1
|
Qiao ZW, Wang DR, Wang X, You CX, Wang XF. Genome-wide identification and stress response analysis of cyclophilin gene family in apple (Malus × domestica). BMC Genomics 2022; 23:806. [PMID: 36474166 PMCID: PMC9727951 DOI: 10.1186/s12864-022-08976-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cyclophilin (CYP) belongs to the immunophilin family and has peptidyl-prolyl cis-trans isomerase (PPIase) activity, which catalyzes the cis-trans isomerization process of proline residues. CYPs widely exist in eukaryotes and prokaryotes, and contain a conserved cyclophilin-like domain (CLD). Plant cyclophilins are widely involved in a range of biological processes including stress response, metabolic regulation, and growth and development. RESULT In this study, 30 cyclophilin genes on 15 chromosomes were identified from the 'Golden Delicious' apple (M. domestica) genome. Phylogenetic analysis showed that the cyclophilin family genes can be divided into three clades in Malus. Collinear analysis showed that ten gene pairs were the result of segmental duplication. Analysis of gene and protein structure further supported the phylogenetic tree and collinearity analysis. The expression of MdCYPs in different organs was higher in leaves, flowers, and fruits. Ten and eight CYPs responded to drought and salt stress, respectively. MdCYP16, a nuclear-localized MD CYP, was screened from the intersection of the two expression profiling datasets and was highly sensitive to drought and salt stress. GUS staining of transgenic Arabidopsis indicated that MdCYP16 may be involved in the regulation of abiotic stress. CONCLUSION This study systematically analyzed members of the apple cyclophilin family and confirmed the involvement of MdCYP16 as a nuclear-localized MD cyclophilin that acts in response to salt and drought stress in apple. Our work identifies members of the apple cyclophilin gene family, and provides an important theoretical basis for in-depth study of cyclophilin function. Additionally, the analysis provides candidate genes that may be involved in stress response in apple.
Collapse
Affiliation(s)
- Zhi-Wen Qiao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Da-Ru Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xun Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
2
|
Insights into the Cytochrome P450 Monooxygenase Superfamily in Osmanthus fragrans and the Role of OfCYP142 in Linalool Synthesis. Int J Mol Sci 2022; 23:ijms232012150. [PMID: 36293004 PMCID: PMC9602793 DOI: 10.3390/ijms232012150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Osmanthus fragrans flowers have long been used as raw materials in food, tea, beverage, and perfume industries due to their attractive and strong fragrance. The P450 superfamily proteins have been reported to widely participate in the synthesis of plant floral volatile organic compounds (VOCs). To investigate the potential functions of P450 superfamily proteins in the fragrance synthesis of O. fragrans, we investigated the P450 superfamily genome wide. A total of 276 P450 genes were identified belonging to 40 families. The RNA-seq data suggested that many OfCYP genes were preferentially expressed in the flower or other organs, and some were also induced by multiple abiotic stresses. The expression patterns of seven flower-preferentially expressed OfCYPs during the five different flower aroma content stages were further explored using quantitative real-time PCR, showing that the CYP94C subfamily member OfCYP142 had the highest positive correlation with linalool synthesis gene OfTPS2. The transient expression of OfCYP142 in O. fragrans petals suggested that OfCYP142 can increase the content of linalool, an important VOC of the O. fragrans floral aroma, and a similar result was also obtained in flowers of OfCYP142 transgenic tobacco. Combined with RNA-seq data of the transiently transformed O. fragrans petals, we found that the biosynthesis pathway of secondary metabolites was significantly enriched, and many 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway genes were also upregulated. This evidence indicated that the OfCYP proteins may play critical roles in the flower development and abiotic response of O. fragrans, and that OfCYP142 can participate in linalool synthesis. This study provides valuable information about the functions of P450 genes and a valuable guide for studying further functions of OfCYPs in promoting fragrance biosynthesis of ornamental plants.
Collapse
|
3
|
Yang L, Zhao C, Bai Z, Yang L, Schranz ME, Liu S, Bouwmeester K. Comparative transcriptome analysis of compatible and incompatible Brassica napus- Xanthomonas campestris interactions. FRONTIERS IN PLANT SCIENCE 2022; 13:960874. [PMID: 36105711 PMCID: PMC9465390 DOI: 10.3389/fpls.2022.960874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Black rot caused by the vascular pathogenic bacterium Xanthomonas campestris pv. campestris (Xcc) is widespread in Brassicaceae plants and an infectious disease that causes large yield losses in oil seed rape (Brassica napus L.). Improvement of resistance through breeding is a crucial strategy to prevent black rot disease in B. napus, but presently hampered by insufficient understanding of Xcc-Brassica interactions. This study compares two EMS-mutagenized B. napus lines that show contrasting resistance levels to their susceptible progenitor. Patterns of differential gene expression between these B. napus lines were evaluated at three time points post inoculation by comparative RNA-seq analysis. In line with the observed disease phenotypes, the susceptible line ZS9mXccS-1 displayed a steady amount of differentially expressed genes (DEGs) at different time points of infection, whereas the resistant line ZS9mXccR-1 displayed a gradual increase in DEGs throughout the course of infection. Weighted gene co-expression network analysis (WGCNA) pinpointed multiple defense-related hub genes with potential central roles in immunity, including the cell surface receptor genes CRK11 and BIR1, and the associated downstream regulatory genes WRKY11 and PBL30. KEGG analysis of DEGs belonging to two distinct co-expression modules revealed enriched pathways associated with defense, including Ca2+-signaling, receptor-mediated immunity, and phytohormone balance. Taken together, our comparative transcriptome analysis provides new avenues to unravel the mechanisms underlying black rot resistance in B. napus.
Collapse
Affiliation(s)
- Li Yang
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chuanji Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zetao Bai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lingli Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - M. Eric Schranz
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Klaas Bouwmeester
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
4
|
GhENODL6 Isoforms from the Phytocyanin Gene Family Regulated Verticillium Wilt Resistance in Cotton. Int J Mol Sci 2022; 23:ijms23062913. [PMID: 35328334 PMCID: PMC8955391 DOI: 10.3390/ijms23062913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 12/28/2022] Open
Abstract
Verticillium wilt (VW), a fungal disease caused by Verticillium dahliae, currently devastates cotton fiber yield and quality seriously, yet few resistance germplasm resources have been discovered in Gossypium hirsutum. The cotton variety Nongda601 with suitable VW resistance and high yield was developed in our lab, which supplied elite resources for discovering resistant genes. Early nodulin-like protein (ENODL) is mainly related to nodule formation, and its role in regulating defense response has been seldom studied. Here, 41 conserved ENODLs in G. hirsutum were identified and characterized, which could divide into four subgroups. We found that GhENODL6 was upregulated under V. dahliae stress and hormonal signal and displayed higher transcript levels in resistant cottons than the susceptible. The GhENODL6 was proved to positively regulate VW resistance via overexpression and gene silencing experiments. Overexpression of GhENODL6 significantly enhanced the expressions of salicylic acid (SA) hormone-related transcription factors and pathogenicity-related (PR) protein genes, as well as hydrogen peroxide (H2O2) and SA contents, resulting in improved VW resistance in transgenic Arabidopsis. Correspondingly, in the GhENODL6 silenced cotton, the expression levels of both phenylalanine ammonia lyase (PAL) and 4-coumarate-CoA ligase (4CL) genes significantly decreased, leading to the reduced SA content mediating by the phenylalanine ammonia lyase pathway. Taken together, GhENODL6 played a crucial role in VW resistance by inducing SA signaling pathway and regulating the production of reactive oxygen species (ROS). These findings broaden our understanding of the biological roles of GhENODL and the molecular mechanisms underlying cotton disease resistance.
Collapse
|
5
|
Sun F, Chen Q, Chen Q, Jiang M, Zeng Q, Qu Y. Genome-wide identification and expression analysis of the 2OG-Fe(II) oxygenase gene family in upland cotton ( Gossypium hirsutum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1969-1977. [PMID: 34629772 PMCID: PMC8484399 DOI: 10.1007/s12298-021-01065-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED The 2OG-Fe(II) oxygenase (RF) family of enzyme proteins can affect bulliform cells and cause leaf curling. However, there are few studies related to this family in cotton, and there has been no systematic analysis of RF genes. Here, we determined 25 RF genes in the complete genome sequence of upland cotton (Gossypium hirsutum L.) and 11 RF genes in the complete genome sequence of Arabidopsis thaliana. Cotton RF proteins can be divided into three categories. Whole genome/fragment and scattered replication events played an important role in the expansion of the RF gene family. qRT-PCR analysis results showed that RF genes respond to drought stress Pairwise comparison results showed that the expression of RF genes in Shi yuan 321 was higher than that in Kui 85-174. Overall, genome-wide identification approach was used to further analyze the related functions of the RF gene family, which may include the response to drought stress, in cotton. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01065-4.
Collapse
Affiliation(s)
- Fenglei Sun
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052 China
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052 China
| | - Qin Chen
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052 China
| | - Menghui Jiang
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052 China
| | - Qingtao Zeng
- Agricultural Science Institute, Seventh Agricultural Division of Xinjiang Production and Construction Corps, Kuitun, 833200 China
| | - Yanying Qu
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052 China
| |
Collapse
|
6
|
Mo S, Zhang Y, Wang X, Yang J, Sun Z, Zhang D, Chen B, Wang G, Ke H, Liu Z, Meng C, Li Z, Wu L, Zhang G, Duan H, Ma Z. Cotton GhSSI2 isoforms from the stearoyl acyl carrier protein fatty acid desaturase family regulate Verticillium wilt resistance. MOLECULAR PLANT PATHOLOGY 2021; 22:1041-1056. [PMID: 34169624 PMCID: PMC8358998 DOI: 10.1111/mpp.13093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 05/04/2023]
Abstract
Lipids are major and essential constituents of plant cells and provide energy for various metabolic processes. However, the function of the lipid signal in defence against Verticillium dahliae, a hemibiotrophic pathogen, remains unknown. Here, we characterized 19 conserved stearoyl-ACP desaturase family proteins from upland cotton (Gossypium hirsutum). We further confirmed that GhSSI2 isoforms, including GhSSI2-A, GhSSI2-B, and GhSSI2-C located on chromosomes A10, D10, and A12, respectively, played a dominant role to the cotton 18:1 (oleic acid) pool. Suppressing the expression of GhSSI2s reduced the 18:1 level, which autoactivated the hypersensitive response (HR) and enhanced cotton Verticillium wilt and Fusarium wilt resistance. We found that low 18:1 levels induced phenylalanine ammonia-lyase-mediated salicylic acid (SA) accumulation and activated a SA-independent defence response in GhSSI2s-silenced cotton, whereas suppressing expression of GhSSI2s affected PDF1.2-dependent jasmonic acid (JA) perception but not the biosynthesis and signalling cascade of JA. Further investigation showed that structurally divergent resistance-related genes and nitric oxide (NO) signal were activated in GhSSI2s-silenced cotton. Taken together, these results indicate that SA-independent defence response, multiple resistance-related proteins, and elevated NO level play an important role in GhSSI2s-regulated Verticillium wilt resistance. These findings broaden our knowledge regarding the lipid signal in disease resistance and provide novel insights into the molecular mechanism of cotton fungal disease resistance.
Collapse
Affiliation(s)
- Shaojing Mo
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Jun Yang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Dongmei Zhang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Bin Chen
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Zhengwen Liu
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Chengsheng Meng
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Zhikun Li
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Guiyin Zhang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| |
Collapse
|
7
|
The Chalcone Isomerase Family in Cotton: Whole-Genome Bioinformatic and Expression Analyses of the Gossypium barbadense L. Response to Fusarium Wilt Infection. Genes (Basel) 2019; 10:genes10121006. [PMID: 31817162 PMCID: PMC6947653 DOI: 10.3390/genes10121006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/01/2019] [Accepted: 12/03/2019] [Indexed: 01/23/2023] Open
Abstract
Chalcone isomerase (CHI) is a key component of phenylalanine metabolism that can produce a variety of flavonoids. However, little information and no systematic analysis of CHI genes is available for cotton. Here, we identified 33 CHI genes in the complete genome sequences of four cotton species (Gossypium arboretum L., Gossypium raimondii L., Gossypium hirsutum L., and Gossypium barbadense L.). Cotton CHI proteins were classified into two main groups, and whole-genome/segmental and dispersed duplication events were important in CHI gene family expansion. qRT-PCR and semiquantitative RT-PCR results suggest that CHI genes exhibit temporal and spatial variation and respond to infection with Fusarium wilt race 7. A preliminary model of CHI gene involvement in cotton evolution was established. Pairwise comparison revealed that seven CHI genes showed higher expression in cultivar 06-146 than in cultivar Xinhai 14. Overall, this whole-genome identification unlocks a new approach to the comprehensive functional analysis of the CHI gene family, which may be involved in adaptation to plant pathogen stress.
Collapse
|
8
|
Li J, Pei J, Liu Y, Xia W, Cheng F, Tian W, Lin Z, Zhu J, Wang A. Transcriptome sequencing of Verticillium dahliae from a cotton farm reveals positive correlation between virulence and tolerance of sugar-induced hyperosmosis. PeerJ 2019; 7:e8035. [PMID: 31737452 PMCID: PMC6855202 DOI: 10.7717/peerj.8035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/15/2019] [Indexed: 11/20/2022] Open
Abstract
Verticillium dahliae causes disease symptoms in its host plants; however, due to its rapid variability, V. dahliae is difficult to control. To analyze the reason for this pathogenic differentiation, 22 V. dahliae strains with different virulence were isolated from a cotton farm. The genetic diversity of cotton varieties make cotton cultivars have different Verticillium wilt resistance, so the Xinluzao 7 (susceptible to V. dahliae), Zhongmian 35 (tolerant), and Xinluzao 33 (resistant) were used to investigate the pathogenicity of the strains in a green house. Vegetative compatibility groups (VCGs) assays, Internal Transcribed Spacer (ITS) PCR, and pathogenicity analysis showed that SHZ-4, SHZ-5, and SHZ-9 had close kinship and significantly different pathogenicity. Transcriptome sequencing of the three strains identified 19 of 146 unigenes in SHZ-4_vs_ SHZ-5, SHZ-5_vs_ SHZ-9, and SHZ-4_vs_ SHZ-9. In these unigenes, three proteinase and four polysaccharide degrading hydrolases were found to be associated with the pathogenicity. However, due to a number of differentially expressed genes in the transport, these unigenes not only played a role in nutrition absorption but might also contribute to the resistance of sugar-induced hyperosmosis. Moreover, the tolerance ability was positively related to the pathogenicity of V. dahliae. This resistance to sugar-induced hyperosmosis might help V. dahliae to access the nutrition of the host. The pathogenicity of V. dahliae correlated with the resistance of sugar-induced-hyperosmosis, which provides clues for the cultivation of V. dahliae resistant varieties.
Collapse
Affiliation(s)
- Jin Li
- College of Life Science, Shihezi University, Shihezi, China
| | - Juan Pei
- College of Life Science, Shihezi University, Shihezi, China
| | - Yuanyuan Liu
- College of Life Science, Shihezi University, Shihezi, China
| | - Wenwen Xia
- College of Life Science, Shihezi University, Shihezi, China
| | - Fengfeng Cheng
- College of Life Science, Shihezi University, Shihezi, China
| | - Wenhui Tian
- College of Life Science, Shihezi University, Shihezi, China
| | - Zhongping Lin
- College of Life Sciences, Peking University, Beijing, China
| | - Jianbo Zhu
- College of Life Science, Shihezi University, Shihezi, China
| | - Aiying Wang
- College of Life Science, Shihezi University, Shihezi, China
| |
Collapse
|