1
|
Broschewitz L, Reim S, Flachowsky H, Höfer M. Pomological and Molecular Characterization of Apple Cultivars in the German Fruit Genebank. PLANTS (BASEL, SWITZERLAND) 2024; 13:2699. [PMID: 39409569 PMCID: PMC11478905 DOI: 10.3390/plants13192699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024]
Abstract
Traditional varieties are a valuable tool in modern apple breeding. However, the use of synonyms and missing source documentation hinder an effective identification and conservation of relevant cultivars. During several projects, the authenticity and diversity of the apple cultivar collection of the German Fruit Genebank (GFG) was evaluated extensively. The trueness-to-type of 7890 apple trees was assessed on a pomological and molecular level. Pomological evaluations were performed by at least two experienced experts to identify the original cultivar names. On the molecular level, a set of 17 SSR markers was used to determine a unique genetic profile for each apple cultivar. The pomological and molecular characterization was expressed in terms of a comprehensive trueness-to-type criterion and the results were previously published as a well-curated dataset. In this study, the published dataset was analyzed to evaluate the quality and diversity of the apple collection of the GFG and highlight new findings based on phylogenetic and parentage analysis. The dataset contains 1404 unique genetic profiles corresponding to unambiguous cultivar names. Of these 1404 cultivars, 74% were assessed as true-to-type. The collection of diploid apple cultivars showed a high degree of expected heterozygosity (Hexp = 0.84). Genetic diversity in terms of year and location of origin was investigated with a STRUCTURE analysis. It was hypothesized that genetic diversity might decline overtime due to restrictive breeding programs. The results showed a shift dynamic between older and newer cultivars in one specific cluster, but no significant decrease in genetic diversity was observed in this study. Lastly, a parentage analysis was performed to check parental relationships based on historical research. Out of 128 parent-child trios, 110 trios resulted in significant relationships and reconfirmed the information from the literature. In some cases, the information from the literature was disproven. This analysis also allowed for readjusting the trueness-to-type criteria for previously undetermined cultivars. Overall, the importance of authenticity evaluations for gene bank cultivars was highlighted. Furthermore, the direct use of the dataset was shown by relevant investigations on the genetic diversity and structure of the apple cultivar collections of the GFG.
Collapse
Affiliation(s)
- Lea Broschewitz
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute of Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | | | | | | |
Collapse
|
2
|
Khan A, Švara A, Wang N. Comparing Apples and Oranges: Advances in Disease Resistance Breeding of Woody Perennial Fruit Crops. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:263-287. [PMID: 38768395 DOI: 10.1146/annurev-phyto-021622-120124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Apple and citrus are perennial tree fruit crops that are vital for nutritional security and agricultural economy and to achieve the Sustainable Development Goals of the United Nations. Apple scab and fire blight, along with Huanglongbing, canker, and tristeza virus, stand out as their most notorious diseases and annually destabilize fruit supply. An environmentally sound approach to managing these diseases is improving tree resistance through breeding and biotechnology. Perennial fruit tree germplasm collections are distributed globally and offer untapped potential as sources of resistance. However, long juvenility, specific pollination and flowering habits, and extensive outcrossing hinder apple and citrus breeding. Advances in breeding approaches include trans- and cis-genesis, genome editing, and rapid-cycle breeding, which, in addition to conventional crossbreeding, can all facilitate accelerated integration of resistance into elite germplasm. In addition, the global pool of available sources of resistance can be characterized by the existing genetic mapping and gene expression studies for accurate discovery of associated loci, genes, and markers to efficiently include these sources in breeding efforts. We discuss and propose a multitude of approaches to overcome the challenges of breeding for resistance in woody perennials and outline a technical path to reduce the time required for the ultimate deployment of disease-resistant cultivars.
Collapse
Affiliation(s)
- Awais Khan
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, New York, USA;
| | - Anže Švara
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, New York, USA;
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, USA
| |
Collapse
|
3
|
Skytte Af Sätra J, Garkava-Gustavsson L, Ingvarsson PK. Why we thrive beneath a northern sky - genomic signals of selection in apple for adaptation to northern Sweden. Heredity (Edinb) 2024; 133:67-77. [PMID: 38834867 PMCID: PMC11286948 DOI: 10.1038/s41437-024-00693-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024] Open
Abstract
Good understanding of the genomic regions underlying adaptation of apple to boreal climates is needed to facilitate efficient breeding of locally adapted apple cultivars. Proper infrastructure for phenotyping and evaluation is essential for identification of traits responsible for adaptation, and dissection of their genetic composition. However, such infrastructure is costly and currently not available for the boreal zone of northern Sweden. Therefore, we used historical pomological data on climate adaptation of 59 apple cultivars and whole genome sequencing to identify genomic regions that have undergone historical selection among apple cultivars recommended for cultivation in northern Sweden. We found the apple collection to be composed of two ancestral groups that are largely concordant with the grouping into 'hardy' and 'not hardy' cultivars based on the pomological literature. Using a number of genome-wide scans for signals of selection, we obtained strong evidence of positive selection at a genomic region around 29 MbHFTH1 of chromosome 1 among apple cultivars in the 'hardy' group. Using phased genotypic data from the 20 K apple Infinium® SNP array, we identified haplotypes associated with the two cultivar groups and traced transmission of these haplotypes through the pedigrees of some apple cultivars. This demonstrates that historical data from pomological literature can be analyzed by population genomic approaches as a step towards revealing the genomic control of a key property for a horticultural niche market. Such knowledge is needed to facilitate efficient breeding strategies for development of locally adapted apple cultivars in the future. The current study illustrates the response to a very strong selective pressure imposed on tree crops by climatic factors, and the importance of genetic research on this topic and feasibility of breeding efforts in the light of the ongoing climate change.
Collapse
Affiliation(s)
- J Skytte Af Sätra
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - L Garkava-Gustavsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - P K Ingvarsson
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
4
|
Poonam, Sharma R, Sharma P, Sharma NC, Kumar K, Singh KN, Bhardwaj V, Negi N, Chauhan N. Exploring genetic diversity and ascertaining genetic loci associated with important fruit quality traits in apple ( Malus × domestica Borkh.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1693-1716. [PMID: 38162921 PMCID: PMC10754789 DOI: 10.1007/s12298-023-01382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024]
Abstract
Genetic diversity is the primary source of variability in any crop improvement program, and the diverse germplasm of any crop species represents an important genetic resource for gene or allele mining to meet future needs. Huge genetic and phenotypic diversity is present in the apple gene pool, even though, breeding programs have been mainly focused on a few traits of interests, which have resulted in the reduction of the diversity in the cultivated lines of apple. Therefore, the present study was carried out on 70 diverse apple genotypes with the objective of analyzing the genetic diversity and to identify the genetic loci associated with important fruit quality traits. A total of 140 SSR primers were used to characterize the 70 genotypes of apples, out of which only 88 SSRs were found to be polymorphic. The PIC values varied from 0.03 to 0.75. The value of MI, EMR, and RP varied from 0.03 to 3.5, 0.5 to 5.0, and 1.89 to 6.74, respectively. The dendrogram and structure analysis divided all the genotypes into two main groups. In addition to this, large phenotypic variability was observed for the fruit quality traits under study indicated the suitability of the genotypes for association studies. Altogether 71 novel MTAs were identified for 10 fruit quality traits, of which 15 for fruit length, 15 for fruit diameter, 12 for fruit weight, 2 for total sugar, 2 for TSS, 4 for reducing sugar, 5 for non-reducing sugar, 5 for fruit firmness, 5 for fruit acidity and 6 for anthocyanin, respectively. Consistent with the physicochemical evaluation of traits, there was a significant correlation coefficient among different fruit quality characters, and many common markers were found to be associated with these traits (fruit diameter, length, TSS, total sugar, acidity and anthocyanin, respectively) by using the different modeling techniques (GLM, MLM). The inferred genetic structure, diversity pattern and the identified MTAs will be serving as resourceful grounds for better predictions and understanding of apple genome towards efficient conservation and utilization of apple germplasm for facilitating genetic improvement of fruit quality traits. Furthermore, these findings also suggested that association mapping could be a viable alternative to the conventional QTL mapping approach in apple. Graphic abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01382-w.
Collapse
Affiliation(s)
- Poonam
- Department of Biotechnology, Dr YS Parmar University of Horticulture & Forestry, Solan, HP 173 230 India
- School of Bioengineering & Food Technology, Shoolini University, Solan, HP, 173 229, India
| | - Rajnish Sharma
- Department of Biotechnology, Dr YS Parmar University of Horticulture & Forestry, Solan, HP 173 230 India
| | - Parul Sharma
- Department of Biotechnology, Dr YS Parmar University of Horticulture & Forestry, Solan, HP 173 230 India
| | - Naveen C. Sharma
- Department of Fruit Science, Dr YS Parmar University of Horticulture & Forestry, Solan, HP 173 230 India
| | - Kuldeep Kumar
- ICAR-Indian Institute of Pulses Research, Kanpur, UP 208 024 India
| | - Krishna Nand Singh
- Department of Botany, University of Delhi, North Campus, New Delhi, India
| | - Vinay Bhardwaj
- ICAR-Central Potato Research Institute, Shimla, HP 171 004 India
| | - Narender Negi
- ICAR-NBPGR Regional Station, Phagli, Shimla, HP 171 004 India
| | - Neena Chauhan
- RHR&TS, Dr YS Parmar University of Horticulture & Forestry, Mashobra, Shimla, HP, 171 007 India
| |
Collapse
|
5
|
Chen X, Cornille A, An N, Xing L, Ma J, Zhao C, Wang Y, Han M, Zhang D. The East Asian wild apples, Malus baccata (L.) Borkh and Malus hupehensis (Pamp.) Rehder., are additional contributors to the genomes of cultivated European and Chinese varieties. Mol Ecol 2023; 32:5125-5139. [PMID: 35510734 DOI: 10.1111/mec.16485] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/09/2022] [Accepted: 04/17/2022] [Indexed: 11/29/2022]
Abstract
The domestication process in long-lived plant perennials differs dramatically from that of annuals, with a huge amount of genetic exchange between crop and wild populations. Though apple is a major fruit crop grown worldwide, the contribution of wild apple species to the genetic makeup of the cultivated apple genome remains a topic of intense study. We used population genomics approaches to investigate the contributions of several wild apple species to European and Chinese rootstock and dessert genomes, with a focus on the extent of wild-crop gene flow. Population genetic structure inferences revealed that the East Asian wild apples, Malus baccata (L.) Borkh and M. hupehensis (Pamp.), form a single panmictic group, and that the European dessert and rootstock apples form a specific gene pool whereas the Chinese dessert and rootstock apples were a mixture of three wild gene pools, suggesting different evolutionary histories of European and Chinese apple varieties. Coalescent-based inferences and gene flow estimates indicated that M. baccata - M. hupehensis contributed to the genome of both European and Chinese cultivated apples through wild-to-crop introgressions, and not as an initial contributor as previously supposed. We also confirmed the contribution through wild-to-crop introgressions of Malus sylvestris Mill. to the cultivated apple genome. Apple tree domestication is therefore one example in woody perennials that involved gene flow from several wild species from multiple geographical areas. This study provides an example of a complex protracted process of domestication in long-lived plant perennials, and is a starting point for apple breeding programmes.
Collapse
Affiliation(s)
- Xilong Chen
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| | - Amandine Cornille
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| | - Na An
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Libo Xing
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Juanjuan Ma
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Caiping Zhao
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Yibin Wang
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingyu Han
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| | - Dong Zhang
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
6
|
Boris KV, Trifonova AA, Dubrovsky ML, Shamshin IN, Kudryavtsev AM. Genetic Diversity of Apple Clonal Rootstocks from the Collection of the Michurinsk State Agrarian University Based on SSR Markers. PLANTS (BASEL, SWITZERLAND) 2023; 12:2991. [PMID: 37631205 PMCID: PMC10458785 DOI: 10.3390/plants12162991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
The Michurinsk State Agrarian University (Michurinsk SAU) is one of the leading centers for breeding apple clonal rootstocks. A diverse collection of apple rootstocks, founded in 1930s by V.I. Budagovsky, is maintained at the Michurinsk SAU. In the present study, 87 rootstocks from this collection were analyzed using 18 SSR markers to assess their genetic diversity and relatedness. The detected polymorphism level was rather high compared to the previous estimates of apple rootstock genetic variability. A total of 199 alleles were detected with an average of 11.1 alleles per locus. Among the detected alleles, 67 (33.67%) were rare and 43 (21.61%) were unique. The average PIC value was 0.73, and the expected and observed heterozygosity averaged 0.76 and 0.69, respectively. All the studied accessions except two could be identified with the used marker set. Cluster analysis revealed several groups according to the rootstocks' pedigrees and genetic origin. Furthermore, Structure analysis revealed two main groups of the studied rootstock accessions. No significant differentiation of the studied sample according to dwarfing ability was detected, while weak differentiation was detected according to leaf color. SSR genotyping data can be used for rootstock fingerprinting and pedigree verification and will facilitate collection management. In addition, data on the genetic diversity and structure of the studied collection may be useful for further development of the Michurinsk SAU rootstock breeding program.
Collapse
Affiliation(s)
- Ksenia V. Boris
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119333 Moscow, Russia; (K.V.B.); (M.L.D.); (I.N.S.); (A.M.K.)
| | - Aya A. Trifonova
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119333 Moscow, Russia; (K.V.B.); (M.L.D.); (I.N.S.); (A.M.K.)
| | - Maksim L. Dubrovsky
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119333 Moscow, Russia; (K.V.B.); (M.L.D.); (I.N.S.); (A.M.K.)
- Michurinsk State Agrarian University, Research Center of Biotechnologies and Breeding, 393760 Michurinsk, Russia
| | - Ivan N. Shamshin
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119333 Moscow, Russia; (K.V.B.); (M.L.D.); (I.N.S.); (A.M.K.)
- Michurinsk State Agrarian University, Research Center of Biotechnologies and Breeding, 393760 Michurinsk, Russia
| | - Aleksander M. Kudryavtsev
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119333 Moscow, Russia; (K.V.B.); (M.L.D.); (I.N.S.); (A.M.K.)
| |
Collapse
|
7
|
Greaves E, Kron P, Husband BC. Demographic and reproductive impacts of hybridization unrelated to hybrid viability in a native plant. AMERICAN JOURNAL OF BOTANY 2023; 110:e16208. [PMID: 37409880 DOI: 10.1002/ajb2.16208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 07/07/2023]
Abstract
PREMISE Introduced species can influence native congeners through production of hybrids and introgression, but impacts not involving viable hybrids, such as reduced conspecific offspring and increased asexual seed production, are rarely examined. Here we tested for these demographic and reproductive consequences of hybridization between introduced, domesticated apple (Malus domestica) and native crabapple (M. coronaria) in southern Canada. METHODS We applied four pollination treatments (open, M. coronaria, M. domestica, open + M. coronaria) to focal M. coronaria trees across multiple years and assessed the number and reproductive origins of resulting seeds (hybrid or conspecific endosperm and, for each, sexual or asexual embryo) using flow cytometry. RESULTS In open-pollinated fruit, 27% of seeds had hybrid endosperm; 52% of embryos were asexual. The number of conspecific embryos (sexual or asexual) per fruit did not decline significantly with increasing hybridization, indicating no seed discounting, but hand pollinations using only domestic apple or crabapple pollen reduced the number of conspecific embryos significantly. Hybridization was not associated with a change in percentage asexual embryos, overall, but there was an increase in asexual embryos in tetraploid seeds, the maternal and most common offspring ploidy. CONCLUSIONS We conclude that hybridization can influence native Malus in ways beyond the production of viable hybrids, with significant implications for population dynamics and genetic structure.
Collapse
Affiliation(s)
- Elaina Greaves
- Department of Integrative Biology, University of Guelph, 50 Stone Road E., Guelph, Ontario, N1G 2W1, Canada
| | - Paul Kron
- Department of Integrative Biology, University of Guelph, 50 Stone Road E., Guelph, Ontario, N1G 2W1, Canada
| | - Brian C Husband
- Department of Integrative Biology, University of Guelph, 50 Stone Road E., Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
8
|
Wang X, Wang L, Sun Y, Chen J, Liu Q, Dong S. Genetic diversity and conservation of Siberian apricot (Prunus sibirica L.) based on microsatellite markers. Sci Rep 2023; 13:11245. [PMID: 37433853 DOI: 10.1038/s41598-023-37993-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2023] Open
Abstract
Siberian apricot (Prunus sibirica L.) is a woody tree species of ecological, economic, and social importance. To evaluate the genetic diversity, differentiation, and structure of P. sibirica, we analyzed 176 individuals from 10 natural populations using 14 microsatellite markers. These markers generated 194 alleles in total. The mean number of alleles (13.8571) was higher than the mean number of effective alleles (6.4822). The average expected heterozygosity (0.8292) was higher than the average observed heterozygosity (0.3178). Shannon information index and polymorphism information content were separately 2.0610 and 0.8093, demonstrating the rich genetic diversity of P. sibirica. Analysis of molecular variance revealed that 85% of the genetic variation occurred within populations, with only 15% among them. The genetic differentiation coefficient and gene flow were separately 0.151 and 1.401, indicating a high degree of genetic differentiation. Clustering results showed that a genetic distance coefficient of 0.6 divided the 10 natural populations into two subgroups (subgroups A and B). STRUCTURE and principal coordinate analysis divided the 176 individuals into two subgroups (clusters 1 and 2). Mantel tests revealed that genetic distance was correlated with geographical distance and elevation differences. These findings can contribute to the effective conservation and management of P. sibirica resources.
Collapse
Affiliation(s)
- Xinxin Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang, 110866, Liaoning, China
| | - Li Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang, 110866, Liaoning, China
| | - Yongqiang Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang, 110866, Liaoning, China
| | - Jianhua Chen
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang, 110866, Liaoning, China
| | - Quangang Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang, 110866, Liaoning, China
| | - Shengjun Dong
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Key Laboratory for Silviculture of Liaoning Province, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
9
|
Mignard P, Font i Forcada C, Giménez R, Moreno MÁ. Population Structure and Association Mapping for Agronomical and Biochemical Traits of a Large Spanish Apple Germplasm. PLANTS (BASEL, SWITZERLAND) 2023; 12:1249. [PMID: 36986937 PMCID: PMC10057825 DOI: 10.3390/plants12061249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
A basic knowledge of linkage disequilibrium and population structure is necessary in order to determine the genetic control and identify significant associations with agronomical and phytochemical compounds in apple (Malus × domestica Borkh). In this study, 186 apple accessions (Pop1), representing both Spanish native accessions (94) and non-Spanish cultivars (92) from the EEAD-CSIC apple core collection, were assessed using 23 SSRs markers. Four populations were considered: Pop1, Pop2, Pop3, and Pop4. The initial Pop1 was divided into 150 diploid (Pop2) and 36 triploid accessions (Pop3), while for the inter-chromosomal linkage disequilibrium and the association mapping analysis, 118 phenotype diploid accessions were considered Pop4. Thus, the average number of alleles per locus and observed heterozygosity for the overall sample set (Pop1) were 15.65 and 0.75, respectively. The population structure analysis identified two subpopulations in the diploid accessions (Pop2 and Pop4) and four in the triploids (Pop3). Regarding the Pop4, the population structure with K = 2 subpopulations segregation was in agreement with the UPGMA cluster analysis according to the genetic pairwise distances. Moreover, the accessions seemed to be segregated by their origin (Spanish/non-Spanish) in the clustering analysis. One of the two subpopulations encountered was quite-exclusively formed by non-Spanish accessions (30 out of 33). Furthermore, agronomical and basic fruit quality parameters, antioxidant traits, individual sugars, and organic acids were assessed for the association mapping analysis. A high level of biodiversity was exhibited in the phenotypic characterization of Pop4, and a total of 126 significant associations were found between the 23 SSR markers and the 21 phenotypic traits evaluated. This study also identified many new marker-locus trait associations for the first time, such as in the antioxidant traits or in sugars and organic acids, which may be useful for predictions and for a better understanding of the apple genome.
Collapse
|
10
|
Sestras RE, Sestras AF. Quantitative Traits of Interest in Apple Breeding and Their Implications for Selection. PLANTS (BASEL, SWITZERLAND) 2023; 12:903. [PMID: 36840249 PMCID: PMC9964287 DOI: 10.3390/plants12040903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Apple breeding is a laborious and long-lasting process that requires qualified resources, land, time, and funds. In this study, more than 5000 F1 apple hybrids from direct and testcrosses were analyzed. The results revealed how the phenotypic expression of the main quantitative traits of interest assessed in five half-sib families was controlled by the additive genetic effects and by non-additive effects of dominance and epistasis. The statistical number of hybrids required to ensure efficient selection increased exponentially with the number of desirable traits. The minimum number of progenies required to obtain a hybrid with associated quantitative traits of agronomic interest was highly variable. For two independent traits essential in selection (fruit size and quality), but incorporated together in the same hybrid, the statistical number was between about 30 and 300. If three more cumulative traits were added (a large number of fruits per tree, resistance/tolerance to apple scab, and powdery mildew attack), the limits increased to between 1500 and 18,000. The study highlighted the need for new apple varieties due to the narrowing of the genetic diversity of the cultivated species and how the choice of parents used in hybridizations (as well as the objectives pursued in the selection) can increase the efficiency of apple breeding.
Collapse
Affiliation(s)
- Radu E. Sestras
- Department of Horticulture and Landscape, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3–5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Adriana F. Sestras
- Department of Forestry, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3–5 Manastur Street, 400372 Cluj-Napoca, Romania
| |
Collapse
|
11
|
Schaller A, Vanderzande S, Peace C. Deducing genotypes for loci of interest from SNP array data via haplotype sharing, demonstrated for apple and cherry. PLoS One 2023; 18:e0272888. [PMID: 36749762 PMCID: PMC9904487 DOI: 10.1371/journal.pone.0272888] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Breeders, collection curators, and other germplasm users require genetic information, both genome-wide and locus-specific, to effectively manage their genetically diverse plant material. SNP arrays have become the preferred platform to provide genome-wide genetic profiles for elite germplasm and could also provide locus-specific genotypic information. However, genotypic information for loci of interest such as those within PCR-based DNA fingerprinting panels and trait-predictive DNA tests is not readily extracted from SNP array data, thus creating a disconnect between historic and new data sets. This study aimed to establish a method for deducing genotypes at loci of interest from their associated SNP haplotypes, demonstrated for two fruit crops and three locus types: quantitative trait loci Ma and Ma3 for acidity in apple, apple fingerprinting microsatellite marker GD12, and Mendelian trait locus Rf for sweet cherry fruit color. Using phased data from an apple 8K SNP array and sweet cherry 6K SNP array, unique haplotypes spanning each target locus were associated with alleles of important breeding parents. These haplotypes were compared via identity-by-descent (IBD) or identity-by-state (IBS) to haplotypes present in germplasm important to U.S. apple and cherry breeding programs to deduce target locus alleles in this germplasm. While IBD segments were confidently tracked through pedigrees, confidence in allele identity among IBS segments used a shared length threshold. At least one allele per locus was deduced for 64-93% of the 181 individuals. Successful validation compared deduced Rf and GD12 genotypes with reported and newly obtained genotypes. Our approach can efficiently merge and expand genotypic data sets, deducing missing data and identifying errors, and is appropriate for any crop with SNP array data and historic genotypic data sets, especially where linkage disequilibrium is high. Locus-specific genotypic information extracted from genome-wide SNP data is expected to enhance confidence in management of genetic resources.
Collapse
Affiliation(s)
- Alexander Schaller
- Department of Horticulture, Washington State University, Pullman, WA, United States of America
| | - Stijn Vanderzande
- Department of Horticulture, Washington State University, Pullman, WA, United States of America
| | - Cameron Peace
- Department of Horticulture, Washington State University, Pullman, WA, United States of America
- * E-mail:
| |
Collapse
|
12
|
Spengler RN, Kienast F, Roberts P, Boivin N, Begun DR, Ashastina K, Petraglia M. Bearing Fruit: Miocene Apes and Rosaceous Fruit Evolution. BIOLOGICAL THEORY 2023; 18:134-151. [PMID: 37214192 PMCID: PMC10191964 DOI: 10.1007/s13752-022-00413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 09/08/2022] [Indexed: 05/24/2023]
Abstract
Extinct megafaunal mammals in the Americas are often linked to seed-dispersal mutualisms with large-fruiting tree species, but large-fruiting species in Europe and Asia have received far less attention. Several species of arboreal Maloideae (apples and pears) and Prunoideae (plums and peaches) evolved large fruits starting around nine million years ago, primarily in Eurasia. As evolutionary adaptations for seed dispersal by animals, the size, high sugar content, and bright colorful visual displays of ripeness suggest that mutualism with megafaunal mammals facilitated the evolutionary change. There has been little discussion as to which animals were likely candidate(s) on the late Miocene landscape of Eurasia. We argue that several possible dispersers could have consumed the large fruits, with endozoochoric dispersal usually relying on guilds of species. During the Pleistocene and Holocene, the dispersal guild likely included ursids, equids, and elephantids. During the late Miocene, large primates were likely also among the members of this guild, and the potential of a long-held mutualism between the ape and apple clades merits further discussion. If primates were a driving factor in the evolution of this large-fruit seed-dispersal system, it would represent an example of seed-dispersal-based mutualism with hominids millions of years prior to crop domestication or the development of cultural practices, such as farming.
Collapse
Affiliation(s)
- Robert N. Spengler
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
- Domestication and Anthropogenic Evolution Research Group, Max Planck Institute for Geoanthropology, Jena, Germany
| | - Frank Kienast
- Senckenberg Research Station of Quaternary, Palaeontology, Weimar, Germany
| | - Patrick Roberts
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
- isoTROPIC Research Group, Max Planck Institute for Geoanthropology, Jena, Germany
| | - Nicole Boivin
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC USA
- School of Social Science, The University of Queensland, Brisbane, Australia
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Canada
| | - David R. Begun
- Department of Anthropology, University of Toronto, Toronto, Canada
| | - Kseniia Ashastina
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
- Domestication and Anthropogenic Evolution Research Group, Max Planck Institute for Geoanthropology, Jena, Germany
| | - Michael Petraglia
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC USA
- Australian Research Centre for Human Evolution, Griffith University, Nathan, Queensland Australia
| |
Collapse
|
13
|
Genetic Diversity and Pedigree Analysis of Red Currant Germplasm. PLANTS 2022; 11:plants11131623. [PMID: 35807575 PMCID: PMC9269202 DOI: 10.3390/plants11131623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022]
Abstract
This represents the first report on the genetic diversity of red currant germplasm collections based on genotyping-by-sequencing (GBS) data. Genotypes of 75 individuals of different origin were assessed in more than 7.5K genome positions. Multidimensional scaling (MDS) analysis has been performed. There are five accessions that are significantly isolated from each other and from the rest of the analyzed cultivars. F1 offspring of R. petraeum Wulf (Rote Hollandische) and Gondouin, as well as Rote Spatlese (F2 of R. petraeum and F2 of R. multiflorum Kit.), are the most genetically isolated on the MDS plot. Ribes multiflorum is closer to the rest of cultivars than the three abovementioned accessions. Purpurnaya cultivar (F1 of Rote Spatlese) is located between Rote Hollandische and R. multiflorum. Other genotypes, mostly represented by varieties having several species in a pedigree, occupied the rest of MDS plot relatively evenly. Descendants of R. multiflorum have been placed in the left part of MDS plot, which underlines their genetic diversity from other accessions. White- and pink-fruited cultivars were clustered together, underlining genetic relatedness. Admixture analysis of GBS data reveals six clusters (K = 6). Presumably, clustering reflects relatedness to R. petraeum, R. rubrum, R. vulgare var macrocarpum, R. multiflorum, R. vulgare, and Jonker van Tets. Based on genotyping data, F1 offspring of R. warscewiczs Jancz (cultivar Viksne), R. altissimum Turcz (Cirald), and R. palczewskii (Jancz.) Pojark (Skorospelaya) have not exhibited strict separation and were placed in a pool with other varieties. This supports modern taxonomic classifications that do not consider R. altissimum and R. palczewskii as independent species.
Collapse
|
14
|
Coupel‐Ledru A, Pallas B, Delalande M, Segura V, Guitton B, Muranty H, Durel C, Regnard J, Costes E. Tree architecture, light interception and water-use related traits are controlled by different genomic regions in an apple tree core collection. THE NEW PHYTOLOGIST 2022; 234:209-226. [PMID: 35023155 PMCID: PMC9305758 DOI: 10.1111/nph.17960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/19/2021] [Indexed: 05/17/2023]
Abstract
Tree architecture shows large genotypic variability, but how this affects water-deficit responses is poorly understood. To assess the possibility of reaching ideotypes with adequate combinations of architectural and functional traits in the face of climate change, we combined high-throughput field phenotyping and genome-wide association studies (GWAS) on an apple tree (Malus domestica) core-collection. We used terrestrial light detection and ranging (T-LiDAR) scanning and airborne multispectral and thermal imagery to monitor tree architecture, canopy shape, light interception, vegetation indices and transpiration on 241 apple cultivars submitted to progressive field soil drying. GWAS was performed with single nucleotide polymorphism (SNP)-by-SNP and multi-SNP methods. Large phenotypic and genetic variability was observed for all traits examined within the collection, especially canopy surface temperature in both well-watered and water deficit conditions, suggesting control of water loss was largely genotype-dependent. Robust genomic associations revealed independent genetic control for the architectural and functional traits. Screening associated genomic regions revealed candidate genes involved in relevant pathways for each trait. We show that multiple allelic combinations exist for all studied traits within this collection. This opens promising avenues to jointly optimize tree architecture, light interception and water use in breeding strategies. Genotypes carrying favourable alleles depending on environmental scenarios and production objectives could thus be targeted.
Collapse
Affiliation(s)
- Aude Coupel‐Ledru
- AGAP InstitutUniv Montpellier, CIRAD, INRAE, Institut Agro34398MontpellierFrance
| | - Benoît Pallas
- AGAP InstitutUniv Montpellier, CIRAD, INRAE, Institut Agro34398MontpellierFrance
| | - Magalie Delalande
- AGAP InstitutUniv Montpellier, CIRAD, INRAE, Institut Agro34398MontpellierFrance
| | - Vincent Segura
- AGAP InstitutUniv Montpellier, CIRAD, INRAE, Institut Agro34398MontpellierFrance
| | - Baptiste Guitton
- AGAP InstitutUniv Montpellier, CIRAD, INRAE, Institut Agro34398MontpellierFrance
| | - Hélène Muranty
- IRHSSFR QuaSaVUniversité d’Angers, Institut Agro, INRAE49000AngersFrance
| | - Charles‐Eric Durel
- IRHSSFR QuaSaVUniversité d’Angers, Institut Agro, INRAE49000AngersFrance
| | - Jean‐Luc Regnard
- AGAP InstitutUniv Montpellier, CIRAD, INRAE, Institut Agro34398MontpellierFrance
| | - Evelyne Costes
- AGAP InstitutUniv Montpellier, CIRAD, INRAE, Institut Agro34398MontpellierFrance
| |
Collapse
|
15
|
Jung M, Keller B, Roth M, Aranzana MJ, Auwerkerken A, Guerra W, Al-Rifaï M, Lewandowski M, Sanin N, Rymenants M, Didelot F, Dujak C, Font i Forcada C, Knauf A, Laurens F, Studer B, Muranty H, Patocchi A. Genetic architecture and genomic predictive ability of apple quantitative traits across environments. HORTICULTURE RESEARCH 2022; 9:uhac028. [PMID: 35184165 PMCID: PMC8976694 DOI: 10.1093/hr/uhac028] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/09/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Implementation of genomic tools is desirable to increase the efficiency of apple breeding. Recently, the multi-environment apple reference population (apple REFPOP) proved useful for rediscovering loci, estimating genomic predictive ability, and studying genotype by environment interactions (G × E). So far, only two phenological traits were investigated using the apple REFPOP, although the population may be valuable when dissecting genetic architecture and reporting predictive abilities for additional key traits in apple breeding. Here we show contrasting genetic architecture and genomic predictive abilities for 30 quantitative traits across up to six European locations using the apple REFPOP. A total of 59 stable and 277 location-specific associations were found using GWAS, 69.2% of which are novel when compared with 41 reviewed publications. Average genomic predictive abilities of 0.18-0.88 were estimated using main-effect univariate, main-effect multivariate, multi-environment univariate, and multi-environment multivariate models. The G × E accounted for up to 24% of the phenotypic variability. This most comprehensive genomic study in apple in terms of trait-environment combinations provided knowledge of trait biology and prediction models that can be readily applied for marker-assisted or genomic selection, thus facilitating increased breeding efficiency.
Collapse
Affiliation(s)
- Michaela Jung
- Agroscope, Breeding Research Group, 8820 Wädenswil, Switzerland
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Beat Keller
- Agroscope, Breeding Research Group, 8820 Wädenswil, Switzerland
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Morgane Roth
- Agroscope, Breeding Research Group, 8820 Wädenswil, Switzerland
- GAFL, INRAE, 84140 Montfavet, France
| | - Maria José Aranzana
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), 08140 Caldes de Montbui, Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | | | | | - Mehdi Al-Rifaï
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QuaSaV, F-49000 Angers, France
| | - Mariusz Lewandowski
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | | | - Marijn Rymenants
- Better3fruit N.V., 3202 Rillaar, Belgium
- Laboratory for Plant Genetics and Crop Improvement, KU Leuven, B-3001 Leuven, Belgium
| | | | - Christian Dujak
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Carolina Font i Forcada
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), 08140 Caldes de Montbui, Barcelona, Spain
| | - Andrea Knauf
- Agroscope, Breeding Research Group, 8820 Wädenswil, Switzerland
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - François Laurens
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QuaSaV, F-49000 Angers, France
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Hélène Muranty
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QuaSaV, F-49000 Angers, France
| | - Andrea Patocchi
- Agroscope, Breeding Research Group, 8820 Wädenswil, Switzerland
| |
Collapse
|
16
|
James T, Johnson A, Schaller A, Vanderzande S, Luo F, Sandefur P, Ru S, Peace C. As It Stands: The Palouse Wild Cider Apple Breeding Program. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040517. [PMID: 35214849 PMCID: PMC8877849 DOI: 10.3390/plants11040517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 05/10/2023]
Abstract
Providing hands-on education for the next generation of plant breeders would help maximize effectiveness of future breeding efforts. Such education should include training in introgression of crop wild relative alleles, which can increase genetic diversity while providing cultivar attributes that meet industry and consumer demands in a crop such as cider apple. Incorporation of DNA information in breeding decisions has become more common and is another skill future plant breeders need. The Palouse Wild Cider apple breeding program (PWCabp) was established at Washington State University in early 2014 as a student-run experiential learning opportunity. The objectives of this study were to describe the PWCabp's approaches, outcomes, and student involvement to date that has relied on a systematic operational structure, utilization of wild relatives, and incorporation of DNA information. Students chose the crop (cider apple) and initial target market and stakeholders (backyard growers and hobbyists of the Palouse region). Twelve target attributes were defined including high phenolics and red flesh. Phase one and two field trials were established. Two promising high-bitterness selections were identified and propagated. By running the PWCabp, more than 20 undergraduate and graduate students gained experience in the decisions and operations of a fruit breeding program. PWCabp activities have produced desirable new germplasm via utilization of highly diverse Malus germplasm and trained new plant breeding professionals via experiential learning.
Collapse
Affiliation(s)
- Tymon James
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (T.J.); (A.J.); (S.V.)
| | - Alexandra Johnson
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (T.J.); (A.J.); (S.V.)
| | - Alexander Schaller
- Department of Environmental Horticulture, University of Florida, Gainesville, FL 32611, USA;
| | - Stijn Vanderzande
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (T.J.); (A.J.); (S.V.)
| | - Feixiong Luo
- Department of Pomology, Hunan Agricultural University, Changsha 410128, China;
| | - Paul Sandefur
- Fall Creek Farm and Nursery, Inc., Lowell, OR 97452, USA;
| | - Sushan Ru
- Department of Horticulture, Auburn University, Auburn, AL 36849, USA;
| | - Cameron Peace
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (T.J.); (A.J.); (S.V.)
- Correspondence:
| |
Collapse
|
17
|
Ulyanovskaya E, Belenko E. Comprehensive study of Malus genus resources for the creation of adaptive grades. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224302027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The breeding renewal of the apple assortment in the conditions of southern fruit growing in Russia on the basis of domestic achievements is due to the acceleration of the breeding process associated with an in-depth study of the existing gene pool of culture, the widespread use of the samples most valuable in terms of the quality of the products obtained to create commercially demanded grades of regional breeding. The aim of the study is to isolate, on the basis of a long-term comprehensive study in the conditions of the Western Ciscaucasia, valuable specimens of the genus Malus to enhance the efficiency and accelerate the process of creating adaptive and high-quality grades of regional breeding. The work was carried out using generally accepted and modern programs and methods of variety study and selection of perennial fruit crops (apple trees). The long-term results of the study for 2010-2020 are summarized. in the conditions of the Kuban zone of the North Caucasian region of gardening of collection specimens of apple trees. Established that the increase in high-temperature stressors, the deficit in August of precipitation (28.2 mm) in recent years (2010-2020) has a negative impact on the growth, development and ripening of fruits, the laying of generative buds of the next year’s harvest. The weather conditions that have developed in the region, which are not sufficiently favorable for apple plants, make it possible to select drought-resistant, high-yielding, stably fruiting grades with commercially valuable fruits. Highlighted with high productivity potential diploids: 12/1-21-60, 12/2-20-22, 12/2-20-75 and triploids: 12/2-21-35, 12/2-20-56 (average yield 28.06-34.08 t/ha; total – up to 374.88 t/ha). Diploids were distinguished by large-fruited: Orpheus and 12/1-21-60 (average fruit weight 202.3-204.5 g, maximum – 224.8-278.8 g) and triploid varieties and elite forms (from the family of Idared × Balcgard 0247E): 12/2-21-35, 12/2-20-56, 12/1-21-27 (average fruit weight 201.4-317.9 g, maximum – 286.5-387.2 g).
Collapse
|
18
|
Genetic Diversity of Peach Cultivars from the Collection of the Nikita Botanical Garden Based on SSR Markers. PLANTS 2021; 10:plants10122609. [PMID: 34961080 PMCID: PMC8704053 DOI: 10.3390/plants10122609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
The Nikita Botanical Garden (NBG) has a unique Prunus L. collection (peach, apricot, plum, cherry) comprising more than 3000 accessions. NBG is also a breeding center for stone fruits, including peach (Prunus persica (L.) Batsch). In the present study a set of 85 peach cultivars bred in NBG, Europe, and North America was analyzed using 12 SSR markers to assess their genetic diversity and relatedness. The detected polymorphism level was comparable to the previous estimates of genetic variability in peach cultivars. The average number of alleles per locus was 5.67, PIC value averaged 0.49, expected, and observed heterozygosity averaged 0.52 and 0.31, respectively. Among the detected alleles, 19 (27.94%) were rare and 12 (17.65%) were unique. All studied accessions except two could be identified with the used marker set. Cluster analysis revealed some groups according to the cultivars’ pedigrees. No clear differentiation of the studied sample according to geographic origin or fruit characteristics of peach cultivars was revealed. The results provide valuable information for identification and rational management of the material preserved in the NBG peach collection.
Collapse
|
19
|
Barreneche T, Cárcamo de la Concepción M, Blouin-Delmas M, Ordidge M, Nybom H, Lacis G, Feldmane D, Sedlak J, Meland M, Kaldmäe H, Kahu K, Békefi Z, Stanivuković S, Đurić G, Höfer M, Galik M, Schüller E, Spornberger A, Sirbu S, Drogoudi P, Agulheiro-Santos AC, Kodad O, Vokurka A, Lateur M, Fernández Fernández F, Giovannini D, Quero-García J. SSR-Based Analysis of Genetic Diversity and Structure of Sweet Cherry ( Prunus avium L.) from 19 Countries in Europe. PLANTS 2021; 10:plants10101983. [PMID: 34685793 PMCID: PMC8540667 DOI: 10.3390/plants10101983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022]
Abstract
Sweet cherry (Prunus avium L.) is a temperate fruit species whose production might be highly impacted by climate change in the near future. Diversity of plant material could be an option to mitigate these climate risks by enabling producers to have new cultivars well adapted to new environmental conditions. In this study, subsets of sweet cherry collections of 19 European countries were genotyped using 14 SSR. The objectives of this study were (i) to assess genetic diversity parameters, (ii) to estimate the levels of population structure, and (iii) to identify germplasm redundancies. A total of 314 accessions, including landraces, early selections, and modern cultivars, were monitored, and 220 unique SSR genotypes were identified. All 14 loci were confirmed to be polymorphic, and a total of 137 alleles were detected with a mean of 9.8 alleles per locus. The average number of alleles (N = 9.8), PIC value (0.658), observed heterozygosity (Ho = 0.71), and expected heterozygosity (He = 0.70) were higher in this study compared to values reported so far. Four ancestral populations were detected using STRUCTURE software and confirmed by Principal Coordinate Analysis (PCoA), and two of them (K1 and K4) could be attributed to the geographical origin of the accessions. A N-J tree grouped the 220 sweet cherry accessions within three main clusters and six subgroups. Accessions belonging to the four STRUCTURE populations roughly clustered together. Clustering confirmed known genealogical data for several accessions. The large genetic diversity of the collection was demonstrated, in particular within the landrace pool, justifying the efforts made over decades for their conservation. New sources of diversity will allow producers to face challenges, such as climate change and the need to develop more sustainable production systems.
Collapse
Affiliation(s)
- Teresa Barreneche
- INRAE, University of Bordeaux, UMR BFP, 33882 Villenave d’Ornon, France;
| | | | - Marine Blouin-Delmas
- INRAE, Unité Expérimentale Arboricole, Domaine de la Tour de Rance, 47320 Bourran, France;
| | - Matthew Ordidge
- Department of Crop Science, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK;
| | - Hilde Nybom
- Balsgård-Department of Plant Breeding, Swedish University of Agricultural Sciences, Fjälkestadsvägen 459, 29194 Kristianstad, Sweden;
| | - Gunars Lacis
- Institute of Horticulture, Graudu 1, LV-3701 Dobele, Latvia; (G.L.); (D.F.)
| | - Daina Feldmane
- Institute of Horticulture, Graudu 1, LV-3701 Dobele, Latvia; (G.L.); (D.F.)
| | - Jiri Sedlak
- Research and Breeding Institute of Pomology Holovousy Ltd., Holovousy 129, 508 01 Hořice, Czech Republic;
| | - Mekjell Meland
- NIBIO Ullensvang, The Norwegian Institute of Bioeconomy Research, Ullensvangvegen 1005, N-5781 Lofthus, Norway;
| | - Hedi Kaldmäe
- Polli Horticultural Research Centre, Institute of Agricultural and Environmental Sciences, Uus 2, 69108 Polli, Estonia; (H.K.); (K.K.)
| | - Kersti Kahu
- Polli Horticultural Research Centre, Institute of Agricultural and Environmental Sciences, Uus 2, 69108 Polli, Estonia; (H.K.); (K.K.)
| | - Zsuzsanna Békefi
- National Agricultural Research and Innovation Centre Gödöllő, H-1223 Budapest, Hungary;
| | - Sanda Stanivuković
- Institute for Genetic Resources, University of Banja Luka, Bulevar vojvode Petra Bojovica 1A, 78000 Banja Luka, Bosnia and Herzegovina; (S.S.); (G.Đ.)
| | - Gordana Đurić
- Institute for Genetic Resources, University of Banja Luka, Bulevar vojvode Petra Bojovica 1A, 78000 Banja Luka, Bosnia and Herzegovina; (S.S.); (G.Đ.)
| | - Monika Höfer
- Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Julius Kühn Institute, Pillnitzer Platz 3a, 01326 Dresden, Germany;
| | - Martin Galik
- NPPC, Výskumný ústav Rastlinnej Výroby–VÚRV, Research Institute of Plant Production–RIPP, Bratislavská 122, 921 68 Piešťany, Slovakia;
| | - Elisabeth Schüller
- Division of Viticulture and Pomology, University of Natural Resources and Life Sciences, Vienna Gregor-Mendel-Strasse 33, 1180 Vienna, Austria; (E.S.); (A.S.)
| | - Andreas Spornberger
- Division of Viticulture and Pomology, University of Natural Resources and Life Sciences, Vienna Gregor-Mendel-Strasse 33, 1180 Vienna, Austria; (E.S.); (A.S.)
| | - Sorina Sirbu
- Research Station for Fruit Growing, 175 Voinesti, RO707305 Iasi, Romania;
| | - Pavlina Drogoudi
- Hellenic Agricultural Organization ‘DEMETER’, Department of Deciduous Fruit Trees, Institute of Plant Breeding and Genetic Resources, 38 RR Station, 59200 Naoussa, Greece;
| | - Ana Cristina Agulheiro-Santos
- Mediterranean Institute for Agriculture, Environment and Development & Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| | - Ossama Kodad
- Département Arboriculture Arboriculture Fruitière Viticulture Ecole Nationale d’Agriculture de Meknès, B.P. S/40, Meknès 50000, Morocco;
| | - Aleš Vokurka
- Department for Plant Breeding, Genetics and Biometrics, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, HR-10000 Zagreb, Croatia;
| | - Marc Lateur
- CRA-W, Centre Wallon de Recherches Agronomiques, Plant Breeding & Biodiversity, Bâtiment Emile Marchal, Rue de Liroux, 4-5030 Gembloux, Belgium;
| | | | - Daniela Giovannini
- CREA-Research Centre for Olive, Fruit and Citrus Crops, via la Canapona 1 bis, 47121 Forlì, Italy;
| | - José Quero-García
- INRAE, University of Bordeaux, UMR BFP, 33882 Villenave d’Ornon, France;
- Correspondence:
| |
Collapse
|
20
|
Ordidge M, Litthauer S, Venison E, Blouin-Delmas M, Fernandez-Fernandez F, Höfer M, Kägi C, Kellerhals M, Marchese A, Mariette S, Nybom H, Giovannini D. Towards a Joint International Database: Alignment of SSR Marker Data for European Collections of Cherry Germplasm. PLANTS (BASEL, SWITZERLAND) 2021; 10:1243. [PMID: 34207415 PMCID: PMC8235247 DOI: 10.3390/plants10061243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022]
Abstract
The objective of our study was the alignment of microsatellite or simple sequence repeat (SSR) marker data across germplasm collections of cherry within Europe. Through the European Cooperative program for Plant Genetic Resources ECPGR, a number of European germplasm collections had previously been analysed using standard sets of SSR loci. However, until now these datasets remained unaligned. We used a combination of standard reference genotypes and ad-hoc selections to compile a central dataset representing as many alleles as possible from national datasets produced in France, Great Britain, Germany, Italy, Sweden and Switzerland. Through the comparison of alleles called in data from replicated samples we were able to create a series of alignment factors, supported across 448 different allele calls, that allowed us to align a dataset of 2241 SSR profiles from six countries. The proportion of allele comparisons that were either in agreement with the alignment factor or confounded by null alleles ranged from 67% to 100% and this was further improved by the inclusion of a series of allele-specific adjustments. The aligned dataset allowed us to identify groups of previously unknown matching accessions and to identify and resolve a number of errors in the prior datasets. The combined and aligned dataset represents a significant step forward in the co-ordinated management of field collections of cherry in Europe.
Collapse
Affiliation(s)
- Matthew Ordidge
- Department of Crop Science, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK;
| | - Suzanne Litthauer
- NIAB EMR, New Road, East Malling, Kent ME19 6BJ, UK; (S.L.); (F.F.-F.)
| | - Edward Venison
- Department of Crop Science, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK;
| | - Marine Blouin-Delmas
- INRAE-Unité Expérimentale Arboricole, Domaine de la Tour de Rance, 47320 Bourran, France;
| | | | - Monika Höfer
- Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Julius Kühn Institute, Pillnitzer Platz 3a, 01326 Dresden, Germany;
| | - Christina Kägi
- Federal Office for Agriculture, Genetic Resources and Technologies, Schwarzenburgstrasse 165, 3003 Bern, Switzerland;
| | - Markus Kellerhals
- Agroscope, Strategic Research Division Plant Breeding, Müller-Thurgau-Str. 29, 8820 Wädenswil, Switzerland;
| | - Annalisa Marchese
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze-Ed. 4, 90128 Palermo, Italy;
| | - Stephanie Mariette
- BIOGECO, INRAE, University of Bordeaux, Route d’Arcachon 69, 33612 Cestas, France;
| | - Hilde Nybom
- Balsgård-Department of Plant Breeding, Swedish University of Agricultural Sciences, Fjälkestadsvägen 459, 29194 Kristianstad, Sweden;
| | - Daniela Giovannini
- CREA-Research Centre for Olive, Fruit and Citrus Crops, via la Canapona 1 bis, 47121 Forlì, Italy;
| |
Collapse
|
21
|
The Perspective of Croatian Old Apple Cultivars in Extensive Farming for the Production of Functional Foods. Foods 2021; 10:foods10040708. [PMID: 33810442 PMCID: PMC8065821 DOI: 10.3390/foods10040708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 01/08/2023] Open
Abstract
The Republic of Croatia has a long tradition of fruit growing due to its geographical location, climatic conditions, and high quality of fruit crops, especially apple fruits. Apples can be used for the formulation of functional foods either in processed form (e.g., juice), or as a by-product (e.g., apple pomace). However, there is a growing demand for functional foods derived from ancient and traditional plant sources as they are recognized as a very valuable source of health-promoting bioactive ingredients. Similarly, old apple cultivars (Malus domestica Borkh.) are characterized by good morphological and pomological properties, less need for chemicals during cultivation and the higher share of biologically active compounds (BACs) with better sensory acceptability compared to commercial cultivars. However, their nutritional and biological potential is underestimated, as is their ability to be processed into functional food. The importance in preserving old apple cultivars can also be seen in their significance for improving the nutritional composition of other apple cultivars through innovative cultivation strategies, and therefore old local apple cultivars could be of great importance in future breeding programs.
Collapse
|
22
|
Recent Large-Scale Genotyping and Phenotyping of Plant Genetic Resources of Vegetatively Propagated Crops. PLANTS 2021; 10:plants10020415. [PMID: 33672381 PMCID: PMC7926561 DOI: 10.3390/plants10020415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
Several recent national and international projects have focused on large-scale genotyping of plant genetic resources in vegetatively propagated crops like fruit and berries, potatoes and woody ornamentals. The primary goal is usually to identify true-to-type plant material, detect possible synonyms, and investigate genetic diversity and relatedness among accessions. A secondary goal may be to create sustainable databases that can be utilized in research and breeding for several years ahead. Commonly applied DNA markers (like microsatellite DNA and SNPs) and next-generation sequencing each have their pros and cons for these purposes. Methods for large-scale phenotyping have lagged behind, which is unfortunate since many commercially important traits (yield, growth habit, storability, and disease resistance) are difficult to score. Nevertheless, the analysis of gene action and development of robust DNA markers depends on environmentally controlled screening of very large sets of plant material. Although more time-consuming, co-operative projects with broad-scale data collection are likely to produce more reliable results. In this review, we will describe some of the approaches taken in genotyping and/or phenotyping projects concerning a wide variety of vegetatively propagated crops.
Collapse
|
23
|
Cmejlova J, Rejlova M, Paprstein F, Cmejla R. A new one-tube reaction kit for the SSR genotyping of apple (Malus × domestica Borkh.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110768. [PMID: 33487353 DOI: 10.1016/j.plantsci.2020.110768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Though apple genotyping is mainly used for scientific and breeding purposes, it can also be adopted by national authorities to control the authenticity of apple cultivars. To facilitate the introduction of routine apple genotyping into practice, a new apple simple sequence repeat (SSR) genotyping kit was developed (called the Ap17 in. SSR Genotyping Kit). The kit combines 17 SSR markers including those recommended by the Working Group of the European Cooperative Programme for Plant Genetic Resources (ECPGR), covering all apple linkage groups in a one-tube reaction format, using a fragment analysis method to simplify the genotyping procedure. The kit was successfully tested using 880 unique diploid apple germplasm accessions; the kit can also readily discriminate triploid and tetraploid samples. The total probability of identity for the kit and the sample collection used was calculated to be 1.73 × 10-22. Tables for converting results to enable genotype comparisons between currently-used genotyping systems and the Ap17 in. kit are provided. The kit is ideally suited for validation in laboratories genotyping a large number of apple samples, saving time, costs, and labor, while minimizing technical and human errors.
Collapse
Affiliation(s)
- Jana Cmejlova
- Research and Breeding Institute of Pomology Holovousy, Ltd., Holovousy 129, 508 01 Horice, Czech Republic
| | - Martina Rejlova
- Research and Breeding Institute of Pomology Holovousy, Ltd., Holovousy 129, 508 01 Horice, Czech Republic
| | - Frantisek Paprstein
- Research and Breeding Institute of Pomology Holovousy, Ltd., Holovousy 129, 508 01 Horice, Czech Republic
| | - Radek Cmejla
- Research and Breeding Institute of Pomology Holovousy, Ltd., Holovousy 129, 508 01 Horice, Czech Republic.
| |
Collapse
|
24
|
Winfield M, Burridge A, Ordidge M, Harper H, Wilkinson P, Thorogood D, Copas L, Edwards K, Barker G. Development of a minimal KASP marker panel for distinguishing genotypes in apple collections. PLoS One 2020; 15:e0242940. [PMID: 33253289 PMCID: PMC7703965 DOI: 10.1371/journal.pone.0242940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/11/2020] [Indexed: 11/23/2022] Open
Abstract
Accurate identification of named accessions in germplasm collections is extremely important, especially for vegetatively propagated crops which are expensive to maintain. Thus, an inexpensive, reliable, and rapid genotyping method is essential because it avoids the need for laborious and time-consuming morphological comparisons. Single Nucleotide Polymorphism (SNP) marker panels containing large numbers of SNPs have been developed for many crop species, but such panels are much too large for basic cultivar identification. Here, we have identified a minimum set of SNP markers sufficient to distinguish apple cultivars held in the English and Welsh national collections providing a cheaper and automatable alternative to the markers currently used by the community. We show that SNP genotyping with a small set of well selected markers is equally efficient as microsatellites for the identification of apple cultivars and has the added advantage of automation and reduced cost when screening large numbers of samples.
Collapse
Affiliation(s)
- Mark Winfield
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
- * E-mail:
| | - Amanda Burridge
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Matthew Ordidge
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Helen Harper
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Paul Wilkinson
- Department of Functional and Comparative Genomics, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Danny Thorogood
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Liz Copas
- Lullingstone, Fore Street, Winsham, Somerset, United Kingdom
| | - Keith Edwards
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Gary Barker
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
25
|
Wang X, Shen F, Gao Y, Wang K, Chen R, Luo J, Yang L, Zhang X, Qiu C, Li W, Wu T, Xu X, Wang Y, Cong P, Han Z, Zhang X. Application of genome-wide insertion/deletion markers on genetic structure analysis and identity signature of Malus accessions. BMC PLANT BIOLOGY 2020; 20:540. [PMID: 33256591 PMCID: PMC7708918 DOI: 10.1186/s12870-020-02744-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Apple (Malus ssp.), one of the most important temperate fruit crops, has a long cultivation history and is economically important. To identify the genetic relationships among the apple germplasm accessions, whole-genome structural variants identified between M. domestica cultivars 'Jonathan' and 'Golden Delicious' were used. RESULTS A total of 25,924 insertions and deletions (InDels) were obtained, from which 102 InDel markers were developed. Using the InDel markers, we found that 942 (75.3%) of the 1251 Malus accessions from 35 species exhibited a unique identity signature due to their distinct genotype combinations. The 102 InDel markers could distinguish 16.7-71.4% of the 331 bud sports derived from 'Fuji', 'Red Delicious', 'Gala', 'Golden Delicious', and other cultivars. Five distinct genetic patterns were found in 1002 diploid accessions based on 78 bi-allele InDel markers. Genetic structure analysis indicated that M. domestica showed higher genetic diversity than the other species. Malus underwent a relatively high level of wild-to-crop or crop-to-wild gene flow. M. sieversii was closely related to both M. domestica and cultivated Chinese cultivars. CONCLUSIONS The identity signatures of Malus accessions can be used to determine distinctness, uniformity, and stability. The results of this study may also provide better insight into the genetic relationships among Malus species.
Collapse
Affiliation(s)
- Xuan Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Fei Shen
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yuan Gao
- Research Institute of Pomology, Chinese Academy of Agricultural Science, Xingcheng, Liaoning, China
| | - Kun Wang
- Research Institute of Pomology, Chinese Academy of Agricultural Science, Xingcheng, Liaoning, China
| | - Ruiting Chen
- College of Horticulture, China Agricultural University, Beijing, China
- Present Address: Shaanxi Haisheng Fruit Industry Development Co., Ltd., Shaanxi, Xian, China
| | - Jun Luo
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
| | - Lili Yang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
| | - Xi Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Changpeng Qiu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Wei Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Peihua Cong
- Research Institute of Pomology, Chinese Academy of Agricultural Science, Xingcheng, Liaoning, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
26
|
Jung M, Roth M, Aranzana MJ, Auwerkerken A, Bink M, Denancé C, Dujak C, Durel CE, Font I Forcada C, Cantin CM, Guerra W, Howard NP, Keller B, Lewandowski M, Ordidge M, Rymenants M, Sanin N, Studer B, Zurawicz E, Laurens F, Patocchi A, Muranty H. The apple REFPOP-a reference population for genomics-assisted breeding in apple. HORTICULTURE RESEARCH 2020; 7:189. [PMID: 33328447 PMCID: PMC7603508 DOI: 10.1038/s41438-020-00408-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/25/2020] [Accepted: 09/06/2020] [Indexed: 05/16/2023]
Abstract
Breeding of apple is a long-term and costly process due to the time and space requirements for screening selection candidates. Genomics-assisted breeding utilizes genomic and phenotypic information to increase the selection efficiency in breeding programs, and measurements of phenotypes in different environments can facilitate the application of the approach under various climatic conditions. Here we present an apple reference population: the apple REFPOP, a large collection formed of 534 genotypes planted in six European countries, as a unique tool to accelerate apple breeding. The population consisted of 269 accessions and 265 progeny from 27 parental combinations, representing the diversity in cultivated apple and current European breeding material, respectively. A high-density genome-wide dataset of 303,239 SNPs was produced as a combined output of two SNP arrays of different densities using marker imputation with an imputation accuracy of 0.95. Based on the genotypic data, linkage disequilibrium was low and population structure was weak. Two well-studied phenological traits of horticultural importance were measured. We found marker-trait associations in several previously identified genomic regions and maximum predictive abilities of 0.57 and 0.75 for floral emergence and harvest date, respectively. With decreasing SNP density, the detection of significant marker-trait associations varied depending on trait architecture. Regardless of the trait, 10,000 SNPs sufficed to maximize genomic prediction ability. We confirm the suitability of the apple REFPOP design for genomics-assisted breeding, especially for breeding programs using related germplasm, and emphasize the advantages of a coordinated and multinational effort for customizing apple breeding methods in the genomics era.
Collapse
Affiliation(s)
- Michaela Jung
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092, Zurich, Switzerland
- Breeding Research group, Agroscope, 8820, Wädenswil, Switzerland
| | - Morgane Roth
- Breeding Research group, Agroscope, 8820, Wädenswil, Switzerland
- GAFL, INRAE, 84140, Montfavet, France
| | - Maria José Aranzana
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), 08140, Caldes de Montbui, Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | | | - Marco Bink
- Biometris, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Hendrix Genetics Research, Technology and Services B.V., PO Box 114, 5830AC, Boxmeer, The Netherlands
| | - Caroline Denancé
- IRHS, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Christian Dujak
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Charles-Eric Durel
- IRHS, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Carolina Font I Forcada
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), 08140, Caldes de Montbui, Barcelona, Spain
| | - Celia M Cantin
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), 08140, Caldes de Montbui, Barcelona, Spain
- ARAID (Fundación Aragonesa para la Investigación y el Desarrollo), 50018, Zaragoza, Spain
| | | | - Nicholas P Howard
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA
- Institute of Biology and Environmental Sciences, University of Oldenburg, 26129, Oldenburg, Germany
| | - Beat Keller
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092, Zurich, Switzerland
- Breeding Research group, Agroscope, 8820, Wädenswil, Switzerland
| | | | - Matthew Ordidge
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, RG6 6AR, Reading, UK
| | - Marijn Rymenants
- Better3fruit N.V., 3202, Rillaar, Belgium
- Biometris, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Laboratory for Plant Genetics and Crop Improvement, KU Leuven, B-3001, Leuven, Belgium
| | - Nadia Sanin
- Research Centre Laimburg, 39040, Auer, Italy
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092, Zurich, Switzerland
| | - Edward Zurawicz
- Research Institute of Horticulture, 96-100, Skierniewice, Poland
| | - François Laurens
- IRHS, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Andrea Patocchi
- Breeding Research group, Agroscope, 8820, Wädenswil, Switzerland
| | - Hélène Muranty
- IRHS, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France.
| |
Collapse
|
27
|
Prichko T, Ulyanovskaya E, Droficheva N. Evaluation of biochemical indicators of apple fruits quality for the complex selection of the valuable source material for breeding. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202502019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The generalized results of a comprehensive long-term assessment (2015-2019) of biochemical and technical indicators of the quality of apple fruits of promising varieties (Malus domestica x Borkh.), including: the valuable initial parental forms and new varieties of regional selection, different in ploidy and genetic origin are presented, grown in the conditions of the South of Russia. This work used the generally accepted modern methods and programs for the variety study of fruit plants developed at the North Caucasian Federal Scientific Center for Horticulture, Viticulture, Wine-making (NCFSCHVW). The aim of the study was to select the source material of the apple fruit quality, which is valuable for the breeding, and the sources of the target traits based on the analysis of longterm data on the assessment of the biochemical composition of promising varieties of different ploidy and genetic origin. As a result of the comprehensive assessment of the main indicators of the quality of apple fruits in a varietal section, the sources of significant traits of apple tree for breeding use were identified: large-fruited, bright red and pure yellow color, improved chemical composition of fruits. According to the data of a longterm studies of the quality indicators of the apple fruits of introduced varieties and varieties of selection of the FSBSI NCFSCHVW, genotypes with an improved biochemical composition were identified for the use in the selection process: diploids: Champion, Orpheus (sugar content 10.5% and 10.8%, respectively); triploids: Soyuz, Vasilisa and the diploid variety Fortuna (vitamin C - more than 10.0 mg / 100 g); diploids: Margo, Vasilisa (P-active substances - more than 110.0 mg / 100 g).
Collapse
|
28
|
Roth M, Muranty H, Di Guardo M, Guerra W, Patocchi A, Costa F. Genomic prediction of fruit texture and training population optimization towards the application of genomic selection in apple. HORTICULTURE RESEARCH 2020; 7:148. [PMID: 32922820 PMCID: PMC7459338 DOI: 10.1038/s41438-020-00370-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/18/2020] [Accepted: 07/24/2020] [Indexed: 05/11/2023]
Abstract
Texture is a complex trait and a major component of fruit quality in apple. While the major effect of MdPG1, a gene controlling firmness, has already been exploited in elite cultivars, the genetic basis of crispness remains poorly understood. To further improve fruit texture, harnessing loci with minor effects via genomic selection is therefore necessary. In this study, we measured acoustic and mechanical features in 537 genotypes to dissect the firmness and crispness components of fruit texture. Predictions of across-year phenotypic values for these components were calculated using a model calibrated with 8,294 SNP markers. The best prediction accuracies following cross-validations within the training set of 259 genotypes were obtained for the acoustic linear distance (0.64). Predictions for biparental families using the entire training set varied from low to high accuracy, depending on the family considered. While adding siblings or half-siblings into the training set did not clearly improve predictions, we performed an optimization of the training set size and composition for each validation set. This allowed us to increase prediction accuracies by 0.17 on average, with a maximal accuracy of 0.81 when predicting firmness in the 'Gala' × 'Pink Lady' family. Our results therefore identified key genetic parameters to consider when deploying genomic selection for texture in apple. In particular, we advise to rely on a large training population, with high phenotypic variability from which a 'tailored training population' can be extracted using a priori information on genetic relatedness, in order to predict a specific target population.
Collapse
Affiliation(s)
- Morgane Roth
- Plant Breeding Research Division, Agroscope, Wädenswil, Zurich, Switzerland
- Present Address: GAFL, INRAE, 84140 Montfavet, France
| | - Hélène Muranty
- IRHS, INRAE, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Mario Di Guardo
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all’Adige, Italy
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Walter Guerra
- Research Centre Laimburg, Laimburg 6, 39040 Auer, Italy
| | - Andrea Patocchi
- Plant Breeding Research Division, Agroscope, Wädenswil, Zurich, Switzerland
| | - Fabrizio Costa
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all’Adige, Italy
- Center Agriculture Food Environment, University of Trento, Via Mach 1, 38010 San Michele all’Adige, Italy
| |
Collapse
|
29
|
Bourguiba H, Scotti I, Sauvage C, Zhebentyayeva T, Ledbetter C, Krška B, Remay A, D’Onofrio C, Iketani H, Christen D, Krichen L, Trifi-Farah N, Liu W, Roch G, Audergon JM. Genetic Structure of a Worldwide Germplasm Collection of Prunus armeniaca L. Reveals Three Major Diffusion Routes for Varieties Coming From the Species' Center of Origin. FRONTIERS IN PLANT SCIENCE 2020; 11:638. [PMID: 32523597 PMCID: PMC7261834 DOI: 10.3389/fpls.2020.00638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/24/2020] [Indexed: 05/22/2023]
Abstract
The characterization of the largest worldwide representative data set of apricot (Prunus armeniaca L.) germplasm was performed using molecular markers. Genetic diversity and structure of the cultivated apricot genetic resources were analyzed to decipher the history of diffusion of this species around the world. A common set of 25 microsatellite markers was used for genotyping a total of 890 apricot accessions in different collections from the center of origin to the more recent regions of apricot culture. Using a Bayesian model-based clustering approach, the apricot genotypes can be structured into five different genetic clusters (FST = 0.174), correlated with the geographical regions of origin of the accessions. Accessions from China and Central Asia were clustered together and exhibited the highest levels of diversity, confirming an origin in this region. A loss of genetic diversity was observed from the center of origin to both western and eastern zones of recent apricot culture. Altogether, our results revealed that apricot spread from China and Central Asia, defined as the center of origin, following three major diffusion routes with a decreasing gradient of genetic variation in each geographical group. The identification of specific alleles outside the center of origin confirmed the existence of different secondary apricot diversification centers. The present work provides more understanding of the worldwide history of apricot species diffusion as well as the field of conservation of the available genetic resources. Data have been used to define an apricot core collection based on molecular marker diversity which will be useful for further identification of genomic regions associated with commercially important horticultural traits through genome-wide association studies to sustain apricot breeding programs.
Collapse
Affiliation(s)
- Hedia Bourguiba
- LR99ES12, Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Ivan Scotti
- INRA Centre PACA, UR 629 URFM, Avignon, France
| | | | - Tetyana Zhebentyayeva
- Schatz Center for Tree Molecular Genetics, The Pennsylvania State University, University Park, PA, United States
| | - Craig Ledbetter
- San Joaquin Valley Agricultural Sciences Center, Crop Diseases, Pests & Genetics, Parlier, CA, United States
| | - Boris Krška
- Department of Fruit Growing, Faculty of Horticulture, Mendel University, Lednice, Czechia
| | | | - Claudio D’Onofrio
- Dipartimento di Scienze Agrarie, Alimentari e Agro-Ambientali, Università di Pisa, Pisa, Italy
| | - Hiroyuki Iketani
- National Agriculture and Food Research Organization (NARO) Institute of Fruit Tree Science, Tsukuba, Japan
| | - Danilo Christen
- Département Fédéral de L’économie DFE, Station de Recherche Agroscope Changins-Wädenswil ACW, Centre de Recherche Conthey, Conthey, Switzerland
| | - Lamia Krichen
- LR99ES12, Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Neila Trifi-Farah
- LR99ES12, Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Weisheng Liu
- Liaoning Institute of Pomology, Yingkou City, China
| | - Guillaume Roch
- INRA Centre PACA, UR 1052 GAFL, Montfavet, France
- CEP Innovation, Lyon, France
| | | |
Collapse
|
30
|
Öz MH, Büyük İ, Akpinar AE, Yüksel Özmen C, Kazan K, Vurgun H, Bacaksiz A, Çukadar K, Ünlü HM, Ergül A. Eastern Anatolian apples with a unique population structure are genetically different from Anatolian apples. Gene 2020; 723:144149. [PMID: 31589959 DOI: 10.1016/j.gene.2019.144149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 02/02/2023]
Abstract
The origin of the apple is known to be the Transcaucasian region. Eastern Anatolia, which is located on the migration routes from Asia to Europe, has a rich and an uncharacterized apple germplasm and the characterization of apple genetic sources from this region is important for both evolutionary studies and apple breeding. In this study, 94 M. domestica accessions originated from seven diverse regions within Eastern Anatolia were studied using 16 SSR (simple sequence repeat) loci. SSR markers we used produced high allele numbers in all loci and CH02d11 (PI: 0.059) with 18 alleles was the most informative locus. In addition, 14 identical accession groups were identified. Most likely due to self-incompatibility, relatively high levels of heterozygosity (Ho: 0.696) was found for Eastern Anatolia apples. Structure Harvester analyses of East Anatolian apple accessions showed that although each group seems to be somewhat distinct, some levels of admixture with other populations might also exist. Due to a significant gene flow between all pairs of seven apple populations, a limited (low) differentiation was found between the populations. Comparisons using 16 common SSR loci revealed that Eastern Anatolia accessions were genetically different from Anatolian accessions. In addition, based on FCA, and Nei's genetic distance analyses, Eastern Anatolian apples were found to be genetically different from the commercial apple cultivars Golden Delicious and Florina. Our results suggesting that Eastern Anatolia apple populations have a unique structure will be useful for future genetic and evolutionary studies on apples.
Collapse
Affiliation(s)
- Mehmet Hüsrev Öz
- Republic of Turkey, Ministry of Agriculture and Forestry, General Directorate of Agricultural Researches and Policies, Bahri Dağdaş International Agricultural Research Institute, Konya, Turkey.
| | - İlker Büyük
- Ankara University, Faculty of Sciences, Department of Biology, 06110 Ankara, Turkey.
| | - A Emre Akpinar
- Sivas Cumhuriyet University, Faculty of Sciences, Department of Molecular Biology and Genetics, Sivas, Turkey.
| | | | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia.
| | - Hüseyin Vurgun
- Republic of Turkey, Ministry of Agriculture and Forestry, General Directorate of Agricultural Researches and Policies, Erzincan Horticultural Research Institute, Erzincan, Turkey.
| | - Ayşegül Bacaksiz
- Ankara University, Biotechnology Institute, 06110 Ankara, Turkey.
| | - Kemal Çukadar
- Republic of Turkey, Ministry of Agriculture and Forestry, General Directorate of Agricultural Researches and Policies, Erzincan Horticultural Research Institute, Erzincan, Turkey.
| | - Hakan Murat Ünlü
- Republic of Turkey, Ministry of Agriculture and Forestry, General Directorate of Agricultural Researches and Policies, Erzincan Horticultural Research Institute, Erzincan, Turkey.
| | - Ali Ergül
- Ankara University, Biotechnology Institute, 06110 Ankara, Turkey.
| |
Collapse
|
31
|
Muranty H, Denancé C, Feugey L, Crépin JL, Barbier Y, Tartarini S, Ordidge M, Troggio M, Lateur M, Nybom H, Paprstein F, Laurens F, Durel CE. Using whole-genome SNP data to reconstruct a large multi-generation pedigree in apple germplasm. BMC PLANT BIOLOGY 2020; 20:2. [PMID: 31898487 PMCID: PMC6941274 DOI: 10.1186/s12870-019-2171-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 11/27/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND Apple (Malus x domestica Borkh.) is one of the most important fruit tree crops of temperate areas, with great economic and cultural value. Apple cultivars can be maintained for centuries in plant collections through grafting, and some are thought to date as far back as Roman times. Molecular markers provide a means to reconstruct pedigrees and thus shed light on the recent history of migration and trade of biological materials. The objective of the present study was to identify relationships within a set of over 1400 mostly old apple cultivars using whole-genome SNP data (~ 253 K SNPs) in order to reconstruct pedigrees. RESULTS Using simple exclusion tests, based on counting the number of Mendelian errors, more than one thousand parent-offspring relations and 295 complete parent-offspring families were identified. Additionally, a grandparent couple was identified for the missing parental side of 26 parent-offspring pairings. Among the 407 parent-offspring relations without a second identified parent, 327 could be oriented because one of the individuals was an offspring in a complete family or by using historical data on parentage or date of recording. Parents of emblematic cultivars such as 'Ribston Pippin', 'White Transparent' and 'Braeburn' were identified. The overall pedigree combining all the identified relationships encompassed seven generations and revealed a major impact of two Renaissance cultivars of French and English origin, namely 'Reinette Franche' and 'Margil', and one North-Eastern Europe cultivar from the 1700s, 'Alexander'. On the contrary, several older cultivars, from the Middle Ages or the Roman times, had no, or only single, identifiable offspring in the set of studied accessions. Frequent crosses between cultivars originating from different European regions were identified, especially from the nineteenth century onwards. CONCLUSIONS The availability of over 1400 apple genotypes, previously filtered for genetic uniqueness and providing a broad representation of European germplasm, has been instrumental for the success of this large pedigree reconstruction. It enlightens the history of empirical selection and recent breeding of apple cultivars in Europe and provides insights to speed-up future breeding and selection.
Collapse
Affiliation(s)
- Hélène Muranty
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Caroline Denancé
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Laurence Feugey
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Jean-Luc Crépin
- Les Croqueurs de Pommes du Confluent Ain-Isère-Savoie, Les Avenières, France
| | - Yves Barbier
- Les Croqueurs de Pommes du Confluent Ain-Isère-Savoie, Les Avenières, France
| | - Stefano Tartarini
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Matthew Ordidge
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading, UK
| | - Michela Troggio
- Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Marc Lateur
- CRA-W, Centre Wallon de Recherches Agronomiques, Plant Breeding & Biodiversity, Gembloux, Belgium
| | - Hilde Nybom
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Balsgård, Kristianstad, Sweden
| | - Frantisek Paprstein
- RBIPH, Research and Breeding Institute of Pomology Holovousy Ltd., Horice, Czech Republic
| | - François Laurens
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Charles-Eric Durel
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| |
Collapse
|
32
|
Ulyanovskaya E, Belenko E. Using the genetic diversity of the Malus genus to solve the priority areas of breeding. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202502001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The breeding use of the most valuable species and interspecies forms of fruit plants remains currently the most important biological resource for creating the varieties with increased adaptability to the complex of abioand biotic stressors of the environment, improved biochemical composition of fruits and with other important features for breeding. The results of a long-term study (2005-2019) of interspecific hybrid forms of apple-tree-representatives of the Malus genus, growing in the North Caucasus Region of Russia are presented. The aim of the study is to identify the most rapid and productive interspecific hybrid forms of apple-tree with polygenic and oligogenic types of scab resistance (Venturia inaequalis (Cook) G. Winter). Modern breeding programs and methods were used. We have identified the early-fruiting interspecies apple forms created with the participation of the summer Melba variety, the species of M. purpurea. It is allocated the elite and selected apple forms resistant to scab with a high average yield (29.03-40.03 t/ha), high indicators of total yield (377.27-520.33 t/he) from hybrid families with the participation of species: M. atrosanguinea 804/240-57, M. floribunda 821, M. purpurea and the large-fruited form No. 62 (created with the participation of Golden Delicious 4x, Wolf River, M. atrosanguinea 804/240-57) with fruits of 202.3 g an average weight.
Collapse
|
33
|
Saveleva N, Lyzhin A, Yushkov A, Zemisov A, Borzykh N. Screening of apple genotypes with the columnar growth habit using control markers. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202503007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
One of the approaches to intensify horticulture is to introduce cultivars with an unusual canopy into commercial production. Such plants can be columnar Apple trees. In modern breeding, there is a trend to create cultivars with a compact canopy. In such orchards, it is reduced to a minimum the cost for pruning, harvesting, and protection against pest and disease, which are the main expenses in apple orchards with a traditional canopy. The use of molecular markers linked to columnar growth habit allows us to identify a physiological sign at an early stage of growth: in the juvenile period. The assessment of apple cultivars and hybrids was carried out at the I. V. Michurin Federal Scientific Centre in 2015-2018. Four markers were used in the research: Mdo. chr 10.12, C18470-25831, 29f1, and jwlr to identify plants with the columnar growth habit gene (Co). The use of various DNA markers made it possible to establish that not all of them are well linked to the Co gene. In the research process, primers were identified for markers 29f1 and jwlr, which reliably allowed us to identify plants with columnar growth habit at the juvenile stage, which will significantly reduce the breeding process.
Collapse
|
34
|
How to Discover Traditional Varieties and Shape in a National Germplasm Collection: The Case of Finnish Seed Born Apples (Malus × domestica Borkh.). SUSTAINABILITY 2019. [DOI: 10.3390/su11247000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cultivated apple (Malus × domestica Borkh.) is a major crop of economic importance, both globally and regionally. It is currently, and was also in the past, the main commercial fruit in the northern European countries. In Finland, apple trees are grown on the frontier of their northern growing limits. Because of these limits, growing an apple tree from a seed was discovered in practice to be the most appropriate method to get trees that bear fruit for people in the north. This created a unique culturally and genetically rich native germplasm to meet the various needs of apple growers and consumers from the late 1800s to the mid-1900s. The preservation, study and use of this genetic heritage falls within the mandate of the Finnish National Genetic Resources Program. The first national apple clonal collection for germplasm preservation was reorganized from the collections of apple breeders. The need to evaluate the accessions, both in this collection and possible missing ones, to meet the program strategy lead us to evaluate the Finnish apple heritage that is still available in situ in gardens. In this article we use multiple-approach methodologies and datasets to gain well-described, proof-rich samples for the trueness-to-type analysis of old heirloom apple varieties. The approach includes a combination of socio-historic, pomological and genotyping methods and datasets that are all valued as equally important. The main finding was that in addition to the pomological, molecular and genetic evaluation of ex situ apple collections, an extensive historical data and socio-economic conditions research are essential to perform good characterization of accessions. After implementing the results in re-creating the Finnish national apple germplasm collection, the number of Finnish local varieties was more than doubled from 38 accessions to 97.
Collapse
|
35
|
Cronin D, Kron P, Husband BC. The origins and evolutionary history of feral apples in southern Canada. Mol Ecol 2019; 29:1776-1790. [PMID: 31622503 DOI: 10.1111/mec.15277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022]
Abstract
Feral populations of domesticated crops can establish through two nonmutually exclusive pathways: hybridization with native relatives and recruitment of and recombination between known cultivars. The extent and relative importance of these pathways is not known, especially for woody fruit crops. Here, we examined the evolutionary origins of feral populations of Malus domestica (domestic apple) in southern Canada using a population genetic analysis. We characterized genotypes of 578 putative feral apple trees and evaluated them in relation to genotypes of 156 commercial cultivars, 28 non-native, ornamental crabapples and 47 native Malus coronaria trees using 14 microsatellite markers. No feral trees were genetic admixtures between domestic and native Malus; however, a minority of trees were admixed with introduced ornamental Malus. Feral trees and commercial cultivars both occurred in two major genetic groups and seven subgroups distributed throughout all commercial growing regions. A total of 42 cultivars, both heritage and currently grown, occurred in probable parental pairs for feral trees, with nine heritage varieties accounting for 72% of parental assignments. We conclude that feral apples in southern Canada are not products of hybridization with native M. coronaria but we cannot exclude ornamental apple species as contributing to the naturalization process. Nonhybrid feral domestic apples have multiple origins, with a prominent signature of early heritage cultivars. These lineages have spread and coexist throughout Ontario, rather than being derived strictly from local sources.
Collapse
Affiliation(s)
- Dane Cronin
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Paul Kron
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Brian C Husband
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
36
|
Genetic Diversity and Structure of the Portuguese Pear (Pyrus communis L.) Germplasm. SUSTAINABILITY 2019. [DOI: 10.3390/su11195340] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A rich heritage of traditional pear varieties is kept in national Portuguese collections. Out of these varieties, “Rocha” dominates national pear production. Although a noticeable phenotypic variation among clones of this variety has been reported, little is known about its genetic variability, as to date molecular studies have been performed on a single “Rocha” clone. Eleven Simple Sequence Repeats (SSR) markers were used to assess the genetic diversity of 130 local cultivars, 80 of them being “Rocha” clones. The results allowed the differentiation of 75 genotypes of which 29 are “Rocha”. Three synonyms groups and four homonymous groups of other local varieties were confirmed. A Bayesian model-based clustering approach identified two distinct clusters. Using flow cytometry, six cultivars were found to be triploids. These results show high genetic variability among “Rocha” clones. In conclusion, there is a need for different “Rocha” clones to be preserved to enable the correct selection of the multiplication material.
Collapse
|
37
|
Cornille A, Antolín F, Garcia E, Vernesi C, Fietta A, Brinkkemper O, Kirleis W, Schlumbaum A, Roldán-Ruiz I. A Multifaceted Overview of Apple Tree Domestication. TRENDS IN PLANT SCIENCE 2019; 24:770-782. [PMID: 31296442 DOI: 10.1016/j.tplants.2019.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 05/19/2023]
Abstract
The apple is an iconic tree and a major fruit crop worldwide. It is also a model species for the study of the evolutionary processes and genomic basis underlying the domestication of clonally propagated perennial crops. Multidisciplinary approaches from across Eurasia have documented the pace and process of cultivation of this remarkable crop. While population genetics and genomics have revealed the overall domestication history of apple across Eurasia, untangling the evolutionary processes involved, archeobotany has helped to document the transition from gathering and using apples to the practice of cultivation. Further studies integrating archeogenetic and archeogenomic approaches will bring new insights about key traits involved in apple domestication. Such knowledge has potential to boost innovation in present-day apple breeding.
Collapse
Affiliation(s)
- Amandine Cornille
- Génétique Quantitative et Evolution- Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France.
| | - Ferran Antolín
- Integrative Prehistory and Archeological Science (IPNA/IPAS), Department of Environmental Sciences, University of Basel, Spalenring 145, 4055 Basel, Switzerland
| | - Elena Garcia
- Department of Horticulture, University of Arkansas, Fayetteville, AR, USA
| | - Cristiano Vernesi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre - Fondazione Edmund Mach, via Edmund Mach 1, 38010 San Michele all'Adige, TN, Italy
| | - Alice Fietta
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre - Fondazione Edmund Mach, via Edmund Mach 1, 38010 San Michele all'Adige, TN, Italy
| | - Otto Brinkkemper
- Cultural Heritage Agency, PO Box 1600, 3800 BP Amersfoort, The Netherlands
| | - Wiebke Kirleis
- Institute for Prehistoric and Protohistoric Archeology/Graduate School Human Development in Landscapes, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Angela Schlumbaum
- Integrative Prehistory and Archeological Science (IPNA/IPAS), Department of Environmental Sciences, University of Basel, Spalenring 145, 4055 Basel, Switzerland
| | - Isabel Roldán-Ruiz
- Flanders Research Institute for Agriculture, Fisheries, and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, 9090 Melle, Belgium; Ghent University, Faculty of Sciences, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
38
|
Urrestarazu J, Kägi C, Bühlmann A, Gassmann J, Santesteban LG, Frey JE, Kellerhals M, Miranda C. Integration of expert knowledge in the definition of Swiss pear core collection. Sci Rep 2019; 9:8934. [PMID: 31221983 PMCID: PMC6586639 DOI: 10.1038/s41598-019-44871-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/15/2019] [Indexed: 12/20/2022] Open
Abstract
Core collections (CCs) constitute a key tool for the characterization and management of genetic resources (GR). When the institutions involved in GR preservation decide to define a CC, they frequently prefer to select accessions based not only on strictly objective criteria, but also to add others following expert knowledge considerations (popularity, prestige, role in breeding history, or presence of phenotypic features of interest). The aim of this study was to evaluate the implications of approaches that combine formal analytical procedures and expert knowledge on the efficiency of CC definition through a case study to establish a pear CC from the Swiss National Pear Inventory. The CC had to represent a maximum of the genetic diversity, not to exceed 150 accessions, and required to include a priority set (SPPS) with 86 genotypes selected based on expert knowledge. In total, nine strategies were evaluated, resulting of combining compositions of the dataset sampled, sampling sizes and methods. The CCs sampled by mixed approaches provided similar scores, irrespective of the approach considered, and obtained similar efficiency in optimizing the genetic diversity retained. Therefore, mixed approaches can be an appropriate choice for applications involving genetic conservation in tree germplasm collections.
Collapse
Affiliation(s)
- J Urrestarazu
- Department of Agronomy, Biotechnology and Food Science, Public University of Navarre, 31006, Pamplona, Spain.
| | - C Kägi
- Federal Office for Agriculture, 3003, Bern, Switzerland
| | | | | | - L G Santesteban
- Department of Agronomy, Biotechnology and Food Science, Public University of Navarre, 31006, Pamplona, Spain
| | - J E Frey
- Agroscope, 8820, Wädenswil, Switzerland
| | | | - C Miranda
- Department of Agronomy, Biotechnology and Food Science, Public University of Navarre, 31006, Pamplona, Spain
| |
Collapse
|
39
|
Peace CP, Bianco L, Troggio M, van de Weg E, Howard NP, Cornille A, Durel CE, Myles S, Migicovsky Z, Schaffer RJ, Costes E, Fazio G, Yamane H, van Nocker S, Gottschalk C, Costa F, Chagné D, Zhang X, Patocchi A, Gardiner SE, Hardner C, Kumar S, Laurens F, Bucher E, Main D, Jung S, Vanderzande S. Apple whole genome sequences: recent advances and new prospects. HORTICULTURE RESEARCH 2019; 6:59. [PMID: 30962944 PMCID: PMC6450873 DOI: 10.1038/s41438-019-0141-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 05/19/2023]
Abstract
In 2010, a major scientific milestone was achieved for tree fruit crops: publication of the first draft whole genome sequence (WGS) for apple (Malus domestica). This WGS, v1.0, was valuable as the initial reference for sequence information, fine mapping, gene discovery, variant discovery, and tool development. A new, high quality apple WGS, GDDH13 v1.1, was released in 2017 and now serves as the reference genome for apple. Over the past decade, these apple WGSs have had an enormous impact on our understanding of apple biological functioning, trait physiology and inheritance, leading to practical applications for improving this highly valued crop. Causal gene identities for phenotypes of fundamental and practical interest can today be discovered much more rapidly. Genome-wide polymorphisms at high genetic resolution are screened efficiently over hundreds to thousands of individuals with new insights into genetic relationships and pedigrees. High-density genetic maps are constructed efficiently and quantitative trait loci for valuable traits are readily associated with positional candidate genes and/or converted into diagnostic tests for breeders. We understand the species, geographical, and genomic origins of domesticated apple more precisely, as well as its relationship to wild relatives. The WGS has turbo-charged application of these classical research steps to crop improvement and drives innovative methods to achieve more durable, environmentally sound, productive, and consumer-desirable apple production. This review includes examples of basic and practical breakthroughs and challenges in using the apple WGSs. Recommendations for "what's next" focus on necessary upgrades to the genome sequence data pool, as well as for use of the data, to reach new frontiers in genomics-based scientific understanding of apple.
Collapse
Affiliation(s)
- Cameron P. Peace
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Luca Bianco
- Computational Biology, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - Michela Troggio
- Department of Genomics and Biology of Fruit Crops, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - Eric van de Weg
- Plant Breeding, Wageningen University and Research, Wageningen, 6708PB The Netherlands
| | - Nicholas P. Howard
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108 USA
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität, 26129 Oldenburg, Germany
| | - Amandine Cornille
- GQE – Le Moulon, Institut National de la Recherche Agronomique, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Charles-Eric Durel
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
| | - Sean Myles
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3 Canada
| | - Zoë Migicovsky
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3 Canada
| | - Robert J. Schaffer
- The New Zealand Institute for Plant and Food Research Ltd, Motueka, 7198 New Zealand
- School of Biological Sciences, University of Auckland, Auckland, 1142 New Zealand
| | - Evelyne Costes
- AGAP, INRA, CIRAD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Gennaro Fazio
- Plant Genetic Resources Unit, USDA ARS, Geneva, NY 14456 USA
| | - Hisayo Yamane
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Chris Gottschalk
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Fabrizio Costa
- Department of Genomics and Biology of Fruit Crops, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Palmerston North Research Centre, Palmerston North, 4474 New Zealand
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | | | - Susan E. Gardiner
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Palmerston North Research Centre, Palmerston North, 4474 New Zealand
| | - Craig Hardner
- Queensland Alliance of Agriculture and Food Innovation, University of Queensland, St Lucia, 4072 Australia
| | - Satish Kumar
- New Cultivar Innovation, Plant and Food Research, Havelock North, 4130 New Zealand
| | - Francois Laurens
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
| | - Etienne Bucher
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
- Agroscope, 1260 Changins, Switzerland
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Sook Jung
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Stijn Vanderzande
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
40
|
Melo ATO, Hale I. 'apparent': a simple and flexible R package for accurate SNP-based parentage analysis in the absence of guiding information. BMC Bioinformatics 2019; 20:108. [PMID: 30819089 PMCID: PMC6396488 DOI: 10.1186/s12859-019-2662-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/29/2019] [Indexed: 11/30/2022] Open
Abstract
Background The accurate determination of parent-progeny relationships within both in situ natural populations and ex situ genetic resource collections can greatly enhance plant breeding/domestication efforts and support plant genetic resource conservation strategies. Although a range of parentage analysis tools are available, none are designed to infer such relationships using genome-wide single nucleotide polymorphism (SNP) data in the complete absence of guiding information, such as generational groups, partial pedigrees, or genders. The R package (‘apparent’) developed and presented here addresses this gap. Results ‘apparent’ adopts a novel strategy of parentage analysis based on a test of genetic identity between a theoretically expected progeny (EPij), whose genotypic state can be inferred at all homozygous loci for a pair of putative parents (i and j), and all potential offspring (POk), represented by the k individuals of a given germplasm collection. Using the Gower Dissimilarity metric (GD), genetic identity between EPij and POk is taken as evidence that individuals i and j are the true parents of offspring k. Significance of a given triad (parental pairij + offspringk) is evaluated relative to the distribution of all GDij|k values for the population. With no guiding information provided, ‘apparent’ correctly identified the parental pairs of 15 lines of known pedigree within a test population of 77 accessions of Actinidia arguta, a performance unmatched by five other commonly used parentage analysis tools. In the case of an inconclusive triad analysis due to the absence of one parent from the test population, ‘apparent’ can perform a subsequent dyad analysis to identify a likely single parent for a given offspring. Average dyad analysis accuracy was 73.3% in the complete absence of pedigree information but increased to 100% when minimal generational information (adults vs. progeny) was provided. Conclusions The ‘apparent’ R package is a fast and accurate parentage analysis tool that uses genome-wide SNP data to identify parent-progeny relationships within populations for which no a priori knowledge of family structure exists. Electronic supplementary material The online version of this article (10.1186/s12859-019-2662-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arthur T O Melo
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH, USA
| | - Iago Hale
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH, USA.
| |
Collapse
|
41
|
Ordidge M, Kirdwichai P, Baksh MF, Venison EP, Gibbings JG, Dunwell JM. Genetic analysis of a major international collection of cultivated apple varieties reveals previously unknown historic heteroploid and inbred relationships. PLoS One 2018; 13:e0202405. [PMID: 30208051 PMCID: PMC6135360 DOI: 10.1371/journal.pone.0202405] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 08/02/2018] [Indexed: 01/18/2023] Open
Abstract
Domesticated apple (Malus x domestica Borkh.) is a major global crop and the genetic diversity held within the pool of cultivated varieties is important for the development of future cultivars. The aim of this study was to investigate the diversity held within the domesticated form, through the analysis of a major international germplasm collection of cultivated varieties, the UK National Fruit Collection, consisting of over 2,000 selections of named cultivars and seedling varieties. We utilised Diversity Array Technology (DArT) markers to assess the genetic diversity within the collection. Clustering attempts, using the software STRUCTURE revealed that the accessions formed a complex and historically admixed group for which clear clustering was challenging. Comparison of accessions using the Jaccard similarity coefficient allowed us to identify clonal and duplicate material as well as revealing pairs and groups that appeared more closely related than a standard parent-offspring or full-sibling relations. From further investigation, we were able to propose a number of new pedigrees, which revealed that some historically important cultivars were more closely related than previously documented and that some of them were partially inbred. We were also able to elucidate a number of parent-offspring relationships that had resulted in a number of important polyploid cultivars. This included reuniting polyploid cultivars that in some cases dated as far back as the 18th century, with diploid parents that potentially date back as far as the 13th century.
Collapse
Affiliation(s)
- Matthew Ordidge
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Pianpool Kirdwichai
- School of Mathematical, Physical and Computational Sciences, University of Reading, Reading, United Kingdom
| | - M. Fazil Baksh
- School of Mathematical, Physical and Computational Sciences, University of Reading, Reading, United Kingdom
| | - Edward P. Venison
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - J. George Gibbings
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Jim M. Dunwell
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| |
Collapse
|
42
|
Larsen B, Gardner K, Pedersen C, Ørgaard M, Migicovsky Z, Myles S, Toldam-Andersen TB. Population structure, relatedness and ploidy levels in an apple gene bank revealed through genotyping-by-sequencing. PLoS One 2018; 13:e0201889. [PMID: 30110387 PMCID: PMC6093671 DOI: 10.1371/journal.pone.0201889] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 07/24/2018] [Indexed: 12/20/2022] Open
Abstract
In recent years, new genome-wide marker systems have provided highly informative alternatives to low density marker systems for evaluating plant populations. To date, most apple germplasm collections have been genotyped using low-density markers such as simple sequence repeats (SSRs), whereas only a few have been explored using high-density genome-wide marker information. We explored the genetic diversity of the Pometum gene bank collection (University of Copenhagen, Denmark) of 349 apple accessions using over 15,000 genome-wide single nucleotide polymorphisms (SNPs) and 15 SSR markers, in order to compare the strength of the two approaches for describing population structure. We found that 119 accessions shared a putative clonal relationship with at least one other accession in the collection, resulting in the identification of 272 (78%) unique accessions. Of these unique accessions, over half (52%) share a first-degree relationship with at least one other accession. There is therefore a high degree of clonal and family relatedness in the Danish apple gene bank. We find significant genetic differentiation between Malus domestica and its supposed primary wild ancestor, M. sieversii, as well as between accessions of Danish origin and all others. Using the GBS approach allowed us to estimate ploidy levels, which were in accordance with flow cytometry results. Overall, we found strong concordance between analyses based on the genome-wide SNPs and the 15 SSR loci. However, we argue that GBS is superior to traditional SSR approaches because it allows detection of a much more detailed population structure and can be further exploited in genome-wide association studies (GWAS). Finally, we compare GBS with SSR for the purpose of identifying clones and pedigree relations in a diverse apple gene bank and discuss the advantages and constraints of the two approaches.
Collapse
Affiliation(s)
- Bjarne Larsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- * E-mail:
| | - Kyle Gardner
- Department of Plant, Food and Environmental Sciences, Dalhousie University, Faculty of Agriculture, Agricultural Campus, Truro, NS, Canada
| | - Carsten Pedersen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Marian Ørgaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Zoë Migicovsky
- Department of Plant, Food and Environmental Sciences, Dalhousie University, Faculty of Agriculture, Agricultural Campus, Truro, NS, Canada
| | - Sean Myles
- Department of Plant, Food and Environmental Sciences, Dalhousie University, Faculty of Agriculture, Agricultural Campus, Truro, NS, Canada
| | | |
Collapse
|
43
|
Pyne RM, Honig JA, Vaiciunas J, Wyenandt CA, Simon JE. Population structure, genetic diversity and downy mildew resistance among Ocimum species germplasm. BMC PLANT BIOLOGY 2018; 18:69. [PMID: 29685108 PMCID: PMC5914031 DOI: 10.1186/s12870-018-1284-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 04/10/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND The basil (Ocimum spp.) genus maintains a rich diversity of phenotypes and aromatic volatiles through natural and artificial outcrossing. Characterization of population structure and genetic diversity among a representative sample of this genus is severely lacking. Absence of such information has slowed breeding efforts and the development of sweet basil (Ocimum basilicum L.) with resistance to the worldwide downy mildew epidemic, caused by the obligate oomycete Peronospora belbahrii. In an effort to improve classification of relationships 20 EST-SSR markers with species-level transferability were developed and used to resolve relationships among a diverse panel of 180 Ocimum spp. accessions with varying response to downy mildew. RESULTS Results obtained from nested Bayesian model-based clustering, analysis of molecular variance and unweighted pair group method using arithmetic average (UPGMA) analyses were synergized to provide an updated phylogeny of the Ocimum genus. Three (major) and seven (sub) population (cluster) models were identified and well-supported (P < 0.001) by PhiPT (ΦPT) values of 0.433 and 0.344, respectively. Allelic frequency among clusters supported previously developed hypotheses of allopolyploid genome structure. Evidence of cryptic population structure was demonstrated for the k1 O. basilicum cluster suggesting prevalence of gene flow. UPGMA analysis provided best resolution for the 36-accession, DM resistant k3 cluster with consistently strong bootstrap support. Although the k3 cluster is a rich source of DM resistance introgression of resistance into the commercially important k1 accessions is impeded by reproductive barriers as demonstrated by multiple sterile F1 hybrids. The k2 cluster located between k1 and k3, represents a source of transferrable tolerance evidenced by fertile backcross progeny. The 90-accession k1 cluster was largely susceptible to downy mildew with accession 'MRI' representing the only source of DM resistance. CONCLUSIONS High levels of genetic diversity support the observed phenotypic diversity among Ocimum spp. accessions. EST-SSRs provided a robust evaluation of molecular diversity and can be used for additional studies to increase resolution of genetic relationships in the Ocimum genus. Elucidation of population structure and genetic relationships among Ocimum spp. germplasm provide the foundation for improved DM resistance breeding strategies and more rapid response to future disease outbreaks.
Collapse
Affiliation(s)
- Robert M. Pyne
- Department of Plant Biology, Rutgers, the State University of New Jersey, Foran Hall, 59 Dudley Rd, New Brunswick, NJ 08901 USA
| | - Josh A. Honig
- Department of Plant Biology, Rutgers, the State University of New Jersey, Foran Hall, 59 Dudley Rd, New Brunswick, NJ 08901 USA
| | - Jennifer Vaiciunas
- Department of Plant Biology, Rutgers, the State University of New Jersey, Foran Hall, 59 Dudley Rd, New Brunswick, NJ 08901 USA
| | - Christian A. Wyenandt
- Department of Plant Biology, Rutgers, the State University of New Jersey, Foran Hall, 59 Dudley Rd, New Brunswick, NJ 08901 USA
| | - James E. Simon
- Department of Plant Biology, Rutgers, the State University of New Jersey, Foran Hall, 59 Dudley Rd, New Brunswick, NJ 08901 USA
| |
Collapse
|
44
|
Pikunova AV, Sedov EN, Tokmakov SV, Suprun II, Gorbatchova NG, Dolzhikova MA, Yanchuk TV, Serova ZM. Microsatellite Loci Polymorphism of Apple (Malus domestica Borkh.) Genotypes with Different Ploidy Level. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418040129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Genetic diversity of Spanish Prunus domestica L. germplasm reveals a complex genetic structure underlying. PLoS One 2018; 13:e0195591. [PMID: 29630655 PMCID: PMC5891032 DOI: 10.1371/journal.pone.0195591] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/25/2018] [Indexed: 12/17/2022] Open
Abstract
European plum (Prunus domestica L.) is an ancient domesticated species cultivated in temperate areas worldwide whose genetic structure has been scarcely analyzed to date. In this study, a broad representation of Spanish European plum germplasm collected in Northeastern Spain and a representative set of reference cultivars were compared using nuclear and chloroplast markers. The number of alleles per locus detected with the SSR markers ranged from 8 to 39, with an average of 23.4 alleles, and 8 haplotypes were identified. Bayesian model-based clustering, minimum spanning networks, and the analysis of molecular variance showed the existence of a hierarchical structure. At the first level, two genetic groups were found, one containing 'Reine Claude' type reference cultivars altogether with ca. 25% of local genotypes, and a second one much more diverse. This latter group split in two groups, one containing most (ca. 70%) local genotypes and some old Spanish and French reference cultivars, whereas the other included 24 reference cultivars and only six local genotypes. A third partition level allowed a significant finer delineation into five groups. As a whole, the genetic structure of European plum from Northeastern Spain was shown to be complex and conditioned by a geographical proximity factor. This study not only contributes to genetic conservation and breeding for this species at the national level, but also supports the relevance of undertaking similar tasks of collection and characterization in other unexplored areas. Moreover, this kind of research could lead to future coordinated actions for the examination of the whole European plum diversity, to define conservation strategies, and could be used to better understand the genetic control of traits of horticultural interest through association mapping.
Collapse
|
46
|
Laurens F, Aranzana MJ, Arus P, Bassi D, Bink M, Bonany J, Caprera A, Corelli-Grappadelli L, Costes E, Durel CE, Mauroux JB, Muranty H, Nazzicari N, Pascal T, Patocchi A, Peil A, Quilot-Turion B, Rossini L, Stella A, Troggio M, Velasco R, van de Weg E. An integrated approach for increasing breeding efficiency in apple and peach in Europe. HORTICULTURE RESEARCH 2018; 5:11. [PMID: 29507735 PMCID: PMC5830435 DOI: 10.1038/s41438-018-0016-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/23/2017] [Indexed: 05/02/2023]
Abstract
Despite the availability of whole genome sequences of apple and peach, there has been a considerable gap between genomics and breeding. To bridge the gap, the European Union funded the FruitBreedomics project (March 2011 to August 2015) involving 28 research institutes and private companies. Three complementary approaches were pursued: (i) tool and software development, (ii) deciphering genetic control of main horticultural traits taking into account allelic diversity and (iii) developing plant materials, tools and methodologies for breeders. Decisive breakthroughs were made including the making available of ready-to-go DNA diagnostic tests for Marker Assisted Breeding, development of new, dense SNP arrays in apple and peach, new phenotypic methods for some complex traits, software for gene/QTL discovery on breeding germplasm via Pedigree Based Analysis (PBA). This resulted in the discovery of highly predictive molecular markers for traits of horticultural interest via PBA and via Genome Wide Association Studies (GWAS) on several European genebank collections. FruitBreedomics also developed pre-breeding plant materials in which multiple sources of resistance were pyramided and software that can support breeders in their selection activities. Through FruitBreedomics, significant progresses were made in the field of apple and peach breeding, genetics, genomics and bioinformatics of which advantage will be made by breeders, germplasm curators and scientists. A major part of the data collected during the project has been stored in the FruitBreedomics database and has been made available to the public. This review covers the scientific discoveries made in this major endeavour, and perspective in the apple and peach breeding and genomics in Europe and beyond.
Collapse
Affiliation(s)
- Francois Laurens
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Université Bretagne Loire, 42 rue Georges Morel, Beaucouzé, 49071 France
| | - Maria José Aranzana
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona Spain
| | - Pere Arus
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona Spain
| | - Daniele Bassi
- Università degli Studi di Milano - DiSAA, Via Celoria 2, Milan, 20133 Italy
| | - Marco Bink
- Biometris, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708PB The Netherlands
- Present Address: Hendrix Genetics Research, Technology & Services, Boxmeer, 5830 AC The Netherlands
| | - Joan Bonany
- IRTA-Mas Badia, Mas Badia, La Tallada, 17134 Spain
| | - Andrea Caprera
- Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, Lodi, 26900 Italy
| | | | | | - Charles-Eric Durel
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Université Bretagne Loire, 42 rue Georges Morel, Beaucouzé, 49071 France
| | | | - Hélène Muranty
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Université Bretagne Loire, 42 rue Georges Morel, Beaucouzé, 49071 France
| | - Nelson Nazzicari
- Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, Lodi, 26900 Italy
| | | | - Andrea Patocchi
- Agroscope, Research Division Plant Breeding, Schloss 1, Wädenswil, 8820 Switzerland
| | - Andreas Peil
- Julius Kühn-Institute (JKI); Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, Dresden, 01326 Germany
| | | | - Laura Rossini
- Università degli Studi di Milano - DiSAA, Via Celoria 2, Milan, 20133 Italy
- Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, Lodi, 26900 Italy
| | - Alessandra Stella
- Parco Tecnologico Padano, Via Einstein, Loc. Cascina Codazza, Lodi, 26900 Italy
| | - Michela Troggio
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Riccardo Velasco
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- CREA-VE, Center of Viticulture and Enology, via XXVIII Aprile 26, Conegliano (TV), 31015 Italy
| | - Eric van de Weg
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, P.O.Box 386, Wageningen, 6700AJ The Netherlands
| |
Collapse
|
47
|
Marconi G, Ferradini N, Russi L, Concezzi L, Veronesi F, Albertini E. Genetic Characterization of the Apple Germplasm Collection in Central Italy: The Value of Local Varieties. FRONTIERS IN PLANT SCIENCE 2018; 9:1460. [PMID: 30364143 PMCID: PMC6191466 DOI: 10.3389/fpls.2018.01460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/12/2018] [Indexed: 05/06/2023]
Abstract
In the last 50 years, intensive farming systems have been boosted by modern agricultural techniques and newly bred cultivars. The massive use of few and related cultivars has dramatically reduced the apple genetic diversity of local varieties, confined to marginal areas. In Central Italy a limited spread of intensive fruit orchards has made it possible to preserve much of the local genetic diversity, but at the same time the coexistence of both modern and ancient varieties has generated some confusion. The characterization and clarification of possible synonyms, homonyms, and/or labeling errors in old local genetic resources is an issue in the conservation and management of living collections. 175 accessions provided by 10 apple collections, mainly local varieties, some of unknown origin, and well-known modern and ancient varieties, were studied by using 19 SSRs, analyzed by STRUCTURE, Ward's clustering and parentage analysis. We were able to identify 25 duplicates, 9 synonyms, and 9 homonyms. As many as 37 unknown accession were assigned to well known local or commercial varieties. Polyploids made up 20%. Some markers were found to be significantly correlated with morphological traits and the loci associated with the fruit over color were related to QTLs for resistance to biotic stresses, aroma compounds, stiffness, and acidity. In conclusion the gene pool of Central Italy seems to be rather consistent and highly differentiated compared with other European studies (F ST = 0.147). The importance of safeguarding this diversity and the impact on the management of the germplasm living collection is discussed.
Collapse
Affiliation(s)
- Gianpiero Marconi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Nicoletta Ferradini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Luigi Russi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | | | - Fabio Veronesi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Emidio Albertini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università degli Studi di Perugia, Perugia, Italy
- *Correspondence: Emidio Albertini,
| |
Collapse
|
48
|
Urrestarazu J, Muranty H, Denancé C, Leforestier D, Ravon E, Guyader A, Guisnel R, Feugey L, Aubourg S, Celton JM, Daccord N, Dondini L, Gregori R, Lateur M, Houben P, Ordidge M, Paprstein F, Sedlak J, Nybom H, Garkava-Gustavsson L, Troggio M, Bianco L, Velasco R, Poncet C, Théron A, Moriya S, Bink MCAM, Laurens F, Tartarini S, Durel CE. Genome-Wide Association Mapping of Flowering and Ripening Periods in Apple. FRONTIERS IN PLANT SCIENCE 2017; 8:1923. [PMID: 29176988 PMCID: PMC5686452 DOI: 10.3389/fpls.2017.01923] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/24/2017] [Indexed: 05/17/2023]
Abstract
Deciphering the genetic control of flowering and ripening periods in apple is essential for breeding cultivars adapted to their growing environments. We implemented a large Genome-Wide Association Study (GWAS) at the European level using an association panel of 1,168 different apple genotypes distributed over six locations and phenotyped for these phenological traits. The panel was genotyped at a high-density of SNPs using the Axiom®Apple 480 K SNP array. We ran GWAS with a multi-locus mixed model (MLMM), which handles the putatively confounding effect of significant SNPs elsewhere on the genome. Genomic regions were further investigated to reveal candidate genes responsible for the phenotypic variation. At the whole population level, GWAS retained two SNPs as cofactors on chromosome 9 for flowering period, and six for ripening period (four on chromosome 3, one on chromosome 10 and one on chromosome 16) which, together accounted for 8.9 and 17.2% of the phenotypic variance, respectively. For both traits, SNPs in weak linkage disequilibrium were detected nearby, thus suggesting the existence of allelic heterogeneity. The geographic origins and relationships of apple cultivars accounted for large parts of the phenotypic variation. Variation in genotypic frequency of the SNPs associated with the two traits was connected to the geographic origin of the genotypes (grouped as North+East, West and South Europe), and indicated differential selection in different growing environments. Genes encoding transcription factors containing either NAC or MADS domains were identified as major candidates within the small confidence intervals computed for the associated genomic regions. A strong microsynteny between apple and peach was revealed in all the four confidence interval regions. This study shows how association genetics can unravel the genetic control of important horticultural traits in apple, as well as reduce the confidence intervals of the associated regions identified by linkage mapping approaches. Our findings can be used for the improvement of apple through marker-assisted breeding strategies that take advantage of the accumulating additive effects of the identified SNPs.
Collapse
Affiliation(s)
- Jorge Urrestarazu
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
- Department of Agricultural Sciences, Public University of Navarre, Pamplona, Spain
- *Correspondence: Jorge Urrestarazu
| | - Hélène Muranty
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Caroline Denancé
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Diane Leforestier
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Elisa Ravon
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Arnaud Guyader
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Rémi Guisnel
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Laurence Feugey
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Sébastien Aubourg
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Jean-Marc Celton
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Nicolas Daccord
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Luca Dondini
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Roberto Gregori
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Marc Lateur
- Plant Breeding and Biodiversity, Centre Wallon de Recherches Agronomiques, Gembloux, Belgium
| | - Patrick Houben
- Plant Breeding and Biodiversity, Centre Wallon de Recherches Agronomiques, Gembloux, Belgium
| | - Matthew Ordidge
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | | | - Jiri Sedlak
- Research and Breeding Institute of Pomology Holovousy Ltd., Horice, Czechia
| | - Hilde Nybom
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Kristianstad, Sweden
| | | | | | - Luca Bianco
- Fondazione Edmund Mach, San Michele all'Adige, Italy
| | | | - Charles Poncet
- Plateforme Gentyane, INRA, UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, Clermont-Ferrand, France
| | - Anthony Théron
- Plateforme Gentyane, INRA, UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, Clermont-Ferrand, France
| | - Shigeki Moriya
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
- Apple Research Station, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Morioka, Japan
| | - Marco C. A. M. Bink
- Wageningen UR, Biometris, Wageningen, Netherlands
- Hendrix Genetics, Boxmeer, Netherlands
| | - François Laurens
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Stefano Tartarini
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Charles-Eric Durel
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
- Charles-Eric Durel
| |
Collapse
|
49
|
Peace CP. DNA-informed breeding of rosaceous crops: promises, progress and prospects. HORTICULTURE RESEARCH 2017; 4:17006. [PMID: 28326185 PMCID: PMC5350264 DOI: 10.1038/hortres.2017.6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 05/18/2023]
Abstract
Crops of the Rosaceae family provide valuable contributions to rural economies and human health and enjoyment. Sustained solutions to production challenges and market demands can be met with genetically improved new cultivars. Traditional rosaceous crop breeding is expensive and time-consuming and would benefit from improvements in efficiency and accuracy. Use of DNA information is becoming conventional in rosaceous crop breeding, contributing to many decisions and operations, but only after past decades of solved challenges and generation of sufficient resources. Successes in deployment of DNA-based knowledge and tools have arisen when the 'chasm' between genomics discoveries and practical application is bridged systematically. Key steps are establishing breeder desire for use of DNA information, adapting tools to local breeding utility, identifying efficient application schemes, accessing effective services in DNA-based diagnostics and gaining experience in integrating DNA information into breeding operations and decisions. DNA-informed germplasm characterization for revealing identity and relatedness has benefitted many programs and provides a compelling entry point to reaping benefits of genomics research. DNA-informed germplasm evaluation for predicting trait performance has enabled effective reallocation of breeding resources when applied in pioneering programs. DNA-based diagnostics is now expanding from specific loci to genome-wide considerations. Realizing the full potential of this expansion will require improved accuracy of predictions, multi-trait DNA profiling capabilities, streamlined breeding information management systems, strategies that overcome plant-based features that limit breeding progress and widespread training of current and future breeding personnel and allied scientists.
Collapse
Affiliation(s)
- Cameron P Peace
- Department of Horticulture, Washington State University, PO Box 646414, Pullman, WA 99164-6414, USA
- ()
| |
Collapse
|