1
|
Liu J, Feng Y, Chen C, Yan J, Bai X, Li H, Lin C, Xiang Y, Tian W, Qi Z, Yu J, Yan X. Genomic insights into the clonal reproductive Opuntia cochenillifera: mitochondrial and chloroplast genomes of the cochineal cactus for enhanced understanding of structural dynamics and evolutionary implications. FRONTIERS IN PLANT SCIENCE 2024; 15:1347945. [PMID: 38516667 PMCID: PMC10954886 DOI: 10.3389/fpls.2024.1347945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024]
Abstract
Background The cochineal cactus (Opuntia cochenillifera), notable for its substantial agricultural and industrial applications, predominantly undergoes clonal reproduction, which presents significant challenges in breeding and germplasm innovation. Recent developments in mitochondrial genome engineering offer promising avenues for introducing heritable mutations, potentially facilitating selective sexual reproduction through the creation of cytoplasmic male sterile genotypes. However, the lack of comprehensive mitochondrial genome information for Opuntia species hinders these efforts. Here, we intended to sequence and characterize its mitochondrial genome to maximize the potential of its genomes for evolutionary studies, molecular breeding, and molecular marker developments. Results We sequenced the total DNA of the O. cochenillifera using DNBSEQ and Nanopore platforms. The mitochondrial genome was then assembled using a hybrid assembly strategy using Unicycler software. We found that the mitochondrial genome of O. cochenillifera has a length of 1,156,235 bp, a GC content of 43.06%, and contains 54 unique protein-coding genes and 346 simple repeats. Comparative genomic analysis revealed 48 homologous fragments shared between mitochondrial and chloroplast genomes, with a total length of 47,935 bp. Additionally, the comparison of mitochondrial genomes from four Cactaceae species highlighted their dynamic nature and frequent mitogenomic reorganizations. Conclusion Our study provides a new perspective on the evolution of the organelle genome and its potential application in genetic breeding. These findings offer valuable insights into the mitochondrial genetics of Cactaceae, potentially facilitating future research and breeding programs aimed at enhancing the genetic diversity and adaptability of O. cochenillifera by leveraging its unique mitochondrial genome characteristics.
Collapse
Affiliation(s)
- Jing Liu
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuqing Feng
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Cheng Chen
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Jing Yan
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Xinyu Bai
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Huiru Li
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Chen Lin
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Yinan Xiang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wen Tian
- Animal Plant and Food Inspection Center of Nanjing Customs District, Nanjing, China
| | - Zhechen Qi
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jing Yu
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Xiaoling Yan
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| |
Collapse
|
2
|
Li H, Wang Y, Feng J, Guo J, Yang Y, Chu L, Liu L, Liu Z. Unequal carbon and nitrogen translocation between ramets affects sexual reproductive performance of the clonal grass Leymus chinensis under nitrogen addition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169326. [PMID: 38104804 DOI: 10.1016/j.scitotenv.2023.169326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Sexual reproduction is crucial for population continuity in clonal plants. The effect of nutrient translocation between ramets on sexual reproduction of clonal plants under nitrogen addition remains unclear. In this study, we focused on clonal fragments of Leymus chinensis reproductive ramets with different number of vegetative ramets connected to tillering nodes. A series of pot experiments was conducted under nitrogen addition, including 13C and 15N bidirectional labelling of vegetative ramets and reproductive ramets at the milk-ripe stage, determination of the 13C and 15N amount translocated, and assessment of the quantitative characteristics, nitrogen and carbon concentrations of reproductive ramets and vegetative ramets. Nitrogen addition promoted the translocation of 13C while inhibiting 15N between vegetative ramets and reproductive ramets. With an increase in the number of connected vegetative ramets, the 13C translocated by reproductive ramets and the 15N translocated by reproductive and vegetative ramets gradually increased. The translocation of 13C and 15N between vegetative and reproductive ramets was bidirectional and unequal. The translocated amount of 13C and 15N from reproductive ramets to vegetative ramets was always higher than that from vegetative ramets to reproductive ramets. Nitrogen addition did not prominently affect the sexual reproductive performance of L. chinensis, whereas the number of connected vegetative ramets both positively and negatively affected sexual reproductive performance. Ramet biomass is an important driver of nutrient acquisition by L. chinensis ramets. We demonstrate for the first time that unequal nutrient translocation between ramets affects sexual reproductive performance in L. chinensis. The findings contribute to an enhanced understanding of the reproductive strategies of clonal plant populations in future environments.
Collapse
Affiliation(s)
- Haiyan Li
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China.
| | - Yuelin Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Ji Feng
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Jian Guo
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Yunfei Yang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Lishuang Chu
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Lili Liu
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Zhikuo Liu
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| |
Collapse
|
3
|
Fernández G, Rodríguez C. Antagonistic effects of grazers and shrubs on the emergence and establishment of seedlings in a sub-humid grassland of South America. Oecologia 2023; 203:219-229. [PMID: 37839062 DOI: 10.1007/s00442-023-05464-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
Biotic interactions are key processes that strongly affect the performance of seedlings in plant communities. In this work, we evaluated the effect of grazing and shrubs on the emergence and establishment of seedlings with different life-forms (dicotyledonous and monocotyledonous) in a sub-humid grassland community. We delimited five areas of 25 m2 in which we established four permanent plots of 1.0 m2. Two plots were centered at shrubs (beneath the canopy) and two in open spaces (without shrubs). Half of the shrubs and open plots were fenced to avoid grazing. During two consecutive years we marked all emerged seedlings and followed their fate. Grazing promoted dicotyledonous seedling emergence but reduced establishment. On the contrary, shrubs reduced dicotyledonous emergence but enhanced establishment. We did not detect any effect of shrubs or grazing on the emergence of monocotyledonous seedlings. Most seedlings emerged during fall and winter and died during spring and summer. Recruitment from seeds in this grassland is rare and complex, involving biotic and abiotic factors, with different responses to grazing and shrubs depending on seedling life-form and ontogeny.
Collapse
Affiliation(s)
- Gastón Fernández
- Departamento de Sistemas Agrarios y Paisajes Culturales, Centro Universitario Regional del Este, Universidad de la República, Ruta 8 km 282, 33000, Treinta y Tres, Uruguay.
| | - Claudia Rodríguez
- Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| |
Collapse
|
4
|
Brooks E, Slender AL, Cu S, Breed MF, Stangoulis JCR. A range-wide analysis of population structure and genomic variation within the critically endangered spiny daisy (Acanthocladium dockeri). CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01468-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractUnderstanding population structure and genetic diversity is important for designing effective conservation strategies. As a critically endangered shrub, the six remaining extant populations of spiny daisy (Acanthocladium dockeri) are restricted to country roadsides in the mid-north of South Australia, where the species faces many ongoing abiotic and biotic threats to survival. Currently the spiny daisy is managed by selecting individuals from the extant populations and translocating them to establish insurance populations. However, there is little information available on the genetic differentiation between populations and diversity within source populations, which are essential components of planning translocations. To help fill this knowledge gap, we analysed population structure within and among all six of its known wild populations using 7,742 SNPs generated by a genotyping-by-sequencing approach. Results indicated that each population was strongly differentiated, had low levels of genetic diversity, and there was no evidence of inter-population gene flow. Individuals within each population were generally closely related, however, the Melrose population consisted entirely of clones. Our results suggest genetic rescue should be applied to wild spiny daisy populations to increase genetic diversity that will subsequently lead to greater intra-population fitness and adaptability. As a starting point, we suggest focussing on improving seed viability via inter-population crosses such as through hand pollination experiments to experimentally assess their sexual compatibility with the hope of increasing spiny daisy sexual reproduction and long-term reproductive fitness.
Collapse
|
5
|
Ji R, Yu X, Ren T, Chang Y, Li Z, Xia X, Yin W, Liu C. Genetic diversity and population structure of Caryopteris mongholica revealed by reduced representation sequencing. BMC PLANT BIOLOGY 2022; 22:297. [PMID: 35710341 PMCID: PMC9205053 DOI: 10.1186/s12870-022-03681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Caryopteris mongholica Bunge is a rare broad-leaved shrub distributed in the desert and arid regions of Mongol and North China. Due to land reclamation, natural habitat deterioration and anthropogenic activities in recent years, the wild resources have sharply reduced. To effectively protect and rationally use it, we investigated the genetic diversity and population structure from 18 populations across the range of C. mongholica in China by reduced representation sequencing technology. RESULTS We found the overall average values of observed heterozygosity (Ho), expected heterozygosity (He), and average nucleotide diversity (π) were 0.43, 0.35 and 0.135, respectively. Furthermore, the NM17 population exhibited higher genetic diversity than other populations. The phylogenetic tree, principal component analysis (PCA) and structure analysis showed the sampled individuals clustered into two main groups. The NM03 population, with individuals clustered in both groups, may be a transitional population located between the two groups. In addition, most genetic variation existed within populations (90.97%) compared to that among the populations (9.03%). Interestingly, geographic and environmental distances were almost equally important to the observed genetic differences. Redundancy analysis (RDA) identified optical radiation (OR), minimum temperature (MIT) and mean annual precipitation (MAP) related variables as the most important environment factors influencing genetic variation, and the importance of MIT was also confirmed in the latent factor mixed models (LFMM). CONCLUSIONS The results of this study facilitate research on the genetic diversity of C. mongholica. These genetic features provided vital information for conserving and sustainably developing the C. mongholica genetic resources.
Collapse
Affiliation(s)
- Ruoxuan Ji
- College of Biological Sciences and Biotechnology, National Engineering Research Center of Tree Breeding, Beijing Forestry University, Beijing, China
| | - Xiao Yu
- College of Biological Sciences and Biotechnology, National Engineering Research Center of Tree Breeding, Beijing Forestry University, Beijing, China
| | - Tianmeng Ren
- College of Biological Sciences and Biotechnology, National Engineering Research Center of Tree Breeding, Beijing Forestry University, Beijing, China
| | - Yuan Chang
- College of Biological Sciences and Biotechnology, National Engineering Research Center of Tree Breeding, Beijing Forestry University, Beijing, China
| | - Zheng Li
- College of Biological Sciences and Biotechnology, National Engineering Research Center of Tree Breeding, Beijing Forestry University, Beijing, China
| | - Xinli Xia
- College of Biological Sciences and Biotechnology, National Engineering Research Center of Tree Breeding, Beijing Forestry University, Beijing, China
| | - Weilun Yin
- College of Biological Sciences and Biotechnology, National Engineering Research Center of Tree Breeding, Beijing Forestry University, Beijing, China
| | - Chao Liu
- College of Biological Sciences and Biotechnology, National Engineering Research Center of Tree Breeding, Beijing Forestry University, Beijing, China.
| |
Collapse
|
6
|
López-Goldar X, Agrawal AA. Ecological Interactions, Environmental Gradients, and Gene Flow in Local Adaptation. TRENDS IN PLANT SCIENCE 2021; 26:796-809. [PMID: 33865704 DOI: 10.1016/j.tplants.2021.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Despite long-standing interest in local adaptation of plants to their biotic and abiotic environment, existing theory, and many case studies, little work to date has addressed within-species evolution of concerted strategies and how these might contrast with patterns across species. Here we consider the interactions between pollinators, herbivores, and resource availability in shaping plant local adaptation, how these interactions impact plant phenotypes and gene flow, and the conditions where multiple traits align along major environmental gradients such as latitude and elevation. Continued work in emerging model systems will benefit from the melding of classic experimental approaches with novel population genetic analyses to reveal patterns and processes in plant local adaptation.
Collapse
Affiliation(s)
- Xosé López-Goldar
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Liu L, Zuo S, Ma M, Li J, Guo L, Huang D. Appropriate nitrogen addition regulates reproductive strategies of Leymus chinensis. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
8
|
Zhao X, Li Z, Ding M, Wang T, Wang MT, Miao C, Du WX, Zhang XJ, Wang Y, Wang ZW, Zhou L, Li XY, Gui JF. Genotypic Males Play an Important Role in the Creation of Genetic Diversity in Gynogenetic Gibel Carp. Front Genet 2021; 12:691923. [PMID: 34122529 PMCID: PMC8194356 DOI: 10.3389/fgene.2021.691923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Unisexual lineages are commonly considered to be short-lived in the evolutionary process as accumulation of deleterious mutations stated by Muller’s ratchet. However, the gynogenetic hexaploid gibel carp (Carassius gibelio) with existence over 0.5 million years has wider ecological distribution and higher genetic diversity than its sexual progenitors, which provides an ideal model to investigate the underlying mechanisms on countering Muller’s ratchet in unisexual taxa. Unlike other unisexual lineages, the wild populations of gibel carp contain rare and variable proportions of males (1–26%), which are determined via two strategies including genotypic sex determination and temperature-dependent sex determination. Here, we used a maternal gibel carp from strain F to be mated with a genotypic male from strain A+, a temperature-dependent male from strain A+, and a male from another species common carp (Cyprinus carpio), respectively. When the maternal individual was mated with the genotypic male, a variant of gynogenesis was initiated, along with male occurrence, accumulation of microchromosomes, and creation of genetic diversity in the offspring. When the maternal individual was mated with the temperature-dependent male and common carp, typical gynogenesis was initiated that all the offspring showed the same genetic information as the maternal individual. Subsequently, we found out that the genotypic male nucleus swelled and contacted with the female nucleus after fertilization although it was extruded from the female nucleus eventually, which might be associated with the genetic variation in the offspring. These results reveal that genotypic males play an important role in the creation of genetic diversity in gynogenetic gibel carp, which provides insights into the evolution of unisexual reproduction.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Miao Ding
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ming-Tao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chun Miao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Xuan Du
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
AFLP markers show low levels of clonal propagation and high genotypic diversity in the rare, southernmost populations of Linnaea borealis L. (Caprifoliaceae) in the Western Alps. Genetica 2019; 147:79-90. [PMID: 30767171 DOI: 10.1007/s10709-019-00054-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 02/08/2019] [Indexed: 10/27/2022]
Abstract
In plants, clonal propagation is a common reproductive strategy in parallel to sexual reproduction. It has both advantages and drawbacks, and the potential complete loss of sexual reproduction causes serious conservation concerns, especially because population maintenance then only relies on adult survival and low genetic diversity leads to decreased adaptive potential. We investigated the rare, southernmost populations of the mostly circumboreal twinflower Linnaea borealis, located in the Western Alps. Based on 105 AFLP markers and 118 leaf samples, including replicates, we estimated the genetic similarity threshold above which samples belong to a single clone. Although the species is known for extensive clonal propagation, we observed high genotypic diversity within the seven studied populations and almost all samples were genetically distinct. Nevertheless, some clonal samples were detected in two populations, separated by up to 180 m. We found a strong genetic differentiation among populations (overall Fst = 0.38), which was congruent with the previously documented high plastid diversity in the region. We therefore hypothesize that Alpine populations are relicts of the Quaternary glacial periods, when the species probably survived at these lower latitudes before colonizing Northern Europe. Regarding conservation, our results suggest that most extant plants result from sexual reproduction and that populations are not highly threatened. Nevertheless, since clones can be very long-lived and almost no seedlings were observed in recent years, events of sexual reproduction may be ancient. The current reproductive dynamics should therefore be studied to estimate e.g. pollinators activity, proportions of flowering plants, and seed set.
Collapse
|