1
|
Rütten A, Kirchner T, Musiol-Kroll EM. Overview on Strategies and Assays for Antibiotic Discovery. Pharmaceuticals (Basel) 2022; 15:1302. [PMID: 36297414 PMCID: PMC9607151 DOI: 10.3390/ph15101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
The increase in antibiotic resistance poses a major threat to global health. Actinomycetes, the Gram-positive bacteria of the order Actinomycetales, are fertile producers of bioactive secondary metabolites, including antibiotics. Nearly two-thirds of antibiotics that are used for the treatment of bacterial infections were originally isolated from actinomycetes strains belonging to the genus Streptomyces. This emphasizes the importance of actinomycetes in antibiotic discovery. However, the identification of a new antimicrobial compound and the exploration of its mode of action are very challenging tasks. Therefore, different approaches that enable the "detection" of an antibiotic and the characterization of the mechanisms leading to the biological activity are indispensable. Beyond bioinformatics tools facilitating the identification of biosynthetic gene clusters (BGCs), whole cell-screenings-in which cells are exposed to actinomycete-derived compounds-are a common strategy applied at the very early stage in antibiotic drug development. More recently, target-based approaches have been established. In this case, the drug candidates were tested for interactions with usually validated targets. This review focuses on the bioactivity-based screening methods and provides the readers with an overview on the most relevant assays for the identification of antibiotic activity and investigation of mechanisms of action. Moreover, the article includes examples of the successful application of these methods and suggestions for improvement.
Collapse
Affiliation(s)
- Anika Rütten
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Teresa Kirchner
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Ewa Maria Musiol-Kroll
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Nikolay R, Hilal T, Schmidt S, Qin B, Schwefel D, Vieira-Vieira CH, Mielke T, Bürger J, Loerke J, Amikura K, Flügel T, Ueda T, Selbach M, Deuerling E, Spahn CMT. Snapshots of native pre-50S ribosomes reveal a biogenesis factor network and evolutionary specialization. Mol Cell 2021; 81:1200-1215.e9. [PMID: 33639093 DOI: 10.1016/j.molcel.2021.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 11/11/2020] [Accepted: 02/02/2021] [Indexed: 01/13/2023]
Abstract
Ribosome biogenesis is a fundamental multi-step cellular process that culminates in the formation of ribosomal subunits, whose production and modification are regulated by numerous biogenesis factors. In this study, we analyze physiologic prokaryotic ribosome biogenesis by isolating bona fide pre-50S subunits from an Escherichia coli strain with the biogenesis factor ObgE, affinity tagged at its native gene locus. Our integrative structural approach reveals a network of interacting biogenesis factors consisting of YjgA, RluD, RsfS, and ObgE on the immature pre-50S subunit. In addition, our study provides mechanistic insight into how the GTPase ObgE, in concert with other biogenesis factors, facilitates the maturation of the 50S functional core and reveals both conserved and divergent evolutionary features of ribosome biogenesis between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Rainer Nikolay
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Tarek Hilal
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Freie Universität Berlin, Research Centre for Electron Microscopy, Fabeckstr. 36a, 14195 Berlin, Germany
| | - Sabine Schmidt
- Molekulare Mikrobiologie, Universität Konstanz, Konstanz, Germany
| | - Bo Qin
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - David Schwefel
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carlos H Vieira-Vieira
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| | - Thorsten Mielke
- Microscopy and Cryo-Electron Microscopy Service Group, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Jörg Bürger
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Microscopy and Cryo-Electron Microscopy Service Group, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Justus Loerke
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kazuaki Amikura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, FSB-401, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Timo Flügel
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Takuya Ueda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, FSB-401, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Matthias Selbach
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Elke Deuerling
- Molekulare Mikrobiologie, Universität Konstanz, Konstanz, Germany
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
3
|
Sharma H, Anand B. Fluorescence bimolecular complementation enables facile detection of ribosome assembly defects in Escherichia coli. RNA Biol 2016; 13:872-82. [PMID: 27388791 DOI: 10.1080/15476286.2016.1207037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Assembly factors promote the otherwise non-spontaneous maturation of ribosome under physiological conditions inside the cell. Systematic identification and characterization of candidate assembly factors are fraught with bottlenecks due to lack of facile assay system to capture assembly defects. Here, we show that bimolecular fluorescence complementation (BiFC) allows detection of assembly defects that are induced by the loss of assembly factors. The fusion of N and C-terminal fragments of Venus fluorescent protein to the ribosomal proteins uS13 and uL5, respectively, in Escherichia coli facilitated the incorporation of the tagged uS13 and uL5 onto the respective ribosomal subunits. When the ribosomal subunits associated to form the 70S particle, the complementary fragments of Venus were brought into proximity and rendered the Venus fluorescent. Assembly defects that inhibit the subunits association were provoked by either the loss of the known assembly factors such as RsgA and SrmB or the presence of small molecule inhibitors of ribosome maturation such as Lamotrigine and several ribosome-targeting antibiotics and these showed abrogation of the fluorescence complementation. This suggests that BiFC can be employed as a surrogate measure to detect ribosome assembly defects proficiently by circumventing the otherwise cumbersome procedures. BiFC thus offers a facile platform not only for systematic screening to validate potential assembly factors but also to discover novel small molecule inhibitors of ribosome assembly toward mapping the complex assembly landscape of ribosome.
Collapse
Affiliation(s)
- Himanshu Sharma
- a Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Assam , India
| | - Baskaran Anand
- a Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Assam , India
| |
Collapse
|
4
|
Nikolay R, Schmidt S, Schlömer R, Deuerling E, Nierhaus KH. Ribosome Assembly as Antimicrobial Target. Antibiotics (Basel) 2016; 5:E18. [PMID: 27240412 PMCID: PMC4929433 DOI: 10.3390/antibiotics5020018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/02/2016] [Accepted: 05/16/2016] [Indexed: 12/19/2022] Open
Abstract
Many antibiotics target the ribosome and interfere with its translation cycle. Since translation is the source of all cellular proteins including ribosomal proteins, protein synthesis and ribosome assembly are interdependent. As a consequence, the activity of translation inhibitors might indirectly cause defective ribosome assembly. Due to the difficulty in distinguishing between direct and indirect effects, and because assembly is probably a target in its own right, concepts are needed to identify small molecules that directly inhibit ribosome assembly. Here, we summarize the basic facts of ribosome targeting antibiotics. Furthermore, we present an in vivo screening strategy that focuses on ribosome assembly by a direct fluorescence based read-out that aims to identify and characterize small molecules acting as primary assembly inhibitors.
Collapse
Affiliation(s)
- Rainer Nikolay
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Sabine Schmidt
- Molecular Microbiology, University of Konstanz, Konstanz 78457, Germany.
| | - Renate Schlömer
- Molecular Microbiology, University of Konstanz, Konstanz 78457, Germany.
| | - Elke Deuerling
- Molecular Microbiology, University of Konstanz, Konstanz 78457, Germany.
| | - Knud H Nierhaus
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|