1
|
Heydarian Z, Harrington M, Hegedus DD. Defects in Glabrous 3 (GL3) functionality underlie the absence of trichomes in Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1703-1719. [PMID: 38967095 DOI: 10.1111/tpj.16878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
Previously, expression of the Arabidopsis thaliana GLABRA3 (GL3) induced trichome formation in Brassica napus. GL3 orthologues were examined from glabrous (B. oleracea), semi-glabrous (B. napus), moderately hirsute (B. rapa), and very hirsute (B. villosa) Brassica species. Ectopic expression of BnGL3, BrGL3 alleles, or BvGL3 induced trichome formation in glabrous B. napus with the effect on trichome number commensurate with density in the original accessions. Chimeric GL3 proteins in which the B. napus amino terminal region, which interacts with MYB proteins, or the middle region, which interacts with the WD40 protein TTG1, was exchanged with corresponding regions from A. thaliana were as stimulatory to trichome production as AtGL3. Exchange of the carboxy-terminal region containing a bHLH domain and an ACT domain did not alter the trichome stimulatory activity, although modeling of the ACT domain identified differences that could affect GL3 dimerization. B. napus A- and C-genomes orthologues differed in their abilities to form homo- and heterodimers. Modeling of the amino-terminal region revealed a conserved domain that may represent the MYB factor binding pocket. This region interacted with the MYB factors GL1, CPC, and TRY, as well as with JAZ8, which is involved in jasmonic acid-mediated regulation of MYC-like transcription factors. Protein interaction studies indicated that GL1 interaction with GL3 from B. napus and A. thaliana may underlie the difference in their respective abilities to induce trichome formation.
Collapse
Affiliation(s)
- Zohreh Heydarian
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
- Department of Biotechnology, School of Agriculture, University of Shiraz, Bajgah, Shiraz, Fars, Iran
| | - Myrtle Harrington
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
2
|
Cornelsen JE, Ort NW, Gabert RK, Epp I, Rempel CB. Current and potential pest threats for canola in the Canadian Prairies. PEST MANAGEMENT SCIENCE 2024; 80:2220-2234. [PMID: 37899491 DOI: 10.1002/ps.7858] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 10/07/2023] [Accepted: 10/26/2023] [Indexed: 10/31/2023]
Abstract
Canola/oilseed rape (Brassica napus L.) production in Canada has increased to become a foundational crop in the Canadian Prairies and an important economic driver of this region. The increase in seeded area, and by association its reduction in-crop rotation frequency, has made it easier for pests to overcome current recommended agronomic management practices. The Canola Council of Canada has been successful in involving the entire commodity value chain in promoting and strengthening the Canadian canola industry; however, because of this production increase it is critically important to understand, evaluate and mitigate the potential risks of canola yield losses to current and potential pests. This Perspective provides an overview of what are currently the most damaging insects, pathogens and weeds to canola in the Canadian Prairies, potential future threats and opportunities farmers, agronomists and researchers can take to minimize these risks. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Nathaniel Ww Ort
- Canola Council of Canada, Winnipeg, Canada
- University of Saskatchewan, Saskatoon, Canada
| | | | - Ian Epp
- Canola Council of Canada, Winnipeg, Canada
| | - Curtis B Rempel
- Canola Council of Canada, Winnipeg, Canada
- University of Manitoba, Winnipeg, Canada
| |
Collapse
|
3
|
Janković S, Alimpić Aradski A, Dodoš T, Novaković J, Ivanović S, Vujisić L, Marin PD, Rajčević N. Clinopodium L. Taxa from the Balkans-Are There Unique Leaf Micromorphological and Phytochemical Patterns? PLANTS (BASEL, SWITZERLAND) 2024; 13:251. [PMID: 38256803 PMCID: PMC10819394 DOI: 10.3390/plants13020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/25/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
The concept of the genus Clinopodium L. has changed considerably since its first description. Most of the currently accepted species of the genus have traditionally been treated as separate genera in the group Satureja sensu lato: Clinopodium L., Calamintha sensu Miller or Moench, and Acinos sensu Miller or Moench. This study aimed to gain a better insight into the species diversity of Clinopodium L. from the Balkans by analyzing the taxa that have traditionally been placed in separate genera. The alkane profile and the micromorphological characteristics of the leaves are analyzed. The leaves are visualized using scanning electron microscopy, and alkanes are isolated using n-hexane as a solvent and analyzed using gas chromatography/mass spectrometry. The alkane profile showed the differentiation of the Acinos-group from the other taxa based on the dominant n-C31, while most of the other taxa contained n-C33 as the dominant alkane. The micromorphological features also showed clear differences between the previously recognized genera, especially in the capitate trichomes. The results showed that micromorphological patterns are highly variable in certain groups of the genus Clinopodium.
Collapse
Affiliation(s)
- Smiljana Janković
- Facultyof Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (A.A.A.); (T.D.); (J.N.); (P.D.M.); (N.R.)
| | - Ana Alimpić Aradski
- Facultyof Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (A.A.A.); (T.D.); (J.N.); (P.D.M.); (N.R.)
| | - Tanja Dodoš
- Facultyof Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (A.A.A.); (T.D.); (J.N.); (P.D.M.); (N.R.)
| | - Jelica Novaković
- Facultyof Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (A.A.A.); (T.D.); (J.N.); (P.D.M.); (N.R.)
| | - Stefan Ivanović
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Ljubodrag Vujisić
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia;
| | - Petar D. Marin
- Facultyof Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (A.A.A.); (T.D.); (J.N.); (P.D.M.); (N.R.)
| | - Nemanja Rajčević
- Facultyof Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (A.A.A.); (T.D.); (J.N.); (P.D.M.); (N.R.)
| |
Collapse
|
4
|
Fan H, Xu J, Ao D, Jia T, Shi Y, Li N, Jing R, Sun D. QTL Mapping of Trichome Traits and Analysis of Candidate Genes in Leaves of Wheat ( Triticum aestivum L.). Genes (Basel) 2023; 15:42. [PMID: 38254932 PMCID: PMC10815787 DOI: 10.3390/genes15010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Trichome plays an important role in heat dissipation, cold resistance, water absorption, protection of leaves from mechanical damage, and direct exposure to ultraviolet rays. It also plays an important role in the photosynthesis, transpiration, and respiration of plants. However, the genetic basis of trichome traits is not fully understood in wheat. In this study, wheat DH population (Hanxuan 10 × Lumai 14) was used to map quantitative trait loci (QTL) for trichome traits in different parts of flag leaf at 10 days after anther with growing in Zhao County, Hebei Province, and Taigu County, Shanxi Province, respectively. The results showed that trichome density (TD) was leaf center > leaf tip > leaf base and near vein > middle > edge, respectively, in both environments. The trichome length (TL) was leaf tip > leaf center > leaf base and edge > middle > near vein. Significant phenotypic positive correlations were observed between the trichome-related traits of different parts. A total of 83 QTLs for trichome-related traits were mapped onto 18 chromosomes, and each one accounted for 2.41 to 27.99% of the phenotypic variations. Two QTL hotspots were detected in two marker intervals: AX-95232910~AX-95658735 on 3A and AX-94850949~AX-109507404 on 7D. Six possible candidate genes (TraesCS3A02G406000, TraesCS3A02G414900, TraesCS3A02G440900, TraesCS7D02G145200, TraesCS7D02G149200, and TraesCS7D02G152400) for trichome-related traits of wheat leaves were screened out according to their predicted expression levels in wheat leaves. The expression of these genes may be induced by a variety of abiotic stresses. The results provide the basis for further validation and functional characterization of the candidate genes.
Collapse
Affiliation(s)
- Hua Fan
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
- Experimental Teaching Center, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| | - Jianchao Xu
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| | - Dan Ao
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| | - Tianxiang Jia
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| | - Yugang Shi
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| | - Ning Li
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| | - Ruilian Jing
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100000, China;
| | - Daizhen Sun
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| |
Collapse
|
5
|
Obermeier C, Mason AS, Meiners T, Petschenka G, Rostás M, Will T, Wittkop B, Austel N. Perspectives for integrated insect pest protection in oilseed rape breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3917-3946. [PMID: 35294574 PMCID: PMC9729155 DOI: 10.1007/s00122-022-04074-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/01/2022] [Indexed: 05/02/2023]
Abstract
In the past, breeding for incorporation of insect pest resistance or tolerance into cultivars for use in integrated pest management schemes in oilseed rape/canola (Brassica napus) production has hardly ever been approached. This has been largely due to the broad availability of insecticides and the complexity of dealing with high-throughput phenotyping of insect performance and plant damage parameters. However, recent changes in the political framework in many countries demand future sustainable crop protection which makes breeding approaches for crop protection as a measure for pest insect control attractive again. At the same time, new camera-based tracking technologies, new knowledge-based genomic technologies and new scientific insights into the ecology of insect-Brassica interactions are becoming available. Here we discuss and prioritise promising breeding strategies and direct and indirect breeding targets, and their time-perspective for future realisation in integrated insect pest protection of oilseed rape. In conclusion, researchers and oilseed rape breeders can nowadays benefit from an array of new technologies which in combination will accelerate the development of improved oilseed rape cultivars with multiple insect pest resistances/tolerances in the near future.
Collapse
Affiliation(s)
- Christian Obermeier
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Annaliese S Mason
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Torsten Meiners
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute, Koenigin-Luise-Str. 19, 14195, Berlin, Germany
| | - Georg Petschenka
- Department of Applied Entomology, University of Hohenheim, Otto-Sander-Straße 5, 70599, Stuttgart, Germany
| | - Michael Rostás
- Division of Agricultural Entomology, University of Göttingen, Grisebachstr. 6, 37077, Göttingen, Germany
| | - Torsten Will
- Insitute for Resistance Research and Stress Tolerance, Julius Kühn Insitute, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Benjamin Wittkop
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Nadine Austel
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute, Koenigin-Luise-Str. 19, 14195, Berlin, Germany
| |
Collapse
|
6
|
Ortega‐Ramos PA, Coston DJ, Seimandi‐Corda G, Mauchline AL, Cook SM. Integrated pest management strategies for cabbage stem flea beetle ( Psylliodes chrysocephala) in oilseed rape. GLOBAL CHANGE BIOLOGY. BIOENERGY 2022; 14:267-286. [PMID: 35909990 PMCID: PMC9303719 DOI: 10.1111/gcbb.12918] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 06/15/2023]
Abstract
Oilseed rape (OSR) is the second largest source of vegetable oil globally and the most important biofuel feedstock in the European Union (EU) but the production of this important crop is threatened by a small insect, Psylliodes chrysocephala - the cabbage stem flea beetle (CSFB). The EU ban on use of neonicotinoid seed treatments and resistance of CSFB to pyrethroid insecticides have left farmers with limited control options resulting in drastic reductions in production. Integrated pest management (IPM) may offer a solution. We review the lifecycle of CSFB and the current options available, or in the research pipeline, for the eight IPM principles of the EU Sustainable Use of Pesticides Directive (Directive-2009/128/EC). A full IPM strategy for CSFB barely exists. Although there are a range of preventative measures, these require scientific validation; critically, resistant/tolerant OSR cultivars are not yet available. Existing monitoring methods are time-consuming and there are no commercial models to enable decision support based on predictions of migration timing or population size. Available thresholds are not based on physiological tolerances of the plant making it hard to adapt them to changing market prices for the crop and costs of control. Non-synthetic alternatives tested and registered for use against CSFB are lacking, making resistance management impossible. CSFB control is therefore dependent upon conservation biocontrol. Natural enemies of CSFB are present, but quantification of their effects is needed and habitat management strategies to exploit their potential. Although some EU countries have local initiatives to reduce insecticide use and encourage use of 'greener' alternatives, there is no formal process for ranking these and little information available to help farmers make choices. We summarize the main knowledge gaps and future research needed to improve measures for CSFB control and to facilitate development of a full IPM strategy for this pest and sustainable oilseeds production.
Collapse
Affiliation(s)
- Patricia A. Ortega‐Ramos
- Biointeractions & Crop Protection DepartmentRothamsted ResearchHarpendenHertfordshireUK
- School of Agriculture, Policy and DevelopmentUniversity of ReadingReadingUK
| | - Duncan J. Coston
- Biointeractions & Crop Protection DepartmentRothamsted ResearchHarpendenHertfordshireUK
- School of Agriculture, Policy and DevelopmentUniversity of ReadingReadingUK
| | - Gaëtan Seimandi‐Corda
- Biointeractions & Crop Protection DepartmentRothamsted ResearchHarpendenHertfordshireUK
| | - Alice L. Mauchline
- School of Agriculture, Policy and DevelopmentUniversity of ReadingReadingUK
| | - Samantha M. Cook
- Biointeractions & Crop Protection DepartmentRothamsted ResearchHarpendenHertfordshireUK
| |
Collapse
|
7
|
Wang X, Shen C, Meng P, Tan G, Lv L. Analysis and review of trichomes in plants. BMC PLANT BIOLOGY 2021; 21:70. [PMID: 33526015 PMCID: PMC7852143 DOI: 10.1186/s12870-021-02840-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/11/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Trichomes play a key role in the development of plants and exist in a wide variety of species. RESULTS In this paper, it was reviewed that the structure and morphology characteristics of trichomes, alongside the biological functions and classical regulatory mechanisms of trichome development in plants. The environment factors, hormones, transcription factor, non-coding RNA, etc., play important roles in regulating the initialization, branching, growth, and development of trichomes. In addition, it was further investigated the atypical regulation mechanism in a non-model plant, found that regulating the growth and development of tea (Camellia sinensis) trichome is mainly affected by hormones and the novel regulation factors. CONCLUSIONS This review further displayed the complex and differential regulatory networks in trichome initiation and development, provided a reference for basic and applied research on trichomes in plants.
Collapse
Affiliation(s)
- Xiaojing Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Chao Shen
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Pinghong Meng
- Institute of Horticulture, Guizhou Province Academy of Agricultural Sciences, Guiyang, Guizhou, People's Republic of China
| | - Guofei Tan
- Institute of Horticulture, Guizhou Province Academy of Agricultural Sciences, Guiyang, Guizhou, People's Republic of China.
| | - Litang Lv
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, People's Republic of China.
| |
Collapse
|
8
|
Xuan L, Yan T, Lu L, Zhao X, Wu D, Hua S, Jiang L. Genome-wide association study reveals new genes involved in leaf trichome formation in polyploid oilseed rape (Brassica napus L.). PLANT, CELL & ENVIRONMENT 2020; 43:675-691. [PMID: 31889328 DOI: 10.1111/pce.13694] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 05/18/2023]
Abstract
Leaf trichomes protect against various biotic and abiotic stresses in plants. However, there is little knowledge about this trait in oilseed rape (Brassica napus). Here, we demonstrated that hairy leaves were less attractive to Plutella xylostella larvae than glabrous leaves. We established a core germplasm collection with 290 accessions for a genome-wide association study (GWAS) of the leaf trichome trait in oilseed rape. We compared the transcriptomes of the shoot apical meristem (SAM) between hairy- and glabrous-leaf genotypes to narrow down the candidate genes identified by GWAS. The single nucleotide polymorphisms and the different transcript levels of BnaA.GL1.a, BnaC.SWEET4.a, BnaC.WAT1.a and BnaC.WAT1.b corresponded to the divergence of the hairy- and glabrous-leaf phenotypes, indicating the role of sugar and/or auxin signalling in leaf trichome initiation. The hairy-leaf SAMs had lower glucose and sucrose contents but higher expression of putative auxin responsive factors than the glabrous-leaf SAMs. Spraying of exogenous auxin (8 μm) increased leaf trichome number in certain genotypes, whereas spraying of sucrose (1%) plus glucose (6%) slightly repressed leaf trichome initiation. These data contribute to the existing knowledge about the genetic control of leaf trichomes and would assist breeding towards the desired leaf surface type in oilseed rape.
Collapse
Affiliation(s)
- Lijie Xuan
- Provincial Key Laboratory of Crop Gene Resources, Zhejiang University, Hangzhou, China
| | - Tao Yan
- Provincial Key Laboratory of Crop Gene Resources, Zhejiang University, Hangzhou, China
| | - Lingzhi Lu
- Provincial Key Laboratory of Crop Gene Resources, Zhejiang University, Hangzhou, China
| | - Xinze Zhao
- Provincial Key Laboratory of Crop Gene Resources, Zhejiang University, Hangzhou, China
| | - Dezhi Wu
- Provincial Key Laboratory of Crop Gene Resources, Zhejiang University, Hangzhou, China
| | - Shuijin Hua
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lixi Jiang
- Provincial Key Laboratory of Crop Gene Resources, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Zhang W, Mirlohi S, Li X, He Y. Identification of Functional Single-Nucleotide Polymorphisms Affecting Leaf Hair Number in Brassica rapa. PLANT PHYSIOLOGY 2018; 177:490-503. [PMID: 29686057 PMCID: PMC6001316 DOI: 10.1104/pp.18.00025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/09/2018] [Indexed: 05/29/2023]
Abstract
Leaf traits affect plant agronomic performance; for example, leaf hair number provides a morphological indicator of drought and insect resistance. Brassica rapa crops have diverse phenotypes, and many B. rapa single-nucleotide polymorphisms (SNPs) have been identified and used as molecular markers for plant breeding. However, which SNPs are functional for leaf hair traits and, therefore, effective for breeding purposes remains unknown. Here, we identify a set of SNPs in the B. rapa ssp. pekinenesis candidate gene BrpHAIRY LEAVES1 (BrpHL1) and a number of SNPs of BrpHL1 in a natural population of 210 B. rapa accessions that have hairy, margin-only hairy, and hairless leaves. BrpHL1 genes and their orthologs and paralogs have many SNPs. By intensive mutagenesis and genetic transformation, we selected the functional SNPs for leaf hairs by the exclusion of nonfunctional SNPs and the orthologous and paralogous genes. The residue tryptophan-92 of BrpHL1a was essential for direct interaction with GLABROUS3 and, thus, necessary for the formation of leaf hairs. The accessions with the functional SNP leading to substitution of the tryptophan-92 residue had hairless leaves. The orthologous BrcHL1b from B. rapa ssp. chinensis regulates hair formation on leaf margins rather than leaf surfaces. The selected SNP for the hairy phenotype could be adopted as a molecular marker for insect resistance in Brassica spp. crops. Moreover, the procedures optimized here can be used to explain the molecular mechanisms of natural variation and to facilitate the molecular breeding of many crops.
Collapse
Affiliation(s)
- Wenting Zhang
- National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shirin Mirlohi
- National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaorong Li
- National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuke He
- National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and 40 Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
10
|
Gruber M, Alahakoon U, Taheri A, Nagubushana N, Zhou R, Aung B, Sharpe A, Hannoufa A, Bonham-Smith P, Hegedus D DD. The biochemical composition and transcriptome of cotyledons from Brassica napus lines expressing the AtGL3 transcription factor and exhibiting reduced flea beetle feeding. BMC PLANT BIOLOGY 2018; 18:64. [PMID: 29661140 PMCID: PMC5902958 DOI: 10.1186/s12870-018-1277-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 03/29/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Previously, transgenic trichome-bearing (hairy leaf) Brassica napus lines expressing either the Arabidopsis thaliana GL3 gene (line AtGL3+) [1] or the AtGL3 gene in combination with an RNAi construct to down-regulate TTG1 (line K-5-8) [2] were developed. The leaves of these lines exhibited altered insect feeding (flea beetle) and oviposition (diamondback moth) behaviour compared to the non-transgenic semi-glabrous leaves of B. napus cv. Westar. Interestingly, the cotyledons of these lines remained glabrous, but also showed reduced feeding by flea beetles. Here we examine the composition and global transcriptome of the glabrous cotyledons from these transgenic lines to ascertain the mechanism(s) underlying this unexpected phenomenon. RESULTS Approximately, 7500 genes were up-regulated in cotyledons of each hairy line, compared with < 30 that were down-regulated. The up-regulated genes included those involved in cell wall synthesis, secondary metabolite production, redox, stress and hormone-related responses that have the potential to impact host plant cues required to elicit defense responses toward insect pests. In particular, the expression of glucosinolate biosynthetic and degradation genes were substantially altered in the glabrous cotyledons of the two hairy leaf lines. The transcriptomic data was supported by glucosinolate and cell wall composition profiles of the cotyledons. Changes in gene expression were much more extreme in the AtGL3+ line compared with the K-5-8 line in terms of diversity and intensity. CONCLUSIONS The study provides a roadmap for the isolation and identification of insect resistance compounds and proteins in the glabrous cotyledons of these hairy leaf lines. It also confirms the impact of mis-expression of GL3 and TTG1 on types of metabolism other than those associated with trichomes. Finally, the large number of up-regulated genes encoding heat shock proteins, PR proteins, protease inhibitors, glucosinolate synthesis/breakdown factors, abiotic stress factors, redox proteins, transcription factors, and proteins required for auxin metabolism also suggest that these cotyledons are now primed for resistance to other forms of biotic and abiotic stress.
Collapse
Affiliation(s)
- Margaret Gruber
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N0X2 Canada
| | - Ushan Alahakoon
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N0X2 Canada
- Department of Biology, University of Saskatchewan, Saskatoon, SK Canada
- Present Address: DOW Agro-Sciences, Saskatoon, SK Canada
| | - Ali Taheri
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N0X2 Canada
- Present Address: Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN USA
| | - Nayidu Nagubushana
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N0X2 Canada
| | - Rong Zhou
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N0X2 Canada
| | - Banyar Aung
- Agriculture and Agri-Food Canada, London, ON Canada
- Department of Biology, Western University, London, ON Canada
| | - Andrew Sharpe
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK Canada
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, London, ON Canada
- Department of Biology, Western University, London, ON Canada
| | - Peta Bonham-Smith
- Department of Biology, University of Saskatchewan, Saskatoon, SK Canada
| | - Dwayne D. Hegedus D
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N0X2 Canada
- Department of Food and Bio-Product Sciences, University of Saskatchewan, Saskatoon, SK Canada
| |
Collapse
|
11
|
Hossain Z, Pillai BVS, Gruber MY, Yu M, Amyot L, Hannoufa A. Transcriptome profiling of Brassica napus stem sections in relation to differences in lignin content. BMC Genomics 2018; 19:255. [PMID: 29661131 PMCID: PMC5903004 DOI: 10.1186/s12864-018-4645-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/03/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Brassica crops are cultivated widely for human consumption and animal feed purposes, and oilseed rape/canola (Brassica napus and rapa) is the second most important oilseed worldwide. Because of its natural diversity and genetic complexity, genomics studies on oilseed rape will be a useful resource base to modify the quantity and quality of biomass in various crops, and therefore, should have a positive impact on lignocellulosic biofuel production. The objective of this study was to perform microarray analysis on two variable lignin containing oilseed rape cultivars to target novel genes and transcription factors of importance in Brassica lignin regulation for applied research. RESULTS To gain insight into the molecular networks controlling cell wall biosynthetic and regulatory events, we conducted lignin and microarray analysis of top and basal stem sections of brown seeded Brassica napus DH12075 and yellow seeded YN01-429 cultivars. A total of 9500 genes were differentially expressed 2-fold or higher in the stem between the cultivars, with a higher number of expressed genes in the basal section. Of the upregulated genes, many were transcription factors and a considerable number of these were associated with secondary wall synthesis and lignification in B. napus and other plant species. The three largest groups of transcription factors with differential expression were C2H2 and C3HC4 zinc fingers and bHLH. A significant number of genes related to lignin and carbohydrate metabolism also showed differential expression patterns between the stem sections of the two cultivars. Within the same cultivar, the number of upregulated genes was higher in the top section relative to the basal one. CONCLUSION In this study, we identified and established expression patterns of many new genes likely involved in cell wall biosynthesis and regulation. Some genes with known roles in other biochemical pathways were also identified to have a potential role in cell wall biosynthesis. This stem transcriptome profiling will allow for selecting novel regulatory and structural genes for functional characterization, a strategy which may provide tools for modifying cell wall composition to facilitate fermentation for biofuel production.
Collapse
Affiliation(s)
- Zakir Hossain
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London, ON N5V 4T3 Canada
- Agriculture and Agri-Food Canada, Swift Current Research and Development Centre, 1 Airport Road, Swift Current, SK S9H 3X2 Canada
| | - Bhinu V.-S. Pillai
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London, ON N5V 4T3 Canada
- Agriculture and Agri-Food Canada, Agassiz Research and Development Centre, 6947 Highway 7, Post Office Box 1000, Agassiz, BC V0M 1A0 Canada
| | - Margaret Y. Gruber
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
| | - Min Yu
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
| | - Lisa Amyot
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London, ON N5V 4T3 Canada
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London, ON N5V 4T3 Canada
| |
Collapse
|
12
|
Gao C, Guo Y, Wang J, Li D, Liu K, Qi S, Jin C, Duan S, Gong J, Li Z, Chen M. Brassica napusGLABRA3-1 promotes anthocyanin biosynthesis and trichome formation in true leaves when expressed in Arabidopsis thaliana. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:3-9. [PMID: 28940939 DOI: 10.1111/plb.12633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
Previous studies have shown that GLABRA3 (AtGL3), a bHLH transcription factor, plays essential roles in anthocyanin biosynthesis and trichome formation in Arabidopsis thaliana. However, there have been no such studies of a homologue, BnGL3, from the closely related crop, Brassica napus. Here, we analysed the BnGL3-1 coding domain sequence from the B. napus cultivar QINYOU Seven, identified conserved protein domains and performed a phylogenetic analysis to elucidate its relationship with homologues form a range of plant species. When expressed in tobacco leaves as a fusion protein with green fluorescent protein, BnGL3-1 accumulated in the nucleus, consistent with its predicted function as a transcription factor. Ectopic expression of the BnGL3-1 gene in the A. thaliana gl3-3 mutant resulted in levels of anthocyanins and numbers of trichomes in true leaves that were higher than in wild-type plants. Moreover, overexpression of BnGL3-1 in gl3-3 compensated for the promotion and repression of genes involved in anthocyanin biosynthesis and trichome formation, respectively, that has been reported in gl3-3 young shoots and expanding true leaves. This study provides new insights into GL3 function in anthocyanin biosynthesis and trichome formation in crucifers, and represents a promising target for genetic manipulation of B. napus.
Collapse
Affiliation(s)
- C Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Y Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - J Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - D Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - K Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - S Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - C Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - S Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - J Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Z Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - M Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
13
|
Liu K, Qi S, Li D, Jin C, Gao C, Duan S, Feng B, Chen M. TRANSPARENT TESTA GLABRA 1 ubiquitously regulates plant growth and development from Arabidopsis to foxtail millet (Setaria italica). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 254:60-69. [PMID: 27964785 DOI: 10.1016/j.plantsci.2016.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/21/2016] [Accepted: 10/21/2016] [Indexed: 05/18/2023]
Abstract
TRANSPARENT TESTA GLABRA 1 of Arabidopsis thaliana (AtTTG1) is a WD40 repeat transcription factor that plays multiple roles in plant growth and development, particularly in seed metabolite production. In the present study, to determine whether SiTTG1 of the phylogenetically distant monocot foxtail millet (Setaria italica) has similar functions, we used transgenic Arabidopsis and Nicotiana systems to explore its activities. We found that SiTTG1 functions as a transcription factor. Overexpression of the SiTTG1 gene rescued many of the mutant phenotypes in Arabidopsis ttg1-13 plants. Additionally, SiTTG1 overexpression fully corrected the reduced expression of mucilage biosynthetic genes, and the induced expression of genes involved in accumulation of seed fatty acids and storage proteins in developing seeds of ttg1-13 plants. Ectopic expression of SiTTG1 restored the sensitivity of the ttg1-13 mutant to salinity and high glucose stresses during germination and seedling establishment, and restored altered expression levels of some stress-responsive genes in ttg1-13 seedlings to the wild type level under salinity and glucose stresses. Our results provide information that will be valuable for understanding the function of TTG1 from monocot to dicot species and identifying a promising target for genetic manipulation of foxtail millet to improve the amount of seed metabolites.
Collapse
Affiliation(s)
- Kaige Liu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuanghui Qi
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dong Li
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Changyu Jin
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chenhao Gao
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shaowei Duan
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Baili Feng
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingxun Chen
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|