1
|
Wu F, Cai G, Xi P, Guo Y, Xu M, Li A. Genetic Diversity Analysis and Fingerprint Construction for 87 Passionfruit ( Passiflora spp.) Germplasm Accessions on the Basis of SSR Fluorescence Markers. Int J Mol Sci 2024; 25:10815. [PMID: 39409142 PMCID: PMC11476748 DOI: 10.3390/ijms251910815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
A comprehensive genetic diversity analysis of 87 Passiflora germplasm accessions domesticated and cultivated for several years in the karst region of Guizhou, China, was conducted utilizing simple sequence repeat (SSR) fluorescent markers. These Passiflora species, renowned for their culinary and medicinal value, could bring significant economic and ecological benefits to the region. This study aimed to assess the genetic resources of these species and facilitate the selection of superior cultivars adapted to the karst environment. Our analysis revealed an abundance of SSR loci within the Passiflora transcriptome, with single-base repeats being the most prevalent type. Through rigorous primer screening and amplification, we successfully identified 27 SSR primer pairs exhibiting robust polymorphisms. Further interrogation at eight microsatellite loci revealed 68 alleles, underscoring the high level of genetic diversity present in the cultivated accessions. The average expected heterozygosity was 0.202, with the ssr18 locus exhibiting the highest value of 0.768, indicating significant genetic variation. The mean polymorphic information content (PIC) of 0.657 indicates the informativeness of these SSR markers. Comparative analyses of the cultivated and potential wild progenitors revealed distinct genetic variations among the different Passiflora types. Genetic structure and clustering analyses of the 87 accessions revealed seven distinct groups, suggesting gene flow and similarities among the resources. Notably, a DNA fingerprinting system was established using eight SSR primer pairs, effectively distinguishing the selected cultivars that had adapted to the karst mountainous region. This study not only deepens our understanding of Passiflora genetic resources in the karst environment but also provides a valuable reference for conservation, genetic improvement, and cultivar selection. The rich genetic diversity of the Passiflora germplasm underscores their potential for sustainable utilization in breeding programs aimed at enhancing the economic and ecological viability of these valuable plant species.
Collapse
Affiliation(s)
- Fengchan Wu
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang 550009, China; (F.W.); (P.X.); (Y.G.)
| | - Guojun Cai
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China;
| | - Peiyu Xi
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang 550009, China; (F.W.); (P.X.); (Y.G.)
| | - Yulin Guo
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang 550009, China; (F.W.); (P.X.); (Y.G.)
| | - Meng Xu
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China;
| | - Anding Li
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang 550009, China; (F.W.); (P.X.); (Y.G.)
| |
Collapse
|
2
|
Tang J, Luo X, Zhu Y, Cai N, Chen L, Chen S, Xu Y. In vitro regeneration of triploid from mature endosperm culture of Passiflora edulis "Mantianxing". Biosci Biotechnol Biochem 2024; 88:412-419. [PMID: 38412471 DOI: 10.1093/bbb/zbae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/17/2024] [Indexed: 02/29/2024]
Abstract
The regeneration of shoots from endosperm tissue is a highly effective method to obtain triploid plants. In this study, we elucidated the establishment of an in vitro regeneration system from endosperm culture for the production of Passiflora edulis "Mantianxing." The highest callus induction rate (83.33%) was obtained on the media supplemented with 1.0 mg/L TDZ. Meanwhile, the MS medium containing 1.0 mg/L 6-BA and 0.4 mg/L IBA gave the optimum 75% shoot bud induction. Chromosome analysis revealed that the chromosomal count of P. edulis "Mantianxing" regenerated from endosperm tissues was 27 (2n = 3x = 27), which indicated that shoots regenerated from endosperm tissues were triploids. Triploid P. edulis had more drought resistance than diploid plants. Our study provided a method for breeding of passion fruit by means of a stable and reproducible regeneration system from endosperm culture, leading to the generation of triploid plants.
Collapse
Affiliation(s)
- Junrong Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- College of Forestry, Southwest Forestry University, Kunming, China
| | - Xi Luo
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- College of Forestry, Southwest Forestry University, Kunming, China
| | - Yajing Zhu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- College of Forestry, Southwest Forestry University, Kunming, China
| | - Nianhui Cai
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- College of Forestry, Southwest Forestry University, Kunming, China
| | - Lin Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- College of Forestry, Southwest Forestry University, Kunming, China
| | - Shi Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- College of Forestry, Southwest Forestry University, Kunming, China
| | - Yulan Xu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- College of Forestry, Southwest Forestry University, Kunming, China
| |
Collapse
|
3
|
Rizwan HM, Waheed A, Ma S, Li J, Arshad MB, Irshad M, Li B, Yang X, Ali A, Ahmed MAA, Shaheen N, Scholz SS, Oelmüller R, Lin Z, Chen F. Comprehensive Genome-Wide Identification and Expression Profiling of Eceriferum ( CER) Gene Family in Passion Fruit ( Passiflora edulis) Under Fusarium kyushuense and Drought Stress Conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:898307. [PMID: 35832215 PMCID: PMC9272567 DOI: 10.3389/fpls.2022.898307] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Plant surfaces are covered with cuticle wax and are the first barrier between a plant and environmental stresses. Eceriferum (CER) is an important gene family involved in wax biosynthesis and stress resistance. In this study, for the first time, 34 CER genes were identified in the passion fruit (Passiflora edulis) genome, and PeCER proteins varied in physicochemical properties. A phylogenetic tree was constructed and divided into seven clades to identify the evolutionary relationship with other plant species. Gene structure analyses revealed that conserved motifs ranged from 1 to 24, and that exons ranged from 1 to 29. The cis-element analysis provides insight into possible roles of PeCER genes in plant growth, development and stress responses. The syntenic analysis revealed that segmental (six gene pairs) and tandem (six gene pairs) gene duplication played an important role in the expansion of PeCER genes and underwent a strong purifying selection. In addition, 12 putative ped-miRNAs were identified to be targeting 16 PeCER genes, and PeCER6 was the most targeted by four miRNAs including ped-miR157a-5p, ped-miR164b-5p, ped-miR319b, and ped-miR319l. Potential transcription factors (TFs) such as ERF, AP2, MYB, and bZIP were predicted and visualized in a TF regulatory network interacting with PeCER genes. GO and KEGG annotation analysis revealed that PeCER genes were highly related to fatty acid, cutin, and wax biosynthesis, plant-pathogen interactions, and stress response pathways. The hypothesis that most PeCER proteins were predicted to localize to the plasma membrane was validated by transient expression assays of PeCER32 protein in onion epidermal cells. qRT-PCR expression results showed that most of the PeCER genes including PeCER1, PeCER11, PeCER15, PeCER17, and PeCER32 were upregulated under drought and Fusarium kyushuense stress conditions compared to controls. These findings provide a foundation for further studies on functions of PeCER genes to further facilitate the genetic modification of passion fruit wax biosynthesis and stress resistance.
Collapse
Affiliation(s)
| | - Abdul Waheed
- Key Laboratory for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Songfeng Ma
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiankun Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Muhammad Bilal Arshad
- Department of Plant Breeding and Genetics, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Irshad
- College of Horticulture, The University of Agriculture, Peshawar, Pakistan
| | - Binqi Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuelian Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ahmad Ali
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed A. A. Ahmed
- Plant Production Department (Horticulture-Medicinal and Aromatic Plants), Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Nusrat Shaheen
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Sandra S. Scholz
- Matthias Schleiden Institute, Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Ralf Oelmüller
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Matthias Schleiden Institute, Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Zhimin Lin
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
Stable reference gene selection for quantitative real-time PCR normalization in passion fruit (Passiflora edulis Sims.). Mol Biol Rep 2022; 49:5985-5995. [PMID: 35357624 DOI: 10.1007/s11033-022-07382-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Passiflora edulis is a tropical fruit with high nutrient and medicinal values that is widely planted in southern China. However, the molecular biology of P. edulis has not been well studied. There are few reports regarding the choice of reference genes for gene expression studies of passion fruit. METHODS AND RESULTS By using three algorithms, implemented in geNorm, NormFinder and BestKeeper, we have selected ten candidate reference genes to explore their transcriptional expression stability in various tissues and under cold stress conditions. EF1 and HIS were stably expressed in five tissues. Ts and OTU were stably in vegetative organs. 50 S and Liom were stably in reproductive organs. The transcriptional abundance of EF1 and UBQ was stable in cold-treated and recovery treated leaf samples of P. edulis. In all samples, EF1 and Ts exhibited the highest expression stability. Evaluation of selected genes using simple statistical methods (ANOVA and post hoc analysis). Overall, EF1 emerged as the optimum reference gene for qRT-PCR normalize in P. edulis. In addition, the qRT-PCR analysis revealed that expression of ICE1 increases with the duration of cold treatment. CONCLUSIONS In this study, we successfully screened stable reference genes from 10 candidates in P. edulis and verified the results by analyzing the expression level of ICE1. The results provide reliable and effective reference genes for future research on gene expression analysis in P. edulis, and lay a foundation for follow-up research on functional genes in P. edulis.
Collapse
|
5
|
Identification and evaluation of reference genes for quantitative real-time PCR analysis in Passiflora edulis under stem rot condition. Mol Biol Rep 2020; 47:2951-2962. [PMID: 32215779 DOI: 10.1007/s11033-020-05385-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/19/2020] [Indexed: 02/08/2023]
Abstract
Passion fruit (Passiflora edulis), an important tropical and subtropical fruit, has a high edible and medicinal value. Stem rot disease is one of the most important diseases of passion fruit. An effective way for control and prevention of this disease is to identify the genes associated with resistance to this disease. Quantitative real-time PCR (RT-qPCR) has mainly been widely applied to detect gene expression because of its simplicity, fastness, low cost and high sensitivity. One of the requirements for RT-qPCR is the availability of suitable reference genes for normalization of gene expression. However, currently, no Passiflora edulis reference genes have been identified andthus it has hindered the gene expression studies in this plant. The present study aimed to address this issue. We analyzed sixteen candidate reference genes, including nine common (GAPDH, UBQ, ACT1, ACT2, EF-1α-1, EF-1α-2, TUA, NADP, and GBP) and seven novel genes (C13615, C24590, C27182, C10445, C21209, C22199, and C22526), in different tissues (stem, leaf, flower and fruit) of two accessions under stem rot condition. We calculated the expression stability in twenty-four samples using the ΔCt, GeNorm, NormFinder, BestKeeper and RefFinder. The results showed that both C21209 and EF-1α-2 were sufficient to normalize gene expression under stem rot, whereas the commonly used reference genes, GAPDH and UBQ, were the least stable ones. The expression patterns of PeUFC under stem rot condition normalized by stable and unstable reference genes indicated the suitability of using the optimal reference genes. To our knowledge, this is the first systematic study of reference genes in Passiflora edulis, which identified a number of reliable reference genes suitable for gene expression studies in Passiflora edulis by RT-qPCR.
Collapse
|