1
|
Assessment of depth perception with a comprehensive disparity defined letter test: A pilot study. PLoS One 2022; 17:e0271881. [PMID: 35960712 PMCID: PMC9374229 DOI: 10.1371/journal.pone.0271881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/09/2022] [Indexed: 11/19/2022] Open
Abstract
Current clinical tests mostly assess stereopsis with crossed disparity at near. These tests are designed with fine targets (high spatial frequency) and may fail to capture the “functional stereopsis” in real-world scenes, which consist of a range of spatial frequencies (SFs). We developed a stereo letter test that can assess crossed and uncrossed stereoacuity at near and far, at different SFs defined by the letter size. The test consists of disparity-defined letters embedded in random-dot stereograms. At each letter size, the letters are arranged in sets of trigrams like in the Pelli-Robson chart. The letter sizes correspond to SFs ranging from 0.3 to 2cpd. Within each triplet, all letters have the same disparity and the amount of disparity decreases after each set. Subjects report the letters verbally to determine the smallest disparity at each letter size. Twenty-four subjects were tested with eight different charts: crossed vs. uncrossed disparity at far and near, with two versions (different letter sequences). The disparity sensitivity function (DSF) had an inverted U-shape, with decreasing sensitivity for smaller stereo letters. The subjects had better stereopsis at far than near. All the subjects had lower stereo thresholds with crossed disparity than uncrossed, consistently at both distances. We found no effect of age or heterophoria on the DSF. The charts have good test-retest reliability (Pearson’s r = 0.89, p<0.001) and are easy to perform. Our results with stereo letters as stimuli are comparable to results from studies using depth corrugations. This stereo acuity letter test permits assessment of stereopsis at different testing distances, directionality of disparity, and across a range of SFs, which can help diagnose selective stereo losses in binocular vision anomalies and monovision. Assessment of stereopsis at different SFs may provide additional information for understanding daily stereovision demands than the conventional tests.
Collapse
|
2
|
Chen X, Liao M, Jiang P, Sun H, Liu L, Gong Q. Abnormal effective connectivity in visual cortices underlies stereopsis defects in amblyopia. Neuroimage Clin 2022; 34:103005. [PMID: 35421811 PMCID: PMC9011166 DOI: 10.1016/j.nicl.2022.103005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/15/2022] [Accepted: 04/05/2022] [Indexed: 02/08/2023]
Abstract
Abnormal effective connectivity inherent stereopsis defects in amblyopia was studied. A weakened connection from V2v to LO2 relates to stereopsis defects in amblyopia. Higher-order visual cortices may serve as key nodes to the stereopsis defects. An independent longitudinal dataset was used to validate the obtained results.
The neural basis underlying stereopsis defects in patients with amblyopia remains unclear, which hinders the development of clinical therapy. This study aimed to investigate visual network abnormalities in patients with amblyopia and their associations with stereopsis function. Spectral dynamic causal modeling methods were employed for resting-state functional magnetic resonance imaging data to investigate the effective connectivity (EC) among 14 predefined regions of interest in the dorsal and ventral visual pathways. We adopted two independent datasets, including a cross-sectional and a longitudinal dataset. In the cross-sectional dataset, we compared group differences in EC between 31 patients with amblyopia (mean age: 26.39 years old) and 31 healthy controls (mean age: 25.71 years old) and investigated the association between EC and stereoacuity. In addition, we explored EC changes after perceptual learning in a novel longitudinal dataset including 9 patients with amblyopia (mean age: 15.78 years old). We found consistent evidence from the two datasets indicating that the aberrant EC from V2v to LO2 is crucial for the stereoscopic deficits in the patients with amblyopia: it was weaker in the patients than in the controls, showed a positive linear relationship with the stereoscopic function, and increased after perceptual learning in the patients. In addition, higher-level dorsal (V3d, V3A, and V3B) and ventral areas (LO1 and LO2) were important nodes in the network of abnormal ECs associated with stereoscopic deficits in the patients with amblyopia. Our research provides insights into the neural mechanism underlying stereopsis deficits in patients with amblyopia and provides candidate targets for focused stimulus interventions to enhance the efficacy of clinical treatment for the improvement of stereopsis deficiency.
Collapse
Affiliation(s)
- Xia Chen
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Liao
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Jiang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, China.
| | - Huaiqiang Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Imaging Research Core Facilities, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Longqian Liu
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
3
|
Tian Q, Wang L, Zhang Y, Fan K, Liang M, Shi D, Qin W, Ding H. Brain Gray Matter Atrophy and Functional Connectivity Remodeling in Patients With Chronic LHON. Front Neurosci 2022; 16:885770. [PMID: 35645726 PMCID: PMC9135140 DOI: 10.3389/fnins.2022.885770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The aim of this study was to investigate the brain gray matter volume (GMV) and spontaneous functional connectivity (FC) changes in patients with chronic Leber's hereditary optic neuropathy (LHON), and their relations with clinical measures. Methods A total of 32 patients with chronic LHON and matched sighted healthy controls (HC) underwent neuro-ophthalmologic examinations and multimodel magnetic resonance imaging (MRI) scans. Voxel-based morphometry (VBM) was used to detect the GMV differences between the LHON and HC. Furthermore, resting-state FC analysis using the VBM-identified clusters as seeds was carried out to detect potential functional reorganization in the LHON. Finally, the associations between the neuroimaging and clinical measures were performed. Results The average peripapillary retinal nerve fiber layer (RNFL) thickness of the chronic LHON was significantly thinner (T = −16.421, p < 0.001), and the mean defect of the visual field was significantly higher (T = 11.28, p < 0.001) than the HC. VBM analysis demonstrated a significantly lower GMV of bilateral calcarine gyri (CGs) in the LHON than in the HC (p < 0.05). Moreover, in comparison with the HC, the LHON had significantly lower FC between the centroid of the identified left CG and ipsilateral superior occipital gyrus (SOG) and higher FC between this cluster and the ipsilateral posterior cingulate gyrus (p < 0.05, corrected). Finally, the GMV of the left CG was negatively correlated with the LHON duration (r = −0.535, p = 0.002), and the FC between the left CG and the ipsilateral posterior cingulate gyrus of the LHON was negatively correlated with the average peripapillary RNFL thickness (r = −0.522, p = 0.003). Conclusion The atrophied primary visual cortex of the chronic LHON may be caused by transneuronal degeneration following the retinal damage. Moreover, our findings suggest that the functional organization of the atrophied primary visual cortex has been reshaped in the chronic LHON.
Collapse
Affiliation(s)
- Qin Tian
- Department of Medical Imaging, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ling Wang
- Department of Medical Imaging, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yu Zhang
- Department of Radiology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Ke Fan
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Meng Liang
- Department of Radiology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Dapeng Shi
- Department of Medical Imaging, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- *Correspondence: Dapeng Shi
| | - Wen Qin
- Department of Radiology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- Wen Qin
| | - Hao Ding
- Department of Radiology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
- Hao Ding
| |
Collapse
|
4
|
Zheng H, Yao L, Long Z. Reconstruction of 3D Images from Human Activity by a Compound Reconstruction Model. Cognit Comput 2022. [DOI: 10.1007/s12559-022-09992-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Jin H, Chen RB, Zhong YL, Lai PH, Huang X. Effect of Impaired Stereoscopic Vision on Large-Scale Resting-State Functional Network Connectivity in Comitant Exotropia Patients. Front Neurosci 2022; 16:833937. [PMID: 35350559 PMCID: PMC8957945 DOI: 10.3389/fnins.2022.833937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/31/2022] [Indexed: 12/27/2022] Open
Abstract
Background Comitant exotropia (CE) is a common eye movement disorder, characterized by impaired eye movements and stereoscopic vision. CE patients reportedly exhibit changes in the central nervous system. However, it remains unclear whether large-scale brain network changes occur in CE patients. Purpose This study investigated the effects of exotropia and stereoscopic vision dysfunction on large-scale brain networks in CE patients via independent component analysis (ICA). Methods Twenty-eight CE patients (mean age, 15.80 ± 2.46 years) and 27 healthy controls (HCs; mean age, 16.00 ± 2.68 years; closely matched for age, sex, and education) underwent resting-state magnetic resonance imaging. ICA was applied to extract resting-state networks (RSNs) in both groups. Two-sample’s t-tests were conducted to investigate intranetwork functional connectivity (FC) within RSNs and interactions among RSNs between the two groups. Results Compared with the HC group, the CE group showed increased intranetwork FC in the bilateral postcentral gyrus of the sensorimotor network (SMN). The CE group also showed decreased intranetwork FC in the right cerebellum_8 of the cerebellum network (CER), the right superior temporal gyrus of the auditory network (AN), and the right middle occipital gyrus of the visual network (VN). Moreover, functional network connectivity (FNC) analysis showed that CER-AN, SMN-VN, SN-DMN, and DMN-VN connections were significantly altered between the two groups. Conclusion Comitant exotropia patients had abnormal brain networks related to the CER, SMN, AN, and VN. Our results offer important insights into the neural mechanisms of eye movements and stereoscopic vision dysfunction in CE patients.
Collapse
Affiliation(s)
- Han Jin
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Ri-Bo Chen
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yu-Lin Zhong
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Ping-Hong Lai
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- *Correspondence: Xin Huang,
| |
Collapse
|
6
|
Ultra-High-Field Neuroimaging Reveals Fine-Scale Processing for 3D Perception. J Neurosci 2021; 41:8362-8374. [PMID: 34413206 PMCID: PMC8496197 DOI: 10.1523/jneurosci.0065-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/08/2021] [Accepted: 07/07/2021] [Indexed: 11/21/2022] Open
Abstract
Binocular disparity provides critical information about three-dimensional (3D) structures to support perception and action. In the past decade significant progress has been made in uncovering human brain areas engaged in the processing of binocular disparity signals. Yet, the fine-scale brain processing underlying 3D perception remains unknown. Here, we use ultra-high-field (7T) functional imaging at submillimeter resolution to examine fine-scale BOLD fMRI signals involved in 3D perception. In particular, we sought to interrogate the local circuitry involved in disparity processing by sampling fMRI responses at different positions relative to the cortical surface (i.e., across cortical depths corresponding to layers). We tested for representations related to 3D perception by presenting participants (male and female, N = 8) with stimuli that enable stable stereoscopic perception [i.e., correlated random dot stereograms (RDS)] versus those that do not (i.e., anticorrelated RDS). Using multivoxel pattern analysis (MVPA), we demonstrate cortical depth-specific representations in areas V3A and V7 as indicated by stronger pattern responses for correlated than for anticorrelated stimuli in upper rather than deeper layers. Examining informational connectivity, we find higher feedforward layer-to-layer connectivity for correlated than anticorrelated stimuli between V3A and V7. Further, we observe disparity-specific feedback from V3A to V1 and from V7 to V3A. Our findings provide evidence for the role of V3A as a key nexus for disparity processing, which is implicated in feedforward and feedback signals related to the perceptual estimation of 3D structures.SIGNIFICANCE STATEMENT Binocular vision plays a significant role in supporting our interactions with the surrounding environment. The fine-scale neural mechanisms that underlie the brain's skill in extracting 3D structures from binocular signals are poorly understood. Here, we capitalize on recent advances in ultra-high-field functional imaging to interrogate human brain circuits involved in 3D perception at submillimeter resolution. We provide evidence for the role of area V3A as a key nexus for disparity processing, which is implicated in feedforward and feedback signals related to the perceptual estimation of 3D structures from binocular signals. These fine-scale measurements help bridge the gap between animal neurophysiology and human fMRI studies investigating cross-scale circuits, from micro circuits to global brain networks for 3D perception.
Collapse
|
7
|
Zheng H, Yao L, Chen M, Long Z. 3D Contrast Image Reconstruction From Human Brain Activity. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2699-2710. [PMID: 33147146 DOI: 10.1109/tnsre.2020.3035818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Several studies demonstrated that functional magnetic resonance imaging (fMRI) signals in early visual cortex can be used to reconstruct 2-dimensional (2D) visual contents. However, it remains unknown how to reconstruct 3-dimensional (3D) visual stimuli from fMRI signals in visual cortex. 3D visual stimuli contain 2D visual features and depth information. Moreover, binocular disparity is an important cue for depth perception. Thus, it is more challenging to reconstruct 3D visual stimuli than 2D visual stimuli from the fMRI signals of visual cortex. This study aimed to reconstruct 3D visual images by constructing three decoding models: contrast-decoding, disparity-decoding and contrast-disparity-decoding models, and testing these models with fMRI data from humans viewing 3D contrast images. The results revealed that the 3D contrast stimuli can be reconstructed from the visual cortex. And the early visual regions (V1, V2) showed predominant advantages in reconstructing the contrast in 3D images for the contrast-decoding model. The dorsal visual regions (V3A, V7 and MT) showed predominant advantages in decoding the disparity in 3D images for the disparity-decoding model. The combination of the early and dorsal visual regions showed predominant advantages in decoding both the contrast and disparity for the contrast-disparity-decoding model. The results suggested that the contrast and disparity in 3D images were mainly represented in the early and dorsal visual regions separately. The two visual systems may interact with each other to decode 3D-contrast images.
Collapse
|
8
|
Liu C, Li Y, Song S, Zhang J. Decoding disparity categories in 3-dimensional images from fMRI data using functional connectivity patterns. Cogn Neurodyn 2019; 14:169-179. [PMID: 32226560 DOI: 10.1007/s11571-019-09557-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 09/05/2019] [Accepted: 09/29/2019] [Indexed: 02/02/2023] Open
Abstract
Humans use binocular disparity to extract depth information from two-dimensional retinal images in a process called stereopsis. Previous studies usually introduce the standard univariate analysis to describe the correlation between disparity level and brain activity within a given brain region based on functional magnetic resonance imaging (fMRI) data. Recently, multivariate pattern analysis has been developed to extract activity patterns across multiple voxels for deciphering categories of binocular disparity. However, the functional connectivity (FC) of patterns based on regions of interest or voxels and their mapping onto disparity category perception remain unknown. The present study extracted functional connectivity patterns for three disparity conditions (crossed disparity, uncrossed disparity, and zero disparity) at distinct spatial scales to decode the binocular disparity. Results of 27 subjects' fMRI data demonstrate that FC features are more discriminatory than traditional voxel activity features in binocular disparity classification. The average binary classification of the whole brain and visual areas are respectively 87% and 79% at single subject level, and thus above the chance level (50%). Our research highlights the importance of exploring functional connectivity patterns to achieve a novel understanding of 3D image processing.
Collapse
Affiliation(s)
- Chunyu Liu
- 1College of Information Science and Technology, Beijing Normal University, Beijing, China
| | - Yuan Li
- 2School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Sutao Song
- 3School of Education and Psychology, University of Jinan, Jinan, China
| | - Jiacai Zhang
- 1College of Information Science and Technology, Beijing Normal University, Beijing, China
| |
Collapse
|
9
|
Multivariate Analysis of BOLD Activation Patterns Recovers Graded Depth Representations in Human Visual and Parietal Cortex. eNeuro 2019; 6:ENEURO.0362-18.2019. [PMID: 31285275 PMCID: PMC6709213 DOI: 10.1523/eneuro.0362-18.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 11/21/2022] Open
Abstract
Navigating through natural environments requires localizing objects along three distinct spatial axes. Information about position along the horizontal and vertical axes is available from an object’s position on the retina, while position along the depth axis must be inferred based on second-order cues such as the disparity between the images cast on the two retinae. Past work has revealed that object position in two-dimensional (2D) retinotopic space is robustly represented in visual cortex and can be robustly predicted using a multivariate encoding model, in which an explicit axis is modeled for each spatial dimension. However, no study to date has used an encoding model to estimate a representation of stimulus position in depth. Here, we recorded BOLD fMRI while human subjects viewed a stereoscopic random-dot sphere at various positions along the depth (z) and the horizontal (x) axes, and the stimuli were presented across a wider range of disparities (out to ∼40 arcmin) compared to previous neuroimaging studies. In addition to performing decoding analyses for comparison to previous work, we built encoding models for depth position and for horizontal position, allowing us to directly compare encoding between these dimensions. Our results validate this method of recovering depth representations from retinotopic cortex. Furthermore, we find convergent evidence that depth is encoded most strongly in dorsal area V3A.
Collapse
|
10
|
Li Y, Hou C, Yao L, Zhang C, Zheng H, Zhang J, Long Z. Disparity level identification using the voxel-wise Gabor model of fMRI data. Hum Brain Mapp 2019; 40:2596-2610. [PMID: 30811782 DOI: 10.1002/hbm.24547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 01/18/2019] [Accepted: 02/03/2019] [Indexed: 11/08/2022] Open
Abstract
Perceiving disparities is the intuitive basis for our understanding of the physical world. Although many electrophysiology studies have revealed the disparity-tuning characteristics of the neurons in the visual areas of the macaque brain, neuron population responses to disparity processing have seldom been investigated. Many disparity studies using functional magnetic resonance imaging (fMRI) have revealed the disparity-selective visual areas in the human brain. However, it is unclear how to characterize neuron population disparity-tuning responses using fMRI technique. In the present study, we constructed three voxel-wise encoding Gabor models to predict the voxel responses to novel disparity levels and used a decoding method to identify the new disparity levels from population responses in the cortex. Among the three encoding models, the fine-coarse model (FCM) that used fine/coarse disparities to fit the voxel responses to disparities outperformed the single model and uncrossed-crossed model. Moreover, the FCM demonstrated high accuracy in predicting voxel responses in V3A complex and high accuracy in identifying novel disparities from responses in V3A complex. Our results suggest that the FCM can better characterize the voxel responses to disparities than the other two models and V3A complex is a critical visual area for representing disparity information.
Collapse
Affiliation(s)
- Yuan Li
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Chunping Hou
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Li Yao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,College of Information Science and Technology, Beijing Normal University, Beijing, China
| | - Chuncheng Zhang
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Hongna Zheng
- College of Information Science and Technology, Beijing Normal University, Beijing, China
| | - Jiacai Zhang
- College of Information Science and Technology, Beijing Normal University, Beijing, China
| | - Zhiying Long
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|