ka Leung Chan
- Microbiota I‐Center (MagIC)Hong Kong SARChina
- Centre for Gut Microbiota ResearchThe Chinese University of Hong KongHong Kong SARChina
| | - Siew Chien Ng
- Microbiota I‐Center (MagIC)Hong Kong SARChina
- Li Ka Shing Institute of Health SciencesFaculty of Medicine, The Chinese University of Hong KongHong Kong SARChina
- Department of Medicine and TherapeuticsFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Hein Min Tun
- Microbiota I‐Center (MagIC)Hong Kong SARChina
- Jockey Club School of Public Health and Primary CareFaculty of Medicine, The Chinese University of Hong KongHong Kong SARChina
- Li Ka Shing Institute of Health SciencesFaculty of Medicine, The Chinese University of Hong KongHong Kong SARChina
| |
Collapse
|
4
|
Kang N, Fan Z, Yang L, Shen J, Shen Y, Fang Z, Li B, Yang B, Wang J. Camel Milk Protein Ameliorates Ulcerative Colitis by Modulating Gut Microbiota and Amino Acid Metabolism. Nutrients 2025; 17:780. [PMID: 40077650 PMCID: PMC11902107 DOI: 10.3390/nu17050780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/09/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
The protective effects of the milk fat globule membrane (MFGM) in alleviating inflammation have been reported. However, limited attention has been paid to the key fraction of milk fat globule membrane protein (MFGMP). This study investigated the protective effects of camel MFGMP against dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice. The results revealed that administering 50 mg/kg MFGMP significantly alleviated colonic inflammation, as evidenced by a marked decrease in IL-6, IL-1β, and TNF-α levels, along with pathological damage in DSS-induced mice with UC. MFGMP supplementation partially regulated gut microbiota dysbiosis in mice with UC by increasing α-diversity and the relative abundance of beneficial gut bacteria, such as Lactobacillus, while decreasing the abundance of Akkermansia. Additionally, MFGMP treatment exhibited significant regulatory effects on metabolites, particularly amino acid metabolism, in the feces. Specifically, this treatment restored L-valine to normal physiological levels and increased the concentrations of L-leucine, L-lysine, and L-tyrosine to nearly twice their baseline levels, whereas the concentration of L-tryptophan increased threefold. These upregulated amino acids were negatively correlated with pro-inflammatory cytokines and positively correlated with the anti-inflammatory cytokine IL-10, as indicated by Spearman's correlation analysis. Furthermore, the significant reduction in the mRNA expression levels of WNT-1, β-catenin, and Cyclin D1 suggests that MFGMP exerts a positive effect on UC via the Wnt/β-catenin pathway. These findings indicate that MFGMP exerts a protective effect against UC by modulating intestinal microbiota and amino acid metabolism in mice, with potential implications for treating intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Ning Kang
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (N.K.); (Z.F.); (J.S.); (Y.S.); (Z.F.); (B.L.)
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Zhexin Fan
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (N.K.); (Z.F.); (J.S.); (Y.S.); (Z.F.); (B.L.)
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Functional Food Center, Key Laboratory of Xinjiang Medicinal Plant Resources Utilization, Ministry of Education, Shihezi University, Shihezi 832000, China
| | - Li Yang
- Alashankou Customs Technology Center, Alashankou 833418, China;
| | - Jie Shen
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (N.K.); (Z.F.); (J.S.); (Y.S.); (Z.F.); (B.L.)
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Yuechenfei Shen
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (N.K.); (Z.F.); (J.S.); (Y.S.); (Z.F.); (B.L.)
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Zhifeng Fang
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (N.K.); (Z.F.); (J.S.); (Y.S.); (Z.F.); (B.L.)
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Functional Food Center, Key Laboratory of Xinjiang Medicinal Plant Resources Utilization, Ministry of Education, Shihezi University, Shihezi 832000, China
| | - Baokun Li
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (N.K.); (Z.F.); (J.S.); (Y.S.); (Z.F.); (B.L.)
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Functional Food Center, Key Laboratory of Xinjiang Medicinal Plant Resources Utilization, Ministry of Education, Shihezi University, Shihezi 832000, China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, China
| | - Jiancheng Wang
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (N.K.); (Z.F.); (J.S.); (Y.S.); (Z.F.); (B.L.)
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Functional Food Center, Key Laboratory of Xinjiang Medicinal Plant Resources Utilization, Ministry of Education, Shihezi University, Shihezi 832000, China
| |
Collapse
|
5
|
Wang Q, Im Y, Park J, Lee HL, Ryu DG, Kim H. Eisenia bicyclis Extract Ameliorates Colitis in In Vitro and In Vivo Models Through Modulation of mTOR Axis and Gut Microbiota Composition. Foods 2025; 14:714. [PMID: 40077417 PMCID: PMC11899094 DOI: 10.3390/foods14050714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease of the colon that is associated with dysbiosis in the gut microbiota. Eisenia bicyclis, a marine alga, is known for its anti-inflammatory, antioxidant, and gut microbiota-modulating properties. This study explored the mechanisms by which a 70% ethanol extract of E. bicyclis may alleviate UC, through both in vitro and in vivo experiments. LC-MS/MS analysis revealed eckol, 7-phloroeckol, dieckol, phlorofucofuroeckol A, and fucofuroeckol as key phenolic compounds present in the extract. The administration of E. bicyclis significantly improved symptoms in a dextran sulfate sodium (DSS)-induced colitis mouse model by reducing intestinal shortening, splenomegaly, and histological scores. Both cell and animal studies demonstrated that E. bicyclis suppressed the release of inflammatory cytokines, downregulated the mRNA expression of genes related to the mTOR pathway, and reduced the p-mTOR/mTOR ratio. Microbiota analysis revealed that, while the Firmicutes/Bacteroidetes ratio was elevated in UC mice, E. bicyclis administration normalized this imbalance, with a notable increase in the abundance of beneficial probiotics such as Bifidobacterium bifidum. In conclusion, a phenolic-rich extract of E. bicyclis demonstrates significant potential as a dietary supplement to prevent and mitigate UC by modulating both the mTOR signaling pathway and gut microbiota composition.
Collapse
Affiliation(s)
- Qunzhe Wang
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea; (Q.W.); (Y.I.); (J.P.)
- BK21 FOUR Program: Precision Nutrition Program for Future Global Leaders, Pusan National University, Busan 46241, Republic of Korea
| | - Yuri Im
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea; (Q.W.); (Y.I.); (J.P.)
| | - Jumin Park
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea; (Q.W.); (Y.I.); (J.P.)
- BK21 FOUR Program: Precision Nutrition Program for Future Global Leaders, Pusan National University, Busan 46241, Republic of Korea
| | - Hye Lim Lee
- Department of Internal Medicine, Medical Research Institute, Pusan National University School of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea;
| | - Dae Gon Ryu
- Department of Internal Medicine, Medical Research Institute, Pusan National University School of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea;
| | - Hyemee Kim
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea; (Q.W.); (Y.I.); (J.P.)
| |
Collapse
|
6
|
Hsu KY, Majeed A, Ho CT, Pan MH. Bisdemethoxycurcumin and Curcumin Alleviate Inflammatory Bowel Disease by Maintaining Intestinal Epithelial Integrity and Regulating Gut Microbiota in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3494-3506. [PMID: 39873626 PMCID: PMC11826975 DOI: 10.1021/acs.jafc.4c11101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
Curcuminoids, found in turmeric (Curcuma longa L.), include curcumin (CUR), demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC). Although CUR and DMC are well-studied, the anti-inflammatory effects of BDMC remain less explored. Recent studies highlight BDMC's stronger NF-κB inhibition compared to CUR and DMC in cell models, along with its ability to target pathways associated with inflammatory bowel disease (IBD) in DSS-induced colitis mice, reflected by lower disease activity scores and reduced inflammation. This study assessed CUR and BDMC in a DSS-induced colitis mouse model. Dietary administration of CUR or BDMC strengthened tight junction (TJ) proteins, reduced inflammatory cytokine secretion, and attenuated intestinal inflammatory protein expression, thereby alleviating DSS-induced IBD in mice. Furthermore, gut microbiota and short-chain fatty acid analyses revealed that CUR and BDMC effectively regulated gut microbial imbalance and promoted the relative abundance of butyrate-producing bacteria. Furthermore, CUR showed low absorption and was primarily excreted in feces, while BDMC had higher absorption levels. In conclusion, while both BDMC and CUR have potential as adjunct therapies for IBD, BDMC at a concentration of 0.1% showed strong anti-inflammatory effects and enhanced TJ proteins, suggesting that BDMC, even at lower concentrations than CUR, holds promising therapeutic potential and prospects.
Collapse
Affiliation(s)
- Kai-Yu Hsu
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Anju Majeed
- Sami-Sabinsa
Group Limited, Bengaluru, Karnataka 560058, India
| | - Chi-Tang Ho
- Department
of Food Science, Rutgers University, New Brunswick New Jersey 08901 United States
| | - Min-Hsiung Pan
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
- Department
of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
7
|
Lu S, Tao Z, Wang G, Na K, Wu L, Zhang L, Li X, Guo X. Mannuronate Oligosaccharides Ameliorate Experimental Colitis and Secondary Neurological Dysfunction by Manipulating the Gut-Brain Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2935-2950. [PMID: 39846727 DOI: 10.1021/acs.jafc.4c10378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Microbiota dysfunction induces intestinal disorders and neurological diseases. Mannuronate oligosaccharides (MAOS), a kind of alginate oligosaccharide (AOS), specifically exert efficacy in shaping gut microbiota and relieving cognitive impairment. However, the key regulatory factors involved, such as the specific strains and metabolites as well as their regulatory mechanisms, remain unclear at present. This research investigates how MAOS specifically impact the gut-brain axis in vivo and in vitro. The results showed that pretreatment with MAOS significantly ameliorated dextran sodium sulfate (DSS)-induced colitis and secondary nerve injury. This preventive mechanism operates through the regulation of serum DOPC abundance and the gut-brain axis, achieved by inhibiting the TLR4/MyD88/NF-κB pathway. These findings underscore the crucial role of dietary MAOS in the prevention of colitis and neurological disorders, providing a rationale for the application of MAOS in disease prevention and functional food ingredients.
Collapse
Affiliation(s)
- Shuang Lu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan 430074, China
| | - Zhengxiong Tao
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan 430074, China
| | - Gan Wang
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan 430074, China
| | - Kai Na
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan 430074, China
| | - Lisha Wu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan 430074, China
| | - Li Zhang
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan 430074, China
| | - Xiangyu Li
- Hubei Province Nutrition Chemicals Biosynthetic Engineering Technology Research Center, Wuhan 430073, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan 430074, China
| |
Collapse
|
8
|
Li M, Wang Q, Zhang X, Li K, Niu M, Zhao S. Wheat β-glucan reduces obesity and hyperlipidemia in mice with high-fat and high-salt diet by regulating intestinal flora. Int J Biol Macromol 2025; 288:138754. [PMID: 39674453 DOI: 10.1016/j.ijbiomac.2024.138754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/28/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Unbalanced diets, characterized by high fat or high salt content, are contributing to the obesity epidemic. Wheat bran, recognized as a promising by-product, has the potential to regulate metabolic disorders (MD) associated with obesity. Beta-glucan (BG) has multiple biological activities, but the effect of BG in wheat bran on MD remains unclear. Therefore, this study aimed to investigate the effects of wheat BG (WBG) on dyslipidemia and gut microbiota dysregulation in high fat (HF) or high fat-high salt (HFHS) fed mice. The results demonstrated that WBG significantly reduced the weight gain of mice fed with HF and HFHS diets (from 9.74 g to 2.43 g and from 6.74 g to 2.48 g, respectively). Additionally, WBG led to significant reductions in TG (26.26 % in HFG and 33.78 % in HFHSG) and TC (34.69 % in HFG) levels. The liver and adipocyte damage were also reduced after dietary supplementation with WBG. Moreover, WBG significantly reduced Firmicutes/Bacteroidetes ratio (9.52 at HF, 0.62 at HFG, 17.38 at HFHS and 0.61 at HFHSG). Concurrently, there was a reduction in acetic acid levels observed at rates of 26.11 % for HF and 32.18 % for HFHS. Additionally, WBG reduced the abundance of Coriobacteriaceae UCG-002, Romboutsia, Faecalibaculum, and Enterorhabdus that positively associated with obesity. These changes in gut microbiota may explain the anti-obesity and anti-hyperlipidemia effects of WBG. In conclusion, our findings suggest that WBG is a promising dietary supplement. Our research can provide new insights into the development of foods rich in dietary fiber.
Collapse
Affiliation(s)
- Min Li
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Qingshan Wang
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuwei Zhang
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Kaikai Li
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Niu
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratoty, Wuhan 430070, China; Guangxi Yangxiang Co., Ltd., Guigang 537100, China.
| | - Siming Zhao
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratoty, Wuhan 430070, China
| |
Collapse
|
9
|
Beauchemin ET, Hunter C, Maurice CF. Dextran sodium sulfate-induced colitis alters the proportion and composition of replicating gut bacteria. mSphere 2025; 10:e0082524. [PMID: 39723822 PMCID: PMC11774032 DOI: 10.1128/msphere.00825-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/15/2024] [Indexed: 12/28/2024] Open
Abstract
The bacteria living in the human gut are essential for host health. Though the composition and metabolism of these bacteria are well described in both healthy hosts and those with intestinal disease, less is known about the metabolic activity of the gut bacteria prior to, and during, disease development-especially regarding gut bacterial replication. Here, we use a recently developed single-cell technique alongside existing metagenomics-based tools to identify, track, and quantify replicating gut bacteria both ex vivo and in situ in the dextran sodium sulfate (DSS) mouse model of colitis. We show that the proportion of replicating gut bacteria decreases when mice have the highest levels of inflammation and returns to baseline levels as mice begin recovering. In addition, we report significant alterations in the composition of the replicating gut bacterial community ex vivo during colitis development. On the taxa level, we observe significant changes in the abundance of taxa such as the mucus-degrading Akkermansia and the poorly described Erysipelatoclostridium genus. We further demonstrate that many taxa exhibit variable replication rates in situ during colitis, including Akkermansia muciniphila. Lastly, we show that colitis development is positively correlated with increases in the presence and abundance of bacteria in situ which are predicted to be fast replicators. This could suggest that taxa with the potential to replicate quickly may have an advantage during intestinal inflammation. These data support the need for additional research using activity-based approaches to further characterize the gut bacterial response to intestinal inflammation and its consequences for both the host and the gut microbial community.IMPORTANCEIt is well known that the bacteria living inside the gut are important for human health. Indeed, the type of bacteria that are present and their metabolism are different in healthy people versus those with intestinal disease. However, less is known about how these gut bacteria are replicating, especially as someone begins to develop intestinal disease. This is particularly important as it is thought that metabolically active gut bacteria may be more relevant to health. Here, we begin to address this gap using several complementary approaches to characterize the replicating gut bacteria in a mouse model of intestinal inflammation. We reveal which gut bacteria are replicating, and how quickly, as mice develop and recover from inflammation. This work can serve as a model for future research to identify how actively growing gut bacteria may be impacting health, or why these particular bacteria tend to thrive during intestinal inflammation.
Collapse
Affiliation(s)
- Eve T. Beauchemin
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Claire Hunter
- Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, England, United Kingdom
| | - Corinne F. Maurice
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- McGill Centre for Microbiome Research, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Chen L, Ye Z, Li J, Wang L, Chen Y, Yu M, Han J, Huang J, Li D, Lv Y, Xiong K, Tian D, Liao J, Seidler U, Xiao F. Gut bacteria Prevotellaceae related lithocholic acid metabolism promotes colonic inflammation. J Transl Med 2025; 23:55. [PMID: 39806416 PMCID: PMC11727794 DOI: 10.1186/s12967-024-05873-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The conversion of primary bile acids to secondary bile acids by the gut microbiota has been implicated in colonic inflammation. This study investigated the role of gut microbiota related bile acid metabolism in colonic inflammation in both patients with inflammatory bowel disease (IBD) and a murine model of dextran sulfate sodium (DSS)-induced colitis. METHODS Bile acids in fecal samples from patients with IBD and DSS-induced colitis mice, with and without antibiotic treatment, were analyzed using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS). The composition of the microbiota in fecal samples from IBD patients and DSS-colitis mice was characterized via Illumina MiSeq sequencing of the bacterial 16S rRNA gene V3-V4 region. Metagenomic profiling further identified metabolism-related gene signatures in stool samples from DSS-colitis mice. Histological analysis, quantitative PCR (qPCR) and Western Blotting were conducted on colonic samples from DSS-induced colitis mice to assess colonic inflammation, mucosal barrier integrity, and associated signaling pathways. The multivariate analysis of bile acids was conducted using Soft Independent Modelling of Class Analogy (SIMCA, Umetrics, Sweden). The relation between the relative abundance of specific phyla/genera and bile acid concentration was assess through Spearman's correlation analyses. Finally, lithocholic acid (LCA), the key bile acid, was administered via gavage to evaluate its effect on colonic inflammation and mucosal barrier integrity. RESULTS In patients with IBD, the composition of colonic bile acids and gut microbiota was altered. Moreover, changes in the gut microbiota further modulate the composition of bile acids in the intestine. As the gut microbiota continues to shift, the bile acid profile undergoes additional alterations. The aforementioned alterations were also observed in mice with DSS-induced colitis. The study revealed a correlation between dysbiosis of the gut microbiota and modifications in the profile of colonic bile acids, notably LCA observed in both patients with IBD and mice with DSS-induced colitis. Through multivariate analysis, LCA was identified as the key bile acid that significantly affects colonic inflammation and the integrity of mucosal barrier. Subsequent experiments confirmed that LCA supplementation effectively mitigated the inhibitory effects of gut microbiota on colitis progression in mice, primarily through the activation of the sphingosine-1-phosphate receptor 2 (S1PR2)/NF-κB p65 signaling pathway. Analysis of the microbiome and metagenomic data revealed changes in the gut microbiota, notably an increased abundance of an unclassified genus within the family Prevotellaceae in DSS-induced colitis mice. Furthermore, a positive correlation was observed between the relative abundance of Prevotellaceae and bile acid biosynthesis pathways, as well as colonic LCA level. CONCLUSIONS These findings suggest that LCA and its positively correlated gut bacteria, Prevotellaceae, are closely associated with intestinal inflammation. Targeting colonic inflammation may involve inhibiting LCA and members of the Prevotellaceae family as potential therapeutic strategies.
Collapse
Affiliation(s)
- Liping Chen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Zhenghao Ye
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | - Junhua Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijia Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Yu Chen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Meiping Yu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Jian Han
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Jiangeng Huang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongyan Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongling Lv
- Meiyitian Biopharmaceutical (Wuhan) Ltd., Wuhan, China
| | - Kai Xiong
- Meiyitian Biopharmaceutical (Wuhan) Ltd., Wuhan, China
| | - De'an Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Jiazhi Liao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Ursula Seidler
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | - Fang Xiao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China.
| |
Collapse
|
11
|
Kundo NK, Kitada K, Fujisawa Y, Xi C, Akumwami S, Rahman MM, Seishima R, Nakamura K, Matsunaga T, Hossain A, Morishita A, Titze J, Rahman A, Nishiyama A. Blood pressure alteration associated with abnormal body electrolyte and water balance in colitis mice. Hypertens Res 2024; 47:3147-3157. [PMID: 39256526 DOI: 10.1038/s41440-024-01874-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/24/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024]
Abstract
Previous studies reported that there is an association between abnormal body fluid balance and prognosis in colitis patients. However, it remains to be clarified the effects of colitis on characteristics of body electrolytes or water content, including alternation in blood pressure. In this study, we examined the effects of colon injury on body water balance and blood pressure in the dextran sodium sulfate (DSS)-induced colitis mouse model. We evaluated body electrolytes and water content, blood pressure, and urea-associated water conservation in DSS mice. By 5 days after the treatment, DSS mice exhibited diarrhea but relatively maintained body weight and total body sodium, potassium, and water content by increases in water intake and hepatic ureagenesis. On 7 days after DSS treatment, when colitis becomes severe, DSS mice significantly decreased food and water intake, and body weight but significantly increased relative total body sodium, potassium, and water content per dry mass. Notably, DSS induced more total body dry mass loss relative to water loss. These body electrolytes and water accumulation on day 7 were associated with a reduction in urinary osmole excretion and urine volume accompanied by renal urea accumulation. DSS mice significantly increased blood pressure by day 5 and then decreased on day 7. These findings suggest that body electrolyte and fluid imbalance and alternations in blood pressure in colitis vary with the stage and severity of the condition. Assessment and correction of electrolyte and water content at the tissue level would be important to improve the prognosis of colitis.
Collapse
Affiliation(s)
- Netish Kumar Kundo
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 7610793, Kagawa, Japan
- Department of Pharmacy, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Kento Kitada
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 7610793, Kagawa, Japan.
| | - Yoshihide Fujisawa
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 7610793, Kagawa, Japan
| | - Chen Xi
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 7610793, Kagawa, Japan
| | - Steeve Akumwami
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 7610793, Kagawa, Japan
- Department of Anaesthesiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Md Moshiur Rahman
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 7610793, Kagawa, Japan
| | - Ryo Seishima
- Department of Surgery, Keio University School of Medicine, 1608582, Tokyo, Japan
| | - Kimihiko Nakamura
- Department of Surgery, Kanto Central Hospital, 1588531, Tokyo, Japan
| | - Toru Matsunaga
- Division of Hospital Pathology, Faculty of Medicine, Kagawa University, 7610793, Kagawa, Japan
| | - Akram Hossain
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 7610793, Kagawa, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, 7610793, Kagawa, Japan
| | - Jens Titze
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 169857, Singapore, Singapore
- Division of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremberg, 91054, Erlangen, Germany
- Division of Nephrology, Duke University Medical Center, Durham, 27705 NC, NC, USA
| | - Asadur Rahman
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 7610793, Kagawa, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 7610793, Kagawa, Japan
| |
Collapse
|
12
|
Dong Y, Gai Z, Han M, Zhao Y. Lacticaseibacillus rhamnosus LRa05 mediates dynamic regulation of intestinal microbiota in mice with low-dose DSS-induced chronic mild inflammation. Front Microbiol 2024; 15:1483104. [PMID: 39444683 PMCID: PMC11496787 DOI: 10.3389/fmicb.2024.1483104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
Aim This study aimed to investigate the effects of low-dose dextran sulfate sodium (DSS) on the induction of chronic mild inflammation in mice and to evaluate the therapeutic potential of Lacticaseibacillus rhamnosus LRa05 (LRa05) to ameliorate the associated effects. The focus was on investigating changes in inflammatory, gut microbiota, serum lipopolysaccharide (LPS) and inflammatory cytokines. Methods Mice were exposed to a low-dose of DSS to induce chronic mild inflammation and LRa05 was administered as a probiotic intervention. The experiment included determination of body weight, colon length, histological examinations, and analysis of LPS and inflammatory cytokines in serum over 12 weeks. In addition, liver function, oxidative stress and intestinal microbiota were examined to understand the comprehensive effects of DSS and LRa05. Results Low-dose DSS did not lead to significant changes in body weight, colon length or histologic signs of inflammation. However, it led to a significant increase in serum levels of LPS, tumor necrosis factor-alpha (TNFα) and interleukin-6 (IL6). Intervention with LRa05 effectively attenuated these changes, particularly by lowering LPS levels and normalizing inflammatory cytokines. In addition, LRa05 protected against DSS-induced liver function damage and attenuated oxidative stress in the liver. Analysis of the gut microbiota demonstrated dynamic regulatory effects, where LRa05 intervention led to significant shifts in microbial populations, promoting a balanced microbiota profile. These changes are indicative of dynamic regulation by LRa05 in response to chronic mild inflammation, highlighting the probiotic's role in modulating the gut environment. Conclusion The LRa05 intervention showed multi-layered regulation in the chronic mild inflammation model by reducing inflammatory cytokines, maintaining liver function and restoring the balance of the gut microbiota. This provides experimental support for the potential use of LRa05 in chronic inflammation-related diseases and emphasizes the importance of probiotics for overall health. The study suggests that LRa05 is a potential therapeutic agent for the treatment of chronic inflammation associated with gut dysbiosis.
Collapse
Affiliation(s)
- Yao Dong
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou, China
| | - Zhonghui Gai
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou, China
| | - Mei Han
- Department of Food Quality and Safety, Shanghai Business School, Shanghai, China
| | - Yunjiao Zhao
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Chen Y, Ye S, Shi J, Wang H, Deng G, Wang G, Wang S, Yuan Q, Yang L, Mou T. Functional evaluation of pure natural edible Ferment: protective function on ulcerative colitis. Front Microbiol 2024; 15:1367630. [PMID: 38952444 PMCID: PMC11215050 DOI: 10.3389/fmicb.2024.1367630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Purpose To investigate the therapeutic efficiency of a novel drink termed "Ferment" in cases of ulcerative colitis (UC) and its influence on the gut microbiota. Method In this study, we developed a complex of mixed fruit juice and lactic acid bacteria referred to as Ferment. Ferment was fed to mice for 35 days, before inducing UC with Dextran Sulfate Sodium Salt. We subsequently investigated the gut microbiome composition using 16S rRNA sequencing. Result After Ferment treatment, mouse body weight increased, and animals displayed less diarrhea, reduced frequency of bloody stools, and reduced inflammation in the colon. Beneficial bacteria belonging to Ileibacterium, Akkermansia, and Prevotellacea were enriched in the gut after Ferment treatment, while detrimental organisms including Erysipelatoclostridium, Dubosiella, and Alistipes were reduced. Conclusion These data place Ferment as a promising dietary candidate for enhancing immunity and protecting against UC.
Collapse
Affiliation(s)
- Yanjun Chen
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Cancer, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shengzhi Ye
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Cancer, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaolong Shi
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Cancer, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Wang
- First Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Guangxu Deng
- Department of Gastrointestinal and Anorectal, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| | | | - Shijie Wang
- College of Foods Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
- Junlebao Dairy Group Co., Ltd., Shijiazhuang, China
| | - Qingbin Yuan
- Junlebao Dairy Group Co., Ltd., Shijiazhuang, China
| | - Lunan Yang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingyu Mou
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Cancer, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Olate-Briones A, Albornoz-Muñoz S, Rodríguez-Arriaza F, Rodríguez-Vergara V, Aguirre JM, Liu C, Peña-Farfal C, Escobedo N, Herrada AA. Yerba Mate ( Ilex paraguariensis) Reduces Colitis Severity by Promoting Anti-Inflammatory Macrophage Polarization. Nutrients 2024; 16:1616. [PMID: 38892549 PMCID: PMC11174081 DOI: 10.3390/nu16111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Yerba Mate (YM) (Ilex paraguariensis) is a natural herbal supplement with a well-described anti-inflammatory capacity and beneficial effects in different inflammatory contexts such as insulin resistance or obesity. However, whether YM could improve other inflammatory conditions such as colitis or the immune cell population that can be modulated by this plant remains elusive. Here, by using 61 male and female C57BL/6/J wild-type (WT) mice and the dextran sodium sulfate (DSS)-induced acute colitis model, we evaluated the effect of YM on colitis symptoms and macrophage polarization. Our results showed that the oral administration of YM reduces colitis symptoms and improves animal survival. Increasing infiltration of anti-inflammatory M2 macrophage was observed in the colon of the mice treated with YM. Accordingly, YM promoted M2 macrophage differentiation in vivo. However, the direct administration of YM to bone marrow-derived macrophages did not increase anti-inflammatory polarization, suggesting that YM, through an indirect mechanism, is able to skew the M1/M2 ratio. Moreover, YM consumption reduced the Eubacterium rectale/Clostridium coccoides and Enterobacteriaceae groups and increased the Lactobacillus/Lactococcus group in the gut microbiota. In summary, we show that YM promotes an immunosuppressive environment by enhancing anti-inflammatory M2 macrophage differentiation, reducing colitis symptoms, and suggesting that YM consumption may be a good cost-effective treatment for ulcerative colitis.
Collapse
Affiliation(s)
- Alexandra Olate-Briones
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile; (A.O.-B.); (S.A.-M.); (F.R.-A.); (V.R.-V.)
| | - Sofía Albornoz-Muñoz
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile; (A.O.-B.); (S.A.-M.); (F.R.-A.); (V.R.-V.)
| | - Francisca Rodríguez-Arriaza
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile; (A.O.-B.); (S.A.-M.); (F.R.-A.); (V.R.-V.)
| | - Valentina Rodríguez-Vergara
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile; (A.O.-B.); (S.A.-M.); (F.R.-A.); (V.R.-V.)
| | - Juan Machuca Aguirre
- Investigación y Desarrollo Tecnológico Temuco (IDETECO), Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Av. Alemania 01090, Temuco 4810101, Chile; (J.M.A.); (C.P.-F.)
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Carlos Peña-Farfal
- Investigación y Desarrollo Tecnológico Temuco (IDETECO), Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Av. Alemania 01090, Temuco 4810101, Chile; (J.M.A.); (C.P.-F.)
| | - Noelia Escobedo
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile; (A.O.-B.); (S.A.-M.); (F.R.-A.); (V.R.-V.)
| | - Andrés A. Herrada
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile; (A.O.-B.); (S.A.-M.); (F.R.-A.); (V.R.-V.)
| |
Collapse
|
15
|
Wu YQ, Zou ZP, Zhou Y, Ye BC. Dual engineered bacteria improve inflammatory bowel disease in mice. Appl Microbiol Biotechnol 2024; 108:333. [PMID: 38739270 DOI: 10.1007/s00253-024-13163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
Currently, there are many different therapies available for inflammatory bowel disease (IBD), including engineered live bacterial therapeutics. However, most of these studies focus on producing a single therapeutic drug using individual bacteria, which may cause inefficacy. The use of dual drugs can enhance therapeutic effects. However, expressing multiple therapeutic drugs in one bacterial chassis increases the burden on the bacterium and hinders good secretion and expression. Therefore, a dual-bacterial, dual-drug expression system allows for the introduction of two probiotic chassis and enhances both therapeutic and probiotic effects. In this study, we constructed a dual bacterial system to simultaneously neutralize pro-inflammatory factors and enhance the anti-inflammatory pathway. These bacteria for therapy consist of Escherichia coli Nissle 1917 that expressed and secreted anti-TNF-α nanobody and IL-10, respectively. The oral administration of genetically engineered bacteria led to a decrease in inflammatory cell infiltration in colon and a reduction in the levels of pro-inflammatory cytokines. Additionally, the administration of engineered bacteria did not markedly aggravate gut fibrosis and had a moderating effect on intestinal microbes. This system proposes a dual-engineered bacterial drug combination treatment therapy for inflammatory bowel disease, which provides a new approach to intervene and treat IBD. KEY POINTS: • The paper discusses the effects of using dual engineered bacteria on IBD • Prospects of engineered bacteria in the clinical treatment of IBD.
Collapse
Affiliation(s)
- Yong-Qi Wu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhen-Ping Zou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying Zhou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
16
|
Yang C, Merlin D. Unveiling Colitis: A Journey through the Dextran Sodium Sulfate-induced Model. Inflamm Bowel Dis 2024; 30:844-853. [PMID: 38280217 PMCID: PMC11063560 DOI: 10.1093/ibd/izad312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 01/29/2024]
Abstract
Animal models of inflammatory bowel disease (IBD) are valuable tools for investigating the factors involved in IBD pathogenesis and evaluating new therapeutic options. The dextran sodium sulfate (DSS)-induced model of colitis is arguably the most widely used animal model for studying the pathogenesis of and potential treatments for ulcerative colitis (UC), which is a primary form of IBD. This model offers several advantages as a research tool: it is highly reproducible, relatively easy to generate and maintain, and mimics many critical features of human IBD. Recently, it has also been used to study the role of gut microbiota in the development and progression of IBD and to investigate the effects of other factors, such as diet and genetics, on colitis severity. However, although DSS-induced colitis is the most popular and flexible model for preclinical IBD research, it is not an exact replica of human colitis, and some results obtained from this model cannot be directly applied to humans. This review aims to comprehensively discuss different factors that may be involved in the pathogenesis of DSS-induced colitis and the issues that should be considered when using this model for translational purposes.
Collapse
Affiliation(s)
- Chunhua Yang
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, GA, 30303, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, 30033, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, GA, 30303, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, 30033, USA
| |
Collapse
|
17
|
Huang Y, Zhang P, Han S, Hu B, Zhang Q, He H. Effect of Enteromorpha polysaccharides on gut-lung axis in mice infected with H5N1 influenza virus. Virology 2024; 593:110031. [PMID: 38401339 DOI: 10.1016/j.virol.2024.110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Enteromorpha polysaccharides (EPPs) have been reported to have antiviral and anti-inflammatory properties. To explore the effect of EPPs on H5N1-infected mice, mice were pretreated with EPPs before being infected with the H5N1 influenza virus intranasally. H5N1 infection resulted in body-weight loss, pulmonary and intestinal damage, and an imbalance of gut microbiota in mice. As a result of the inclusion of EPPs, the body weight of mice recovered and pathological damage to the lung and intestine was reduced. EPPs also diminished inflammation by drastically lowering the expression of proinflammatory cytokines in lungs and intestines. H5N1 infection reduced bacterial diversity, and the abundance of pathogenic bacteria such as Desulfovibrio increased. However, the beneficial bacteria Alistipes rebounded in the groups which received EPPs before the infection. The modulation of the gut-lung axis may be related to the mechanism of EPPs in antiviral and anti-inflammatory responses. EPPs have shown potential in protecting the host from the influenza A virus infection.
Collapse
Affiliation(s)
- Yanyi Huang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Peiyang Zhang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Bin Hu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qingxun Zhang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
18
|
Fu Q, Ma X, Li S, Shi M, Song T, Cui J. New insights into the interactions between the gut microbiota and the inflammatory response to ulcerative colitis in a mouse model of dextran sodium sulfate and possible mechanisms of action for treatment with PE&AFWE. Animal Model Exp Med 2024; 7:83-97. [PMID: 38664929 PMCID: PMC11079155 DOI: 10.1002/ame2.12405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), is a heterogeneous state of chronic intestinal inflammation. Intestinal innate immunity, including innate immune cells, defends against pathogens and excessive entry of gut microbiota, while preserving immune tolerance to resident intestinal microbiota, and may be characterized by its capacity to produce a rapid and nonspecific reaction. The association between microbiota dysbiosis and the pathogenesis of IBD is complex and dynamic. When the intestinal ecosystem is in dysbiosis, the reduced abundance and diversity of intestinal gut microbiota make the host more vulnerable to the attack of exogenous and endogenous pathogenic gut microbiota. The aim of our study was to comprehensively assess the relationship between microbial populations within UC, the signaling pathways of pathogenic gut microbe therein and the inflammatory response, as well as to understand the effects of using PE&AFWE (poppy extract [Papaver nudicaule L.] and Artemisia frigida Willd. extract) on UC modulation. METHODS A UC mouse model was established by inducing SPF-grade C57BL/6 mice using dextrose sodium sulfate (DSS). Based on metagenomic sequencing to characterize the gut microbiome, the relationship between gut microbiota dysbiosis and gut microbiota was further studied using random forest and Bayesian network analysis methods, as well as histopathological analysis. RESULTS (1) We found that the 5 gut microbiota with the highest relative abundance of inflammatory bowel disease UC model gut microbiota were consistent with the top 5 ranked natural bacteria. There were three types of abundance changes in the model groups: increases (Chlamydiae/Proteobacteria and Deferribacteres), decreases (Firmicutes), and no significant changes (Bacteroidetes). The UC model group was significantly different from the control group, with 1308 differentially expressed species with abundance changes greater than or equal to 2-fold. (2) The proportion of the fecal flora in the UC group decreased by 37.5% in the Firmicutes and increased by 14.29% in the proportion of Proteobacteria compared to the control group before treatment. (3) The significantly enriched and increased signaling pathways screened were the 'arachidonic acid metabolic pathway' and the 'phagosomal pathway', which both showed a decreasing trend after drug administration. (4) Based on the causal relationship between different OTUs and the UC model/PE&AFWE administration, screening for directly relevant OTU networks, the UC group was found to directly affect OTU69, followed by a cascade of effects on OTU12, OTU121, OTU93, and OTU7, which may be the pathway of action that initiated the pathological changes in normal mice. (5) We identified a causal relationship between common differentially expressed OTUs and PE&AFWE and UC in the pre- and post-PE&AFWE-treated groups. Thereby, we learned that PE&AFWE can directly affect OTU90, after which it inhibits UC, inhibiting the activity of arachidonic acid metabolic pathway by affecting OTU118, which in turn inhibits the colonization of gut microbiota by OTU93 and OTU7. (6) Histopathological observation and scoring (HS) of the colon showed that there was a significant difference between the model group and the control group (p < 0.001), and that there was a significant recovery in both the sulfasalazine (SASP)and the PE&AFWE groups after the administration of the drug (p < 0.0001). CONCLUSION We demonstrated causal effects and inflammatory metabolic pathways in gut microbiota dysbiosis and IBD, with five opportunistic pathogens directly contributing to IBD. PE&AFWE reduced the abundance of proteobacteria in the gut microbiota, and histopathology showed significant improvement.
Collapse
Affiliation(s)
- Qianhui Fu
- Key Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyMinzu University of ChinaBeijingChina
| | - Xiaoqin Ma
- Key Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyMinzu University of ChinaBeijingChina
| | - Shuchun Li
- Key Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyMinzu University of ChinaBeijingChina
| | - Mengni Shi
- Key Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyMinzu University of ChinaBeijingChina
| | - Tianyuan Song
- Key Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyMinzu University of ChinaBeijingChina
| | - Jian Cui
- Key Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyMinzu University of ChinaBeijingChina
| |
Collapse
|
19
|
Zhou T, Wu J, Tang H, Liu D, Jeon BH, Jin W, Wang Y, Zheng Y, Khan A, Han H, Li X. Enhancing tumor-specific recognition of programmable synthetic bacterial consortium for precision therapy of colorectal cancer. NPJ Biofilms Microbiomes 2024; 10:6. [PMID: 38245564 PMCID: PMC10799920 DOI: 10.1038/s41522-024-00479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Probiotics hold promise as a potential therapy for colorectal cancer (CRC), but encounter obstacles related to tumor specificity, drug penetration, and dosage adjustability. In this study, genetic circuits based on the E. coli Nissle 1917 (EcN) chassis were developed to sense indicators of tumor microenvironment and control the expression of therapeutic payloads. Integration of XOR gate amplify gene switch into EcN biosensors resulted in a 1.8-2.3-fold increase in signal output, as confirmed by mathematical model fitting. Co-culturing programmable EcNs with CRC cells demonstrated a significant reduction in cellular viability ranging from 30% to 50%. This approach was further validated in a mouse subcutaneous tumor model, revealing 47%-52% inhibition of tumor growth upon administration of therapeutic strains. Additionally, in a mouse tumorigenesis model induced by AOM and DSS, the use of synthetic bacterial consortium (SynCon) equipped with multiple sensing modules led to approximately 1.2-fold increased colon length and 2.4-fold decreased polyp count. Gut microbiota analysis suggested that SynCon maintained the abundance of butyrate-producing bacteria Lactobacillaceae NK4A136, whereas reducing the level of gut inflammation-related bacteria Bacteroides. Taken together, engineered EcNs confer the advantage of specific recognition of CRC, while SynCon serves to augment the synergistic effect of this approach.
Collapse
Affiliation(s)
- Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jingyuan Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Haibo Tang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Dali Liu
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, USA
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Korea
| | - Weilin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yiqing Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | | | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Huawen Han
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
20
|
Kim MJ, Jung DR, Lee JM, Kim I, Son H, Kim ES, Shin JH. Microbial dysbiosis index for assessing colitis status in mouse models: A systematic review and meta-analysis. iScience 2024; 27:108657. [PMID: 38205250 PMCID: PMC10777064 DOI: 10.1016/j.isci.2023.108657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/07/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024] Open
Abstract
Although countless gut microbiome studies on colitis using mouse models have been carried out, experiments with small sample sizes have encountered reproducibility limitations because of batch effects and statistical errors. In this study, dextran-sodium-sulfate-induced microbial dysbiosis index (DiMDI) was introduced as a reliable dysbiosis index that can be used to assess the state of microbial dysbiosis in DSS-induced mouse models. Meta-analysis of 189 datasets from 11 independent studies was performed to construct the DiMDI. Microbial dysbiosis biomarkers, Muribaculaceae, Alistipes, Turicibacter, and Bacteroides, were selected through four different feature selection methods and used to construct the DiMDI. This index demonstrated a high accuracy of 82.3% and showed strong robustness (88.9%) in the independent cohort. Therefore, DiMDI may be used as a standard for assessing microbial imbalance in DSS-induced mouse models and may contribute to the development of reliable colitis microbiome studies in mouse experiments.
Collapse
Affiliation(s)
- Min-Ji Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Da-Ryung Jung
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji-Min Lee
- Cell & Matrix Research Institute, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Ikwhan Kim
- NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea
| | - HyunWoo Son
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eun Soo Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
21
|
Miyashita A, Xia Y, Kuda T, Yamamoto M, Nakamura A, Takahashi H. Effects of Sichuan pepper (huājiāo) powder on disease activity and caecal microbiota of dextran sodium sulphate-induced inflammatory bowel disease mouse model. Mol Biol Rep 2024; 51:126. [PMID: 38236446 DOI: 10.1007/s11033-023-09103-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Sichuan pepper [Zanthoxylum bungeanum; huājiāo (HJ)] is a widely used spice in China and has better antioxidative, anti-glycation, and bile acid-lowering properties than cumin and coriander seeds. HJ affects inflammation-related cytokines and caecal microbiota in mice fed a low-fibre and high-sucrose diet. METHODS AND RESULTS To determine the ameliorative effect of HJ on inflammatory bowel disease, C57BL/6 mice were divided into three groups and fed distilled water (control) or 3% (w/v) dextran sodium sulphate (DSS) in drinking water with normal chow containing 0% or 5% (w/w) HJ powder for seven days. After 6 days of feeding, diarrhoea, decreased body weight, and blood in faeces were observed in the DSS group. DSS treatment increased the spleen weight and damaged the colon tissue. These inflammatory indices were inhibited by HJ treatment. Amplicon sequencing of the 16S rDNA (V4) gene of the caecal content revealed a decrease in the alpha diversity (Simpson index D) in the DSS treatment group compared to the control group. The abundance of caecal Desulfovibrio, an inflammation-related genus, was higher and the caecal Lachnospiraceae and Bacteroides levels were lower in the DSS-treated mice than those in the control mice. However, HJ suppressed the DSS-induced changes in the caecal microbiota. CONCLUSION HJ intake contributes to the reduction in inflammation and maintenance of the gut microbiota. However, the strong antioxidant properties of phenolic compounds and fermentability of water-soluble dietary fibres in HJ and their relationship with other functional properties warrant further investigation.
Collapse
Affiliation(s)
- Ayumi Miyashita
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Yumeng Xia
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan.
| | - Mahiro Yamamoto
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Ayaka Nakamura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Hajime Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| |
Collapse
|
22
|
Giatti S, Diviccaro S, Cioffi L, Cosimo Melcangi R. Post-Finasteride Syndrome And Post-Ssri Sexual Dysfunction: Two Clinical Conditions Apparently Distant, But Very Close. Front Neuroendocrinol 2024; 72:101114. [PMID: 37993021 DOI: 10.1016/j.yfrne.2023.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/31/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Post-finasteride syndrome and post-SSRI sexual dysfunction, are two poorly explored clinical conditions in which men treated for androgenetic alopecia with finasteride or for depression with SSRI antidepressants show persistent side effects despite drug suspension (e.g., sexual dysfunction, psychological complaints, sleep disorders). Because of some similarities in the symptoms, common pathological mechanisms are proposed here. Indeed, as discussed, clinical studies and preclinical data obtained so far suggest an important role for brain modulators (i.e., neuroactive steroids), neurotransmitters (i.e., serotonin, and cathecolamines), and gut microbiota in the context of the gut-brain axis. In particular, the observed interconnections of these signals in these two clinical conditions may suggest similar etiopathogenetic mechanisms, such as the involvement of the enzyme converting norepinephrine into epinephrine (i.e., phenylethanolamine N-methyltransferase). However, despite the current efforts, more work is still needed to advance the understanding of these clinical conditions in terms of diagnostic markers and therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
23
|
Li J, Cui Z, Wei M, Almutairi MH, Yan P. Omics analysis of the effect of cold normal saline stress through gastric gavage on LPS induced mice. Front Microbiol 2023; 14:1256748. [PMID: 38163070 PMCID: PMC10755949 DOI: 10.3389/fmicb.2023.1256748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
Cold stress is a significant environmental stimulus that negatively affects the health, production, and welfare of animals and birds. However, the specific effects of cold stimulation combined with lipopolysaccharide (LPS) on the mouse intestine remain poorly understood. Therefore, we designed this research to explore the effect of cold stimulation + LPS on mice intestine via microbiome and microbiota sequencing. Forty-eight mice were randomly divided into four experimental groups (n = 12): Control (CC), LPS-induced (CL), cold normal saline-induced (MC) and LPS + cold normal saline-induced (ML). Our results showed body weight was similar among different groups of mice. However, the body weight of mice in groups CC and CL were slightly higher compared to those in groups MC and ML. The results of gene expressions reflected that CL and ML exposure caused gut injury and barrier dysfunction, as evident by decreased ZO-1, OCCLUDIN (P < 0.01), and CASPASE-1 (P < 0.01) expression in the intestine of mice. Moreover, we found that cold stress induced oxidative stress in LPS-challenged mice by increasing malondialdehyde (MDA) accumulation and decreasing the antioxidant capacity [glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), total and antioxidant capacity (T-AOC)]. The cold stress promoted inflammatory response by increased IL-1β in mice treated with cold normal saline + LPS. Whereas, microbiome sequencing revealed differential abundance in four phyla and 24 genera among the mouse groups. Metabolism analysis demonstrated the presence of 4,320 metabolites in mice, with 43 up-regulated and 19 down-regulated in CC vs. MC animals, as well as 1,046 up-regulated and 428 down-regulated in ML vs. CL animals. It is Concluded that cold stress enhances intestinal damage by disrupting the balance of gut microbiota and metabolites, while our findings contribute in improving management practices of livestock in during cold seasons.
Collapse
Affiliation(s)
- Jing Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhihao Cui
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ming Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mikhlid H. Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Peishi Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
24
|
Cheng W, Zhou X, Jin C, Wu J, Xia Y, Lu M, Yang Y, Jin X, Ji F, Wang B. Acid-base transformative HADLA micelles alleviate colitis by restoring adaptive immunity and gut microbiome. J Control Release 2023; 364:283-296. [PMID: 37898344 DOI: 10.1016/j.jconrel.2023.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Inflammatory bowel disease (IBD) is a worldwide public health issue with an increasing number of patients annually. However, there is no curative drug for IBD, and the present medication for IBD generally focuses on suppressing hyperactive immune responses, which can only delay disease progression but inevitably induce off-target side effects, including infections and cancers. Herein, late-model orally administered nanotherapeutic micelles (HADLA) were developed based on a conjugate of hyaluronic acid (HA) and dehydrolithocholic acid (DLA), which was simple to achieve and obtained satisfactory therapeutic efficacy in a murine colitis model with a full safety profile. HADLA is capable of targeting inflammatory colon tissues, restoring intestinal barrier function and reducing intestinal epithelial cell death. Moreover, it modulates the adaptive immune system by inhibiting the activation of pathogenic T helper 17 (Th17) cells, and it exhibits more remarkable effects in preventing colitis than DLA alone. Finally, HADLA exhibits a remarkable ability to modulate dysregulated gut microbiomes by increasing beneficial probiotics and decreasing pathogenic bacteria, such as Turicibacter. Compared with the current systemic or subcutaneous administration of biologics, this study opens new avenues in the oral delivery of immune-modulating nanomedicine and introduces DLA as a new medication for IBD treatment.
Collapse
Affiliation(s)
- Weixin Cheng
- Department of Gastroenterology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou 310003, China
| | - Xinxin Zhou
- Department of Gastroenterology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou 310003, China
| | - Ciliang Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou 310003, Zhejiang, China
| | - Jicheng Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yi Xia
- Department of Gastroenterology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou 310003, China
| | - Miaomiao Lu
- Department of Gastroenterology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou 310003, China
| | - Yida Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou 310003, Zhejiang, China
| | - Xi Jin
- Department of Gastroenterology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou 310003, China.
| | - Feng Ji
- Department of Gastroenterology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou 310003, China.
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China; Cancer Center, Zhejiang University, Hangzhou 310029, China.
| |
Collapse
|
25
|
Wang P, Cai M, Yang K, Sun P, Xu J, Li Z, Tian B. Phenolics from Dendrobium officinale Leaf Ameliorate Dextran Sulfate Sodium-Induced Chronic Colitis by Regulating Gut Microbiota and Intestinal Barrier. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16630-16646. [PMID: 37883687 DOI: 10.1021/acs.jafc.3c05339] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The increasing incidence of colitis and the side effects of its therapeutic drugs have led to the search for compounds of natural origin, including phenolics, as new treatments for colitis. In this study, the potential mechanism of Dendrobium officinale leaf phenolics (DOP) on the relief of dextran sulfate sodium (DSS)-induced colitis was explored. The results showed that DOP treatment for 36 days reduced the symptoms of colitis caused by DSS, including reduction of the disease activity index and alleviation of colonic tissue damage. In addition, DOP downregulated the expression of key proteins of the TLR4/NF-κB signaling pathway and reduced the production of inflammatory cytokines. Furthermore, DOP could enhance the expression of tight junction proteins including ZO-1, Occludin, and Claudin-1 to restore intestinal mucosal barrier function. DOP also effectively regulates disordered intestinal flora and enhances the production of short-chain fatty acids, which is also beneficial in modulating gut internal environmental homeostasis, inhibiting inflammation, and restoring the intestinal barrier. These findings indicated that DOP can ameliorate DSS-induced chronic colitis by regulating gut microbiota, intestinal barrier, and inflammation, and it is a promising ingredient from D. officinale.
Collapse
Affiliation(s)
- Peiyi Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou 310014, People's Republic of China
| | - Ming Cai
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou 310014, People's Republic of China
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou 310014, People's Republic of China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou 310014, People's Republic of China
| | - Jing Xu
- Longevity Valley Botanical Co., Ltd., Jinhua 321200, People's Republic of China
| | - Zhenhao Li
- Longevity Valley Botanical Co., Ltd., Jinhua 321200, People's Republic of China
| | - Baoming Tian
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou 310014, People's Republic of China
| |
Collapse
|
26
|
Lin WS, Cheng WC, Pan MH. Virofree Associates with the Modulation of Gut Microbiomes and Alleviation of DSS-Induced IBD Symptoms in Mice. ACS OMEGA 2023; 8:41427-41437. [PMID: 37969979 PMCID: PMC10633932 DOI: 10.1021/acsomega.3c05159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/29/2023] [Indexed: 11/17/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic, nonspecific inflammation of the intestines that primarily comprises Crohn's disease and ulcerative colitis. The incidence and prevalence of IBD have been increasing globally, highlighting the significance of research and prophylactic interventions. Virofree, a mixture of various botanical extracts (including grapes, cherries, olive leaves, marigolds, green tea, and others), has shown significant potential in disease prevention. This study examined the effects of Virofree on intestinal inflammation and the gut microbiota in mice using a dextran sulfate sodium (DSS)-induced model. The mice showed no adverse reactions when administered Virofree. Virofree administration reduced the disease activity index as indicated by amelioration of DSS-induced symptoms in the mice, including weight loss, diarrhea, and rectal bleeding. Regarding the gut microbiota, Virofree intervention modulated the DSS-induced decrease in gut microbial diversity; the Virofree group showed no increase in the phyla Proteobacteria or Verrucomicrobia while displaying an increase in the genus Duncaniella, bacteria that may have protective properties. These findings suggest that Virofree may have a direct or indirect impact on the composition of the gut microbiota and that it can alleviate the imbalance of the microbiome and intestinal inflammation caused by DSS treatment.
Collapse
Affiliation(s)
- Wei-Sheng Lin
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Wan-Chen Cheng
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Min-Hsiung Pan
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 10617, Taiwan
- Department
of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department
of Health and Nutrition Biotechnology, Asia
University, Taichung 41354, Taiwan
| |
Collapse
|
27
|
Wang ZY, Gao PP, Li L, Chen TT, Li N, Qi M, Zhang SN, Xu YP, Wang YH, Zhang SH, Zhang LL, Wei W, Du M, Sun WY. Dextran sulfate sodium-induced gut microbiota dysbiosis aggravates liver injury in mice with S100-induced autoimmune hepatitis. Immunol Lett 2023; 263:70-77. [PMID: 37797724 DOI: 10.1016/j.imlet.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/20/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Recently, the incidence of autoimmune hepatitis (AIH) has gradually increased, and the disease can eventually develop into cirrhosis or even hepatoma if left untreated. AIH patients are often characterized by gut microbiota dysbiosis, but whether gut microbiota dysbiosis contributes to the progression of AIH remains unclear. In this study, we investigate the role of gut microbiota dysbiosis in the occurrence and development of AIH in mice with dextran sulfate sodium salt (DSS) induced colitis. C57BL/6J mice were randomly divided into normal group, S100-induced AIH group, and DSS+S100 group (1 % DSS in the drinking water), and the experimental cycle lasted for four weeks. We demonstrate that DSS administration aggravates hepatic inflammation and disruption of the intestinal barrier, and significantly changes the composition of gut microbiota in S100-induced AIH mice, which are mainly characterized by increased abundance of pathogenic bacteria and decreased abundance of beneficial bacteria. These results suggest that DSS administration aggravates liver injury of S100-induced AIH, which may be due to DSS induced gut microbiota dysbiosis, leading to disruption of the intestinal barrier, and then, the microbiota translocate to the liver, aggravating hepatic inflammation.
Collapse
Affiliation(s)
- Zi-Ying Wang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ping-Ping Gao
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ling Li
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ting-Ting Chen
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Nan Li
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Meng Qi
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Sheng-Nan Zhang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ya-Ping Xu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Yu-Han Wang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Shi-Hao Zhang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ling-Ling Zhang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Min Du
- Department of Gastrointestinal Surgery, the Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230032, China.
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui Province 230032, China.
| |
Collapse
|
28
|
Guo L, Chen Q, Gao Y, Jiang H, Zhou F, Zhang F, Xu M. CDP-choline modulates cholinergic signaling and gut microbiota to alleviate DSS-induced inflammatory bowel disease. Biochem Pharmacol 2023; 217:115845. [PMID: 37827341 DOI: 10.1016/j.bcp.2023.115845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Inflammatory bowel diseases (IBD) represent chronic gastrointestinal inflammatory disorders characterized by a complex and underexplored pathogenic mechanism. Previous research has revealed that IBD patients often have a deficiency of choline and its metabolites, including acetylcholine (ACh) and phosphatidylcholine (PC), within the colon. However, a comprehensive study linking these three substances and their mechanistic implications in IBD remains lacking. This study aimed to investigate the efficacy and underlying mechanism of cytidine diphosphate (CDP)-choline (citicoline), an intermediate product of choline metabolism, in a mouse model of IBD induced by dextran sulfate sodium salt (DSS). The results demonstrated that CDP-choline effectively alleviated colonic inflammation and deficiencies in choline, ACh, and PC by increasing the raw material. Further detection showed that CDP-choline also increased the ACh content by altering the expression of high-affinity choline transporter (ChT1) and acetylcholinesterase (AChE) in DSS-induced mice colon. Moreover, CDP-choline increased the expression of alpha7 nicotinic acetylcholine receptor (α7 nAChR) and activated the cholinergic anti-inflammatory pathway (CAP), leading to reduced colon macrophage activation and proinflammatory M1 polarization in IBD mice, thus reducing the levels of TNF-α and IL-6. In addition, CDP-choline reduced intestinal ecological imbalance and increased the content of hexanoic acid in short-chain fatty acids (SCFAs) in mice. In conclusion, this study elucidates the ability of CDP-choline to mitigate DSS-induced colon inflammation by addressing choline and its metabolites deficiencies, activating the CAP, and regulating the composition of the intestinal microbiome and SCFAs content, providing a potential prophylactic and therapeutic approach for IBD.
Collapse
Affiliation(s)
- Lingnan Guo
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Qiang Chen
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Yiyuan Gao
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Hao Jiang
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Feini Zhou
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Fan Zhang
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China.
| | - Maosheng Xu
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
29
|
Gu Q, Chen Z, Liu N, Xia C, Zhou Q, Li P. Lactiplantibacillus plantarum ZJ316-fermented milk ameliorates dextran sulfate sodium-induced chronic colitis by improving the inflammatory response and regulating intestinal microbiota. J Dairy Sci 2023; 106:7352-7366. [PMID: 37210370 DOI: 10.3168/jds.2023-23251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/03/2023] [Indexed: 05/22/2023]
Abstract
The pathogenesis of inflammatory bowel disease may be related to local inflammatory damage and disturbances in intestinal microecology. Probiotic therapy is a safe and effective therapeutic approach. Considering that fermented milk is accepted and enjoyed by many people as a daily dietary intervention strategy, its potential to alleviate dextran sulfate sodium (DSS)-induced chronic colitis in mice needs to be explored. In this study, we evaluated the therapeutic effects of Lactiplantibacillus plantarum ZJ316-fermented milk by establishing a mouse model of DSS-induced chronic colitis. The results showed that the disease severity and colonic lesions of inflammatory bowel disease were effectively alleviated by ingestion of fermented milk. At the same time, the expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) effectively decreased, and the expression of antiinflammatory cytokines (IL-10) increased. Results based on 16S rRNA gene sequencing indicated that the structure and diversity of intestinal microorganisms changed markedly by intake of L. plantarum ZJ316-fermented milk, and fermented milk reduced the abundance of harmful bacteria (Helicobacter) while promoting the growth of beneficial bacteria (Faecalibacterium, Lactiplantibacillus, and Bifidobacterium). Additionally, the levels of short-chain fatty acids (acetic acid, propionic acid, butyric acid, pentanoic acid, and isobutyric acid) were also increased. In conclusion, the intake of L. plantarum ZJ316-fermented milk can alleviate chronic colitis by suppressing the inflammatory response and regulating intestinal microbiota.
Collapse
Affiliation(s)
- Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Ziqi Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Nana Liu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Chenlan Xia
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Qingqing Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
30
|
Wang W, Cheng Z, Wang X, An Q, Huang K, Dai Y, Meng Q, Zhang Y. Lactoferrin deficiency during lactation increases the risk of depressive-like behavior in adult mice. BMC Biol 2023; 21:242. [PMID: 37907907 PMCID: PMC10617225 DOI: 10.1186/s12915-023-01748-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Lactoferrin is an active protein in breast milk that plays an important role in the growth and development of infants and is implicated as a neuroprotective agent. The incidence of depression is currently increasing, and it is unclear whether the lack of lactoferrin during lactation affects the incidence of depressive-like behavior in adulthood. RESULTS Lack of lactoferrin feeding during lactation affected the barrier and innate immune functions of the intestine, disrupted the intestinal microflora, and led to neuroimmune dysfunction and neurodevelopmental delay in the hippocampus. When exposed to external stimulation, adult lactoferrin feeding-deficient mice presented with worse depression-like symptoms; the mechanisms involved were activation of the LPS-TLR4 signalling pathway in the intestine and hippocampus, reduced BDNF-CREB signaling pathway in hippocampus, increased abundance of depression-related bacteria, and decreased abundance of beneficial bacteria. CONCLUSIONS Overall, our findings reveal that lactoferrin feeding deficient during lactation can increase the risk of depressive-like behavior in adults. The mechanism is related to the regulatory effect of lactoferrin on the development of the "microbial-intestinal-brain" axis.
Collapse
Affiliation(s)
- Wenli Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhimei Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiong Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qin An
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yunping Dai
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qingyong Meng
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
31
|
Lee K, Kumazoe M, Marugame Y, Fujimura Y, Tachibana H. Dextran sulfate sodium-induced mild chronic colitis induced cognitive impairment accompanied by inhibition of neuronal maturation in adolescent mice. Biochem Biophys Res Commun 2023; 669:46-53. [PMID: 37262952 DOI: 10.1016/j.bbrc.2023.05.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
INTRODUCTION Epidemiological studies indicated that inflammatory bowel disease (IBD), with Crohn's disease and ulcerative colitis as its two main types, is associated with dementia. However, little is known about how adolescents with IBD will affect their cognitive ability as adults. The hippocampus, which is crucial for memory and adult neurogenesis, is closely associated with modulation of cognitive processes. Using a low kDa dextran sulfate sodium (DSS, 5 kDa)-induced chronic colitis (mild chronic colitis) mice model in adolescent mice, we investigated the effects of mild chronic colitis on cognitive functions and hippocampal neurogenesis from adolescent mice to adult mice. METHODS We induced DSS-induced mild chronic colitis in C57BL/6J male mice by multiple-cycle administration of 1%-2% DSS in autoclaved drinking water. Mice were subjected to novel-object recognition and Y-maze tests. Neurogenesis markers and neuroinflammation-related proteins in the hippocampus of mice were measured. Tight junction proteins in the colon of mice were measured. RESULTS Mild chronic colitis induced cognitive impairment and decreased adult neurogenesis. Notably, we found a positive correlation with the protein levels between tight junction protein, ZO-1, in the colon and mature neuron marker, NeuN, in the hippocampus. Moreover, mild chronic colitis leads to hippocampal neuroinflammation in adolescent mice. CONCLUSION Our findings provide new evidence of the association between IBD and dementia risk.
Collapse
Affiliation(s)
- Kwanwoo Lee
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yuki Marugame
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
32
|
Deng Y, Wang J, Xie G, Zou G, Li S, Zhang J, Cai W, Xu J. Correlation between gut microbiota and the development of Graves' disease: A prospective study. iScience 2023; 26:107188. [PMID: 37485373 PMCID: PMC10362358 DOI: 10.1016/j.isci.2023.107188] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/19/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
The association between gut microbiota and development of Graves' disease (GD) remains unclear. This study aimed to profile the gut microbiota of 65 patients newly diagnosed with GD before and after treatment and 33 physical examination personnel via 16S rRNA sequencing. Significant differences in the gut microbiota composition were observed between the two groups, showing relative bacterial abundances of 1 class, 1 order, 5 families, and 14 genera. After treatment, the abundance of the significantly enriched biota in the GD group decreased considerably, whereas that of the previously decreased biota increased considerably. Further, interleukin-17 levels decreased significantly. The random forest method was used to identify 12 genera that can distinguish patients with GD from healthy controls. Our study revealed that the gut microbiota of patients with GD exhibit unique characteristics compared with that of healthy individuals, which may be related to an imbalance in the immune system and gut microbiota.
Collapse
Affiliation(s)
- Yuanyuan Deng
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang 330006, People's Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang 330006, People’s Republic of China
| | - Jiao Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang 330006, People's Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang 330006, People’s Republic of China
| | - Guijiao Xie
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Guilin Zou
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang 330006, People's Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang 330006, People’s Republic of China
| | - Shanshan Li
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Jie Zhang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Wei Cai
- Department of Medical Genetics and Cell Biology, Medical College of Nanchang University, Nanchang 330006, People’s Republic of China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang 330006, People's Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang 330006, People’s Republic of China
| |
Collapse
|
33
|
Guo J, Chen N, Tan F, Zhou J, Xiang H, Luo Y, Zhou Z. iTRAQ-based proteomic analysis of imiquimod in the treatment of ulcerative colitis. Am J Transl Res 2023; 15:4454-4466. [PMID: 37560232 PMCID: PMC10408506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/07/2023] [Indexed: 08/11/2023]
Abstract
OBJECTIVE In this study, we explored the potential mechanisms and the signaling pathways involved in the treatment of Ulcerative Colitis (UC) with imiquimod (IMQ). METHODS The UC mouse model was established by treating C57BL/6J mice with 3% Dextran Sulfate Sodium (DSS). Then, the UC-related symptoms were examined. Disease Activity Index (DAI) was estimated based on weight loss, stool consistency, and occult bleeding or hematochezia. Histological changes were evaluated by Hematoxylin and Eosin (H&E) staining. Furthermore, we used multiplexed Isobaric Tagging for Relative and Absolute Protein Quantification (iTRAQ) technique coupled with high-throughput liquid chromatography tandem mass spectrometry (LC-MS/MS) to determine the differentially expressed proteins (DEPs). RESULTS Administration of 3% DSS for 7 days induced acute colitis associated with diarrhea, hematochezia, weight loss, and colon shortening. However, after IMQ administration, almost all the above symptoms were improved by different degrees. Specifically, the DAI, histological disorder, and colon shortening were attenuated. In iTRAQ analysis, a total of 4170 proteins were identified with a high confidence (≥ 95% confidence). The numbers of DEPs between the normal and UC model mice, between the normal and the IMQ-treated therapy mice, as well as between the model and the therapy mice were 317, 253, and 209, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the DEPs involved in the complement and coagulation cascades were downregulated in IMQ-treated therapy group. CONCLUSIONS IMQ might ameliorate colitis by suppressing the complement and coagulation cascades pathway, which might serve as new therapeutic strategies for the treatment of patients with UC.
Collapse
Affiliation(s)
- Jinkun Guo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Digestive System DiseaseWuhan 430060, Hubei, China
| | - Na Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Digestive System DiseaseWuhan 430060, Hubei, China
| | - Feifei Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Digestive System DiseaseWuhan 430060, Hubei, China
| | - Julan Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Digestive System DiseaseWuhan 430060, Hubei, China
| | - Hongyu Xiang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Digestive System DiseaseWuhan 430060, Hubei, China
| | - Yu Luo
- Jingmen Hospital of Traditional Chinese MedicineJingmen 448001, Hubei, China
| | - Zhongyin Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Digestive System DiseaseWuhan 430060, Hubei, China
| |
Collapse
|
34
|
Du C, Li Z, Zhang J, Yin N, Tang L, Li J, Sun J, Yu X, Chen W, Xiao H, Wu X, Chen X. The protective effect of carnosic acid on dextran sulfate sodium-induced colitis based on metabolomics and gut microbiota analysis. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Park BM, Jung BG, Lee JA, Lee BJ. Mitigating Effects of Tenebrio molitor Larvae Powder Administration in Mice with Dextran Sodium Sulfate (DSS)- Induced Colitis. Asian Pac J Cancer Prev 2023; 24:1751-1758. [PMID: 37247298 PMCID: PMC10495887 DOI: 10.31557/apjcp.2023.24.5.1751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is an inflammatory bowel disease that affects people worldwide. The causes of UC are diverse, and symptoms include diarrhea, weight loss, anemia, rectal bleeding, and bloody stools. Tenebrio molitor larvae have recently gained attention as edible insects with various physiological and medical effects. Research on the anti-inflammatory effects of ingesting Tenebrio molitor larvae powder (TMLP) is being actively conducted. In this study, TMLP was administered to mice with dextran sodium sulfate (DSS)-induced colitis to investigate its effects in reducing colitis symptoms. METHODS Mice were initially given 3% DSS in water to induce colitis and then feed containing 0%, 2%, or 4% TMLP. Pathologic changes in colon tissues were assessed by histology, and neutrophil levels were measured by myeloperoxidase (MPO) assay. Levels of IL-1β, IL-6, and TNF-α were measured using real-time PCR and ELISA assays, and IκB and NF-kB protein levels were measured by western blotting. RESULT Disease Activity Index (DAI) scores and MPO activity were reduced in TMLP-treated mice, and colon length increased as much as normal mice. Pathologic changes in the colon tissues of DSS-induced mice were attenuated, and the expression of inflammatory cytokine genes IL-1β, IL-6, and TNF-α decreased. Concomitant decreases in the protein expression of IL-1β and IL-6 were confirmed using ELISA. Western blotting revealed that levels of phosphorylated forms of IκB and NF-κB also decreased. CONCLUSION These results show that feeding TMLP to DSS-induced mice inhibited the typical inflammatory pathway of colitis. Therefore, TMLP shows potential as a food additive that can help treat colitis. .
Collapse
Affiliation(s)
- Bo Mi Park
- College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Korea.
| | - Bock Gie Jung
- College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Korea.
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX 75708-3154, USA.
| | - Jin-A Lee
- Biology Department at Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA 02467, USA.
| | - Bong Joo Lee
- College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Korea.
| |
Collapse
|
36
|
Li X, Zheng P, Cao W, Cao Y, She X, Yang H, Ma K, Wu F, Gao X, Fu Y, Yin J, Wei F, Jiang S, Cui B. Lactobacillus rhamnosus GG ameliorates noise-induced cognitive deficits and systemic inflammation in rats by modulating the gut-brain axis. Front Cell Infect Microbiol 2023; 13:1067367. [PMID: 37180445 PMCID: PMC10169735 DOI: 10.3389/fcimb.2023.1067367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Background Environmental noise exposure is linked to neuroinflammation and imbalance of the gut microbiota. Promoting gut microbiota homeostasis may be a key factor in relieving the deleterious non-auditory effects of noise. This study aimed to investigate the effect of Lactobacillus rhamnosus GG (LGG) intervention on noise-induced cognitive deficits and systemic inflammation in rats. Methods Learning and memory were assessed using the Morris water maze, while 16S rRNA sequencing and gas chromatography-mass spectrometry were used to analyze the gut microbiota and short-chain fatty acid (SCFA) content. Endothelial tight junction proteins and serum inflammatory mediators were assessed to explore the underlying pathological mechanisms. Results The results indicated that Lactobacillus rhamnosus GG intervention ameliorated noise-induced memory deterioration, promoted the proliferation of beneficial bacteria, inhibited the growth of harmful bacteria, improved dysregulation of SCFA-producing bacteria, and regulated SCFA levels. Mechanistically, noise exposure led to a decrease in tight junction proteins in the gut and hippocampus and an increase in serum inflammatory mediators, which were significantly alleviated by Lactobacillus rhamnosus GG intervention. Conclusion Taken together, Lactobacillus rhamnosus GG intervention reduced gut bacterial translocation, restored gut and blood-brain barrier functions, and improved gut bacterial balance in rats exposed to chronic noise, thereby protecting against cognitive deficits and systemic inflammation by modulating the gut-brain axis.
Collapse
Affiliation(s)
- Xiaofang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Pengfang Zheng
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Wa Cao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Yang Cao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaojun She
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Honglian Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Kefeng Ma
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Fangshan Wu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Xiujie Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yu Fu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Jiayi Yin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Jinan, China
| | - Fei Wei
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Shoufang Jiang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Bo Cui
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health and Management, Binzhou Medical University, Yantai, China
- School of Public Health and Management, Weifang Medical University, Weifang, China
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Jinan, China
| |
Collapse
|
37
|
Chen T, Chen Y, Li K, Chen Z, Zhao Q, Fan Y, Liu Y, Zhang S, Hao Z. Ginkgo biloba Extract Preventively Intervenes in Citrobacter Rodentium-Induced Colitis in Mice. Nutrients 2023; 15:2008. [PMID: 37111225 PMCID: PMC10145670 DOI: 10.3390/nu15082008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) represents a highly recurrent gastrointestinal disorder and global public health issue. However, it lacks effective and safe strategies for its control. Although Ginkgo biloba extract (GBE) has been suggested to exhibit preventive and therapeutic activity for the control of IBD, whether its activity is associated with its ability to modulate intestinal microbiota remains to be addressed. To investigate the effect of GBE on controlling IBD, a Citrobacter Rodentium (CR)-induced mouse colitis model was used, and then histopathological examinations, biochemical assays, immunohistochemistry, and immunoblotting were performed to detect histological changes, cytokines, and tight junction (TJ) proteins in the intestine samples. We also studied 16s rRNA to detect changes in intestinal microbiota and used GC-MS to determine the microbiota-related metabolites short chain fatty acids (SCFAs). The results of our studies revealed that pre-treatment with GBE was sufficient for protecting the animals from CR-induced colitis. As a mechanism for GBE activity, GBE treatment was able to modulate the intestinal microbiota and increase the SCFAs capable of decreasing the pro-inflammatory factors and up-regulating the anti-inflammatory factors while elevating the intestinal-barrier-associated proteins to maintain the integrity of the intestines. Accordingly, our results led to a strong suggestion that GBE should be seriously considered in the preventive control of CR-induced colitis and in the development of effective and safe therapeutic strategies for controlling IBD.
Collapse
Affiliation(s)
- Tingting Chen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Yiqiang Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Kaiyuan Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Zhuo Chen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Qingyu Zhao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Yimeng Fan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Ying Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Suxia Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhihui Hao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| |
Collapse
|
38
|
Zhou Y, Ji G, Yang X, Chen Z, Zhou L. Behavioral abnormalities in C57BL/6 mice with chronic ulcerative colitis induced by DSS. BMC Gastroenterol 2023; 23:84. [PMID: 36959628 PMCID: PMC10037843 DOI: 10.1186/s12876-023-02718-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/13/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Clinical epidemiological studies have found that some patients with ulcerative colitis (UC) are prone to mental disorders. DSS-induced acute and chronic UC models are often used to evaluate the efficacy of anti-UC drugs. However, whether DSS has an effect on mouse behavior has not been reported. METHODS Acute and chronic UC models were induced by 3% DSS and 1.5% DSS, respectively. The bloody stool, the changes in the colon length, and histopathological changes in the colon were used to evaluate the success of the animal model. The behavior of mice was evaluated by open field experiment, tail suspension experiment and Sucrose preference test. RESULTS The weight of mice in 3% DSS group decreased significantly, the DAI score increased significantly, the colon length of mice was significantly shortened, and the structure of colonic crypts was abnormal, which showed inflammatory cell infiltration and shrinkage of crypts. Compared with the control group, the immobility time of 3%DSS group mice in the tail suspension test and forced swimming test had no effect, the number of running and grooming times was significantly reduced, and there was no significant difference in the number of standing times. No abnormality was observed in HE staining of the hippocampus. However, in 1.5% DSS-induced chronic UC model, behavioral and hippocampal abnormalities were observed not only UC symptoms. CONCLUSIONS The acute UC model induced by 3% DSS has certain influence on the behavior of mice, but the mental state of mice is normal, which may be the abnormal behavior caused by UC symptoms; However, the chronic UC model induced by 1.5% DSS has a significant effect on the behavior of mice, and the mice have mental disorders, which are caused by mental disorders.
Collapse
Affiliation(s)
- Yuxin Zhou
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China
| | - Gang Ji
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China
| | - Xiaoyi Yang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China
| | - Zhenhua Chen
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China.
| | - Liangliang Zhou
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China.
| |
Collapse
|
39
|
Yinhang W, Jing Z, Jie Z, Yin J, Xinyue W, Yifei S, Zhiqing F, Wei W, Shuwen H. Prediction model of colorectal cancer (CRC) lymph node metastasis based on intestinal bacteria. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1661-1672. [PMID: 36633831 DOI: 10.1007/s12094-022-03061-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Lymph node metastasis is the main metastatic mode of CRC. Lymph node metastasis affects patient prognosis. OBJECTIVE To screen differential intestinal bacteria for CRC lymph node metastasis and construct a prediction model. METHODS First, fecal samples of 119 CRC patients with lymph node metastasis and 110 CRC patients without lymph node metastasis were included for the detection of intestinal bacterial 16S rRNA. Then, bioinformatics analysis of the sequencing data was performed. Community structure and composition analysis, difference analysis, and intragroup and intergroup correlation analysis were conducted between the two groups. Finally, six machine learning models were used to construct a prediction model for CRC lymph node metastasis. RESULTS The community richness and the community diversity at the genus level of the two groups were basically consistent. A total of 12 differential bacteria (Agathobacter, Catenibacterium, norank_f__Oscillospiraceae, Lachnospiraceae_FCS020_group, Lachnospiraceae_UCG-004, etc.) were screened at the genus level. Differential bacteria, such as Agathobacter, Catenibacterium, norank_f__Oscillospiraceae, and Lachnospiraceae_FCS020_group, were more associated with no lymph node metastasis in CRC. In the discovery set, the RF model had the highest prediction accuracy (AUC = 1.00, 98.89% correct, specificity = 55.21%, sensitivity = 55.95%). In the test set, SVM model had the highest prediction accuracy (AUC = 0.73, 72.92% correct, specificity = 69.23%, sensitivity = 88.89%). Lachnospiraceae_FCS020_group was the most important variable in the RF model. Lachnospiraceae_UCG - 004 was the most important variable in the SVM model. CONCLUSION CRC lymph node metastasis is closely related to intestinal bacteria. The prediction model based on intestinal bacteria can provide a new evaluation method for CRC lymph node metastasis.
Collapse
Affiliation(s)
- Wu Yinhang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
| | - Zhuang Jing
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
| | - Zhou Jie
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
| | - Jin Yin
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
| | - Wu Xinyue
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
| | - Song Yifei
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
| | - Fan Zhiqing
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
| | - Wu Wei
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China.
| | - Han Shuwen
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China.
| |
Collapse
|
40
|
Zhang X, Zhao X, Hua Z, Xing S, Li J, Fei S, Tan M. ROS-triggered self-disintegrating and pH-responsive astaxanthin nanoparticles for regulating the intestinal barrier and colitis. Biomaterials 2023; 292:121937. [PMID: 36495803 DOI: 10.1016/j.biomaterials.2022.121937] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/12/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
Smart delivery systems with stimuli-responsive capability are able to improve the bioaccessibility through increasing the solubility, physicochemical stability and biocompatibility of bioactive compounds. In this study, the astaxanthin nanoparticles with reactive oxygen species (ROS) and pH dual-response function were design and constructed using poly (propylene sulfide) covalently modified sodium alginate as carriers based on ultrasonic assisted self-assembly strategy. Atomic force microscope and scanning electron microscope analysis showed that the nanoparticles were spherical in shape with a size of around 260 nm. Meanwhile, the astaxanthin nanoparticles showed both pH and ROS stimuli-responsive release characteristics. In vitro cell experiments showed that astaxanthin nanoparticles significantly inhibited the production of ROS and mitochondrial depolarization induced by oxidative stress. In vivo colitis experiment of mice revealed that astaxanthin nanoparticles could significantly relieve colitis, protect the integrity of colon tissue and restore the expression of tight junction proteins ZO-1 and occludin. The abundance of Lactobacillus and Lachnospiraceae, and the ratio of Firmicutes/Bacteroidota of gut microbiota were significantly improved after intervention of the stimuli-responsive astaxanthin nanoparticles. This work provided a simple strategy for constructing ROS/pH dual response delivery system, which provided an experimental basis for improving the oral bioavailability of hydrophobic active compounds.
Collapse
Affiliation(s)
- Xuedi Zhang
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Xue Zhao
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Zheng Hua
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Shanghua Xing
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Jiaxuan Li
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Siyuan Fei
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China.
| |
Collapse
|
41
|
Lin Y, Gao X, Yue J, Fang Y, Shi J, Meng L, Clayton C, Zhang XX, Shi F, Deng J, Chen S, Jiang Y, Marin F, Hu J, Tsai HM, Tu Q, Roth EW, Bleher R, Chen X, Griffin P, Cai Z, Prominski A, Odom TW, Tian B. A soil-inspired dynamically responsive chemical system for microbial modulation. Nat Chem 2023; 15:119-128. [PMID: 36280766 DOI: 10.1038/s41557-022-01064-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/14/2022] [Indexed: 01/17/2023]
Abstract
Interactions between the microbiota and their colonized environments mediate critical pathways from biogeochemical cycles to homeostasis in human health. Here we report a soil-inspired chemical system that consists of nanostructured minerals, starch granules and liquid metals. Fabricated via a bottom-up synthesis, the soil-inspired chemical system can enable chemical redistribution and modulation of microbial communities. We characterize the composite, confirming its structural similarity to the soil, with three-dimensional X-ray fluorescence and ptychographic tomography and electron microscopy imaging. We also demonstrate that post-synthetic modifications formed by laser irradiation led to chemical heterogeneities from the atomic to the macroscopic level. The soil-inspired material possesses chemical, optical and mechanical responsiveness to yield write-erase functions in electrical performance. The composite can also enhance microbial culture/biofilm growth and biofuel production in vitro. Finally, we show that the soil-inspired system enriches gut bacteria diversity, rectifies tetracycline-induced gut microbiome dysbiosis and ameliorates dextran sulfate sodium-induced rodent colitis symptoms within in vivo rodent models.
Collapse
Affiliation(s)
- Yiliang Lin
- The James Franck Institute, University of Chicago, Chicago, IL, USA.
| | - Xiang Gao
- The James Franck Institute, University of Chicago, Chicago, IL, USA
| | - Jiping Yue
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Yin Fang
- The James Franck Institute, University of Chicago, Chicago, IL, USA
| | - Jiuyun Shi
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Lingyuan Meng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | | | - Xin-Xing Zhang
- The James Franck Institute, University of Chicago, Chicago, IL, USA.,Department of Chemistry, University of Chicago, Chicago, IL, USA.,The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Fengyuan Shi
- Electron Microscopy Core, Research Resources Center, University of Illinois Chicago, Chicago, IL, USA
| | - Junjing Deng
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Si Chen
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Yi Jiang
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Fabricio Marin
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Jingtian Hu
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Hsiu-Ming Tsai
- Department of Radiology, University of Chicago, Chicago, IL, USA
| | - Qing Tu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Eric W Roth
- NUANCE Center, Northwestern University, Evanston, IL, USA
| | - Reiner Bleher
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.,NUANCE Center, Northwestern University, Evanston, IL, USA
| | - Xinqi Chen
- NUANCE Center, Northwestern University, Evanston, IL, USA
| | - Philip Griffin
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Zhonghou Cai
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Aleksander Prominski
- The James Franck Institute, University of Chicago, Chicago, IL, USA.,Department of Chemistry, University of Chicago, Chicago, IL, USA.,The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, IL, USA.,Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago, IL, USA. .,Department of Chemistry, University of Chicago, Chicago, IL, USA. .,The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
42
|
Dark-purple rice extract modulates gut microbiota composition in acetic acid– and indomethacin-induced inflammatory bowel disease in rats. Int Microbiol 2022; 26:423-434. [PMID: 36484910 DOI: 10.1007/s10123-022-00309-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Ulcerative colitis (UC) and Crohn's disease (CD) are two major forms of inflammatory bowel disease (IBD). The disease has been linked with gut microbiota dysbiosis in which the balance of commensal communities is disrupted. Accumulating evidence demonstrates that treatment with biologically active compounds can modulate gut microbiota composition in animal models. Our previous work has also shown the beneficial effect of Luem Pua (LP) rice extract, which is rich in anthocyanins, on inflammation. However, its effect on gut microbiota is yet to be explored. In this study, we profiled fecal microbiota of acetic acid (AA)-induced UC and indomethacin (ID)-induced CD rat models with and without pretreatment with LP rice extract by 16S rRNA gene sequencing. The results showed that gut microbiota communities of rats were altered by both AA-induced UC and ID-induced CD. The relative abundances of beneficial bacteria, especially the Lachnospiraceae NK4A136 group and Lactobacillus, were decreased in the AA-induced UC model, while some opportunistic pathogens (Bacteroides, Escherichia/Shigella, Fusobacterium, and Veillonella) were raised by ID-induced CD. Interestingly, pretreatment with LP rice extract before AA-inducing UC in rats increased the proportion of the butyrate-producing bacteria (Lachnospiraceae NK4A136 group). The abundances of these beneficial bacteria and other SCFA-producing bacteria were unaffected by the indomethacin treatment with LP. Overall, our study revealed different impacts of AA-induced UC and ID-induced CD on changes in community composition and hinted at how LP may protect against UC by modifying the gut microbiota.
Collapse
|
43
|
Huang X, Li X, Deng Y, Zhou T, Chen T, Wu S, Xia R, Kang Y, Yin W. The flavonoids extract from Okra flowers protects against DSS-induced colitis via regulating NF-κB signaling pathway and gut microbiota. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
44
|
Sommer KM, Jespersen JC, Sutkus LT, Lee Y, Donovan SM, Dilger RN. Oral gamma-cyclodextrin-encapsulated tributyrin supplementation in young pigs with experimentally induced colitis. J Anim Sci 2022; 100:skac314. [PMID: 36161319 PMCID: PMC9671115 DOI: 10.1093/jas/skac314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Disruption of intestinal integrity and barrier function due to tissue inflammation has negative implications on overall growth and well-being in young pigs. In this study, we investigated the effects of oral gamma-cyclodextrin-encapsulated tributyrin (TBCD) in young pigs experiencing dextran sodium sulfate (DSS)-induced colitis. Pigs (n = 32 boars) were weaned from the sow at postnatal day (PND) 2, allotted to treatment based on the litter of origin and body weight (BW), and reared artificially over a 26-d feeding period. Treatment groups included: 1) nutritionally adequate (control) milk replacer, no DSS (Control n = 8), 2) control milk replacer plus oral DSS (DSS, n = 7), and 3) control diet supplemented with 8.3 g of TBCD per kg of reconstituted milk replacer plus oral DSS (TBCD + DSS, n = 8). Colitis was induced by administering DSS at 1.25 g of DSS/kg BW daily in a reconstituted milk replacer from PND 14-18. Milk replacer and water were provided ad libitum throughout the 26-d study. All the data were analyzed using a one-way ANOVA using the MIXED procedure of SAS. Control and DSS pigs had similar BW throughout the study, while TBCD + DSS pigs exhibited decreased (P < 0.05) BW starting at approximately PND 15. Additionally, average daily gain (ADG) before and after initiation of DSS dosing, along with over the total study duration, was decreased (P < 0.05) in pigs receiving TBCD + DSS compared with the Control. Milk disappearance was decreased (P < 0.05) in TBCD + DSS pigs when compared with Control and DSS groups. Both the concentration and molar ratio of cecal butyrate concentrations were increased (P < 0.05) in TBCD + DSS pigs compared with the Control group. The DSS and TBCD + DSS treatments also increased (P < 0.05) butyrate concentrations in the luminal contents with the proximal colon compared with Control. TBCD + DSS and DSS pigs had increased (P < 0.05) mucosal width in the distal colon compared with Control, thereby indicating heightened intestinal inflammation. Overall, oral supplementation of encapsulated tributyrin increased the concentration of butyrate in the colon, but was unable to mitigate the negative effects of DSS-induced colitis.
Collapse
Affiliation(s)
- Kaitlyn M Sommer
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | | | - Loretta T Sutkus
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Youngsoo Lee
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, USA
| | - Sharon M Donovan
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Ryan N Dilger
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
45
|
Diviccaro S, Giatti S, Cioffi L, Falvo E, Herian M, Caruso D, Melcangi RC. Gut Inflammation Induced by Finasteride Withdrawal: Therapeutic Effect of Allopregnanolone in Adult Male Rats. Biomolecules 2022; 12:1567. [PMID: 36358917 PMCID: PMC9687671 DOI: 10.3390/biom12111567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 07/29/2023] Open
Abstract
The treatment with finasteride (i.e., an inhibitor of 5α-reductase) may be associated with different side effects (i.e., depression, anxiety, cognitive impairment and sexual dysfunction) inducing the so-called post finasteride syndrome (PFS). Moreover, previous observations in PFS patients and an experimental model showed alterations in gut microbiota populations, suggesting an inflammatory environment. To confirm this hypothesis, we have explored the effect of chronic treatment with finasteride (i.e., for 20 days) and its withdrawal (i.e., for 1 month) on the levels of steroids, neurotransmitters, pro-inflammatory cytokines and gut permeability markers in the colon of adult male rat. The obtained data demonstrate that the levels of allopregnanolone (ALLO) decreased after finasteride treatment and after its withdrawal. Following the drug suspension, the decrease in ALLO levels correlates with an increase in IL-1β and TNF-α, serotonin and a decrease in dopamine. Importantly, ALLO treatment is able to counteract some of these alterations. The relation between ALLO and GABA-A receptors and/or pregnenolone (ALLO precursor) could be crucial in their mode of action. These observations provide an important background to explore further the protective effect of ALLO in the PFS experimental model and the possibility of its translation into clinical therapy.
Collapse
|
46
|
Regulation of a High-Iron Diet on Lipid Metabolism and Gut Microbiota in Mice. Animals (Basel) 2022; 12:ani12162063. [PMID: 36009656 PMCID: PMC9405328 DOI: 10.3390/ani12162063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
Iron homeostasis disorder is associated with the imbalance of lipid metabolism, while the specific interaction remains unclear. In the present study, we investigated the effect of a high-iron diet on lipid metabolism in mice. The C57BL/6 mice were fed with a normal diet (WT) or a high-iron diet (WT + Fe) for 12 weeks. We found that mice in the WT + Fe group showed a significant decrease in body weight gain, body fat and lipid accumulation of liver when compared with mice in the WT group. Accordingly, serum total cholesterol and triglyceride levels were both reduced in mice with a high-iron diet. Moreover, mice in the WT + Fe group exhibited a significant decrease in expression of genes regulating adipogenesis and adipocyte differentiation, and a significant increase in expression of fat hydrolysis enzyme genes in both liver and adipose tissues, which was consistent with their dramatic reduction in adipocyte cell size. In addition, a high-iron diet decreased the relative abundance of beneficial bacteria (Akkermansia, Bifidobacterium and Lactobacillus) and increased the relative abundance of pathogenic bacteria (Romboutsia and Erysipelatoclostridium). Thus, our research revealed that a high-iron diet reduced lipid deposition by inhibiting adipogenesis and promoting lipolysis. Altered gut microbial composition induced by a high-iron diet may not play a critical role in regulating lipid metabolism, but might cause unwanted side effects such as intestinal inflammation and damaged villi morphology at the intestinal host–microbe interface. These findings provide new insights into the relationship among iron, lipid metabolism and gut microbiota.
Collapse
|
47
|
Alginate Oligosaccharides Ameliorate DSS-Induced Colitis through Modulation of AMPK/NF-κB Pathway and Intestinal Microbiota. Nutrients 2022; 14:nu14142864. [PMID: 35889822 PMCID: PMC9321948 DOI: 10.3390/nu14142864] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Alginate oligosaccharides (AOS) are shown to have various biological activities of great value to medicine, food, and agriculture. However, little information is available about their beneficial effects and mechanisms on ulcerative colitis. In this study, AOS with a polymerization degree between 2 and 4 were found to possess anti-inflammatory effects in vitro and in vivo. AOS could decrease the levels of nitric oxide (NO), IL-1β, IL-6, and TNFα, and upregulate the levels of IL-10 in both RAW 264.7 and bone-marrow-derived macrophage (BMDM) cells under lipopolysaccharide (LPS) stimulation. Additionally, oral AOS administration could significantly prevent bodyweight loss, colonic shortening, and rectal bleeding in dextran sodium sulfate (DSS)-induced colitis mice. AOS pretreatment could also reduce disease activity index scores and histopathologic scores and downregulate proinflammatory cytokine levels. Importantly, AOS administration could reverse DSS-induced AMPK deactivation and NF-κB activation in colonic tissues, as evidenced by enhanced AMPK phosphorylation and p65 phosphorylation inhibition. AOS could also upregulate AMPK phosphorylation and inhibit NF-κB activation in vitro. Moreover, 16S rRNA gene sequencing of gut microbiota indicated that supplemental doses of AOS could affect overall gut microbiota structure to a varying extent and specifically change the abundance of some bacteria. Medium-dose AOS could be superior to low- or high-dose AOS in maintaining remission in DSS-induced colitis mice. In conclusion, AOS can play a protective role in colitis through modulation of gut microbiota and the AMPK/NF-kB pathway.
Collapse
|
48
|
Ishida T, Matsui H, Matsuda Y, Shimono T, Kanda S, Nishiyama T, Hosomi R, Fukunaga K, Yoshida M. Dietary Oyster (Crassostrea gigas) Extract Ameliorates Dextran Sulfate Sodium-Induced Chronic Experimental Colitis by Improving the Composition of Gut Microbiota in Mice. Foods 2022; 11:foods11142032. [PMID: 35885275 PMCID: PMC9317888 DOI: 10.3390/foods11142032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Previously, we have reported that the intake of oyster extract (OE), prepared from Pacific oysters (Crassostrea gigas), can attenuate symptoms of dextran sulfate sodium (DSS)-induced acute experimental colitis in mice. Herein, we aimed to evaluate whether OE intake ameliorates chronic experimental colitis induced by repeated DSS administration in mice. Male C57BL/6J (4-week-old) mice were fed either the standard diet AIN93G (control diet) or the control diet containing 5.0% (w/w) OE (OE diet). After 21 days of diet feeding, chronic experimental colitis was induced by three cycles of 2.0% (w/w) DSS solution administration (5 days), followed by distilled water (5 days). Mice fed OE alleviated the shortened colonic length, increased the relative weight of the spleen, colonic histopathological score (regeneration), and blood in the stool score compared with mice fed control diet. A tendency to improve the α-diversity of fecal microbiota, which was exacerbated by colitis, was observed in mice fed OE. Correlation analysis suggested that the anti-colitis effect of OE intake could be related to the valeric acid content and relative abundances of Ruminococcus and Enterococcus in the feces. In conclusion, OE could ameliorate DSS-induced chronic experimental colitis by improving the gut environment, including the microbiota community and SCFA composition.
Collapse
Affiliation(s)
- Tatsuya Ishida
- Central Research Institute, Japan Clinic Co., Ltd., 1 Nishimachi, Taishogun, Kyoto 603-8331, Japan; (T.I.); (H.M.); (Y.M.)
| | - Hiroyuki Matsui
- Central Research Institute, Japan Clinic Co., Ltd., 1 Nishimachi, Taishogun, Kyoto 603-8331, Japan; (T.I.); (H.M.); (Y.M.)
| | - Yoshikazu Matsuda
- Central Research Institute, Japan Clinic Co., Ltd., 1 Nishimachi, Taishogun, Kyoto 603-8331, Japan; (T.I.); (H.M.); (Y.M.)
| | - Takaki Shimono
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1 Shin-machi, Osaka 573-1010, Japan; (T.S.); (S.K.); (T.N.)
| | - Seiji Kanda
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1 Shin-machi, Osaka 573-1010, Japan; (T.S.); (S.K.); (T.N.)
| | - Toshimasa Nishiyama
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1 Shin-machi, Osaka 573-1010, Japan; (T.S.); (S.K.); (T.N.)
| | - Ryota Hosomi
- Faculty of Chemistry, Materials, and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Osaka 564-8680, Japan; (K.F.); (M.Y.)
- Correspondence: ; Tel.: +81-66-3681-765
| | - Kenji Fukunaga
- Faculty of Chemistry, Materials, and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Osaka 564-8680, Japan; (K.F.); (M.Y.)
| | - Munehiro Yoshida
- Faculty of Chemistry, Materials, and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Osaka 564-8680, Japan; (K.F.); (M.Y.)
| |
Collapse
|
49
|
Mitochondrial complex I dysfunction alters the balance of soluble and membrane-bound TNF during chronic experimental colitis. Sci Rep 2022; 12:9977. [PMID: 35705557 PMCID: PMC9200762 DOI: 10.1038/s41598-022-13480-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/25/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a complex, chronic, relapsing and heterogeneous disease induced by environmental, genomic, microbial and immunological factors. MCJ is a mitochondrial protein that regulates the metabolic status of macrophages and their response to translocated bacteria. Previously, an acute murine model of DSS-induced colitis showed increased disease severity due to MCJ deficiency. Unexpectedly, we now show that MCJ-deficient mice have augmented tumor necrosis factor α converting enzyme (TACE) activity in the context of chronic inflammation. This adaptative change likely affects the balance between soluble and transmembrane TNF and supports the association of the soluble form and a milder phenotype. Interestingly, the general shifts in microbial composition previously observed during acute inflammation were absent in the chronic model of inflammation in MCJ-deficient mice. However, the lack of the mitochondrial protein resulted in increased alpha diversity and the reduction in critical microbial members associated with inflammation, such as Ruminococcus gnavus, which could be associated with TACE activity. These results provide evidence of the dynamic metabolic adaptation of the colon tissue to chronic inflammatory changes mediated by the control of mitochondrial function.
Collapse
|
50
|
Zhang Y, Lu F, Zhang H, Ye Y, Liu P, Lin D, Zhou H, Li M, Yang B. Polysaccharides from Agaricus blazei Murrill ameliorate dextran sulfate sodium-induced colitis via attenuating intestinal barrier dysfunction. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|