1
|
Yu W, Sun Q, Qu L, Liu T, Yi S, Zhang G, Chen H, Luo L. Rapid in situ identification of honey authenticity based on RP-Nano-ESI-MS using online desalting. Food Chem 2024; 458:140278. [PMID: 38964103 DOI: 10.1016/j.foodchem.2024.140278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
High-content sugar in honey frequently results in severe matrix effects and requires complex pretreatment prior to analysis, posing significant challenges for the rapid analysis of honey. In this study, the reversal polarity nano-electrospray ionization mass spectrometry (RP-Nano-ESI-MS) analysis was developed for the direct evaluation of honey samples. The results indicated that RP-Nano-ESI-MS significantly mitigated the matrix effects induced by high-content sugar through the implementation of online desalting. Furthermore, RP-Nano-ESI-MS has been proven capable of not only differentiating acacia honey adulterated with 10% rape honey, but also effectively distinguishing six types of honey and exhibiting remarkable proficiency in detecting honey adulteration and botanical traceability. Additionally, RP-Nano-ESI-MS exhibited strong quantitative abilities, effectively characterizing variations in amino acid composition among six types of honey with high stability and reproducibility. Our studies underscore the significant potential of RP-Nano-ESI-MS for its rapid in situ analysis of sugar-rich foods like honey, especially in their authenticity verification.
Collapse
Affiliation(s)
- Wenjie Yu
- Key Laboratory of Geriatric Nutrition and Health (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Qifang Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Liangliang Qu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Tao Liu
- Key Laboratory of Geriatric Nutrition and Health (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Shengxiang Yi
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Gaowei Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Huanwen Chen
- Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330013, China.
| | - Liping Luo
- Key Laboratory of Geriatric Nutrition and Health (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| |
Collapse
|
2
|
Alves GDSG, de Oliveira AMP, Roseno ACB, Ribeiro NP, Alves MDS, Sampaio C, do Prado RL, Pessan JP, Monteiro DR. Interkingdom biofilm of Streptococcus pyogenes and Candida albicans: establishment of an in vitro model and dose-response validation of antimicrobials. BIOFOULING 2024; 40:580-592. [PMID: 39193785 DOI: 10.1080/08927014.2024.2395390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/18/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
Although Streptococcus pyogenes and Candida albicans may colonize tonsillar tissues, the interaction between them in mixed biofilms has been poorly explored. This study established an interkingdom biofilm model of S. pyogenes and C. albicans and verified the dose-response validation of antimicrobials. Biofilms were formed on microplates, in the presence or absence of a conditioning layer of human saliva, using Brain Heart Infusion (BHI) broth or artificial saliva (AS) as a culture medium, and with variations in the microorganism inoculation sequence. Biofilms grown in AS showed higher mass than those grown in BHI broth, and an opposite trend was observed for metabolism. The number of S. pyogenes colonies was lower in AS. Amoxicillin and nystatin showed dose-dependent effects. The inoculation of the two species at the same time, without prior exposure to saliva, and using BHI broth would be the model of choice for future studies assessing the effects of antimicrobials on dual S. pyogenes/C. albicans biofilms.
Collapse
Affiliation(s)
| | | | - Ana Carolyna Becher Roseno
- School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), Araçatuba/São Paulo, Brazil
| | - Natália Pereira Ribeiro
- School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), Araçatuba/São Paulo, Brazil
| | - Maria do Socorro Alves
- Postgraduate Program in Animal Science, University of Western São Paulo (UNOESTE), Presidente Prudente/São Paulo, Brazil
| | - Caio Sampaio
- School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), Araçatuba/São Paulo, Brazil
| | - Rosana Leal do Prado
- School of Dentistry, Department of Community and Preventive Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Juliano Pelim Pessan
- School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), Araçatuba/São Paulo, Brazil
| | - Douglas Roberto Monteiro
- School of Dentistry, Araçatuba, Department of Diagnosis and Surgery, São Paulo State University (UNESP), Araçatuba/São Paulo, Brazil
| |
Collapse
|
3
|
Wang L, Liu P, Wu Y, Pei H, Cao X. Inhibitory effect of Lonicera japonica flos on Streptococcus mutans biofilm and mechanism exploration through metabolomic and transcriptomic analyses. Front Microbiol 2024; 15:1435503. [PMID: 39027105 PMCID: PMC11256199 DOI: 10.3389/fmicb.2024.1435503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Streptococcus mutans was the primary pathogenic organism responsible for dental caries. Lonicera japonica flos (LJF) is a traditional herb in Asia and Europe and consumed as a tea beverage for thousands of years. Methods The inhibitory effect and mechanism of LJF on biofilm formation by S. mutans was investigated. The active extracts of LJF were validated for their inhibitory activity by examining changes in surface properties such as adherence, hydrophobicity, auto-aggregation abilities, and exopolysaccharides (EPS) production, including water-soluble glucan and water-insoluble glucan. Results and discussion LJF primarily inhibited biofilm formation through the reduction of EPS production, resulting in alterations in cell surface characteristics and growth retardation in biofilm formation cycles. Integrated transcriptomic and untargeted metabolomics analyses revealed that EPS production was modulated through two-component systems (TCS), quorum sensing (QS), and phosphotransferase system (PTS) pathways under LJF stress conditions. The sensing histidine kinase VicK was identified as an important target protein, as LJF caused its dysregulated expression and blocked the sensing of autoinducer II (AI-2). This led to the inhibition of response regulator transcriptional factors, down-regulated glycosyltransferase (Gtf) activity, and decreased production of water-insoluble glucans (WIG) and water-soluble glucans (WSG). This is the first exploration of the inhibitory effect and mechanism of LJF on S. mutans, providing a theoretical basis for the application of LJF in functional food, oral health care, and related areas.
Collapse
Affiliation(s)
| | | | | | | | - Xueli Cao
- Beijing Technology and Business University, Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing, China
| |
Collapse
|
4
|
Yu W, Li X, Sun Q, Yi S, Zhang G, Chen L, Li Z, Li J, Luo L. Metabolomics and network pharmacology reveal the mechanism of Castanopsis honey against Streptococcus pyogenes. Food Chem 2024; 441:138388. [PMID: 38219368 DOI: 10.1016/j.foodchem.2024.138388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Streptococcus pyogenes (GAS) is one of the most virulent and infectious bacteria, severely threatening health and lives of people worldwide. Honey has been proven to have effective capability against GAS, but the underlying metabolites and mechanisms are still unclear. In this study, the Castanopsis honey (CH) showed significant antibacterial ability compared to other seven kinds of honey and artificial honey. Furthermore, the antibacterial metabolites and their targets in CH were screened by combined method of metabolomics, network pharmacology, and molecular docking. The results suggested that the activities of two antioxidant enzymes, glutathione peroxidase and tyrosyl tRNA synthetase identified as the primary targets, were significantly inhibited by CH, which significantly increased the level of oxidative stress in GAS. The results revealed a possibly novel mechanism regulating the oxidative stress and inhibits the growth in bacteria, providing strong experimental evidence to support the further development of CH as a novel antibacterial agent.
Collapse
Affiliation(s)
- Wenjie Yu
- Key Laboratory of Geriatric Nutrition and Health, (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Xiaohua Li
- School of Life Sciences, Nanchang University, Nanchang 330031 China
| | - Qifang Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Shengxiang Yi
- School of Life Sciences, Nanchang University, Nanchang 330031 China
| | - Gaowei Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031 China
| | - Lili Chen
- School of Life Sciences, Nanchang University, Nanchang 330031 China
| | - Zhuozhen Li
- Key Laboratory of Geriatric Nutrition and Health, (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Junru Li
- School of Life Sciences, Nanchang University, Nanchang 330031 China
| | - Liping Luo
- Key Laboratory of Geriatric Nutrition and Health, (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; School of Life Sciences, Nanchang University, Nanchang 330031 China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
5
|
Gao XZ, Cao YD, Gao YZ, Hu J, Ji T. Efficient detection of Streptococcus pyogenes based on recombinase polymerase amplification and lateral flow strip. Eur J Clin Microbiol Infect Dis 2024; 43:735-745. [PMID: 38361135 DOI: 10.1007/s10096-024-04780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
PURPOSE This article aims to establish a rapid visual method for the detection of Streptococcus pyogenes (GAS) based on recombinase polymerase amplification (RPA) and lateral flow strip (LFS). METHODS Utilizing speB of GAS as a template, RPA primers were designed, and basic RPA reactions were performed. To reduce the formation of primer dimers, base mismatch was introduced into primers. The probe was designed according to the forward primer, and the RPA-LFS system was established. According to the color results of the reaction system, the optimum reaction temperature and time were determined. Thirteen common clinical standard strains and 14 clinical samples of GAS were used to detect the selectivity of this method. The detection limit of this method was detected by using tenfold gradient dilution of GAS genome as template. One hundred fifty-six clinical samples were collected and compared with qPCR method and culture method. Kappa index and clinical application evaluation of the RPA-LFS were carried out. RESULTS The enhanced RPA-LFS method demonstrates the ability to complete the amplification process within 6 min at 33 °C. This method exhibits a high analytic sensitivity, with the lowest detection limit of 0.908 ng, and does not exhibit cross-reaction with other pathogenic bacteria. CONCLUSIONS The utilization of RPA and LFS allows for efficient and rapid testing of GAS, thereby serving as a valuable method for point-of-care testing.
Collapse
Affiliation(s)
- Xu-Zhu Gao
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Kangda College of Nanjing Medical University, Lianyungang, China
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Xuzhou Medical University, Lianyungang, China
- Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
- The Second People's Hospital of Lianyungang Affiliated to Bengbu Medical College, Lianyungang, China
- Department of Medicine Laboratory, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), 161 Xingfu Road, Lianyungang, China
| | - Yu-Die Cao
- The Second People's Hospital of Lianyungang Affiliated to Bengbu Medical College, Lianyungang, China
| | - Yu-Zhi Gao
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Kangda College of Nanjing Medical University, Lianyungang, China
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Xuzhou Medical University, Lianyungang, China
- Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Juan Hu
- Department of Medicine Laboratory, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), 161 Xingfu Road, Lianyungang, China.
| | - Tuo Ji
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Kangda College of Nanjing Medical University, Lianyungang, China.
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Xuzhou Medical University, Lianyungang, China.
- Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China.
- The Second People's Hospital of Lianyungang Affiliated to Bengbu Medical College, Lianyungang, China.
- Department of Medicine Laboratory, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), 161 Xingfu Road, Lianyungang, China.
| |
Collapse
|
6
|
Leung AKC, Lam JM, Barankin B, Leong KF, Hon KL. Group A β-hemolytic Streptococcal Pharyngitis: An Updated Review. Curr Pediatr Rev 2024; 21:2-17. [PMID: 37493159 DOI: 10.2174/1573396320666230726145436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Group A ß-hemolytic Streptococcus (GABHS) is the leading bacterial cause of acute pharyngitis in children and adolescents worldwide. OBJECTIVE This article aims to familiarize clinicians with the clinical manifestations, evaluation, diagnosis, and management of GABHS pharyngitis. METHODS A search was conducted in December 2022 in PubMed Clinical Queries using the key term "group A β-hemolytic streptococcal pharyngitis". This review covers mainly literature published in the previous ten years. RESULTS Children with GABHS pharyngitis typically present with an abrupt onset of fever, intense pain in the throat, pain on swallowing, an inflamed pharynx, enlarged and erythematous tonsils, a red and swollen uvula, enlarged tender anterior cervical lymph nodes. As clinical manifestations may not be specific, even experienced clinicians may have difficulties diagnosing GABHS pharyngitis solely based on epidemiologic or clinical grounds alone. Patients suspected of having GABHS pharyngitis should be confirmed by microbiologic testing (e.g., culture, rapid antigen detection test, molecular point-of-care test) of a throat swab specimen prior to the initiation of antimicrobial therapy. Microbiologic testing is generally unnecessary in patients with pharyngitis whose clinical and epidemiologic findings do not suggest GABHS. Clinical score systems such as the Centor score and McIssac score have been developed to help clinicians decide which patients should undergo diagnostic testing and reduce the unnecessary use of antimicrobials. Antimicrobial therapy should be initiated without delay once the diagnosis is confirmed. Oral penicillin V and amoxicillin remain the drugs of choice. For patients who have a non-anaphylactic allergy to penicillin, oral cephalosporin is an acceptable alternative. For patients with a history of immediate, anaphylactic-type hypersensitivity to penicillin, oral clindamycin, clarithromycin, and azithromycin are acceptable alternatives. CONCLUSION Early diagnosis and antimicrobial treatment are recommended to prevent suppurative complications (e.g., cervical lymphadenitis, peritonsillar abscess) and non-suppurative complications (particularly rheumatic fever) as well as to reduce the severity of symptoms, to shorten the duration of the illness and to reduce disease transmission.
Collapse
Affiliation(s)
- Alexander K C Leung
- Department of Pediatrics, The University of Calgary, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Joseph M Lam
- Department of Pediatrics and Department of Dermatology and Skin Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Benjamin Barankin
- Department of Dermatology, Toronto Dermatology Centre, Toronto, Ontario, Canada
| | - Kin F Leong
- Pediatric Institute, Kuala Lumpur General Hospital, Kuala Lumpur, Malaysia
| | - Kam L Hon
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, China
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, China
| |
Collapse
|