1
|
Sun X, Qin A, Wang X, Ge X, Liu Z, Guo C, Yu X, Zhang X, Lu Y, Yang J, He J, Zhou Y, Liu Y, Hu M, Liu H, Zhao Z, Hu G, Li W, Zang X, Dai S, Sun S, Yong-Villalobos L, Herrera-Estrella L, Tran LSP, Ma X. Spatiotemporal transcriptome and metabolome landscapes of cotton fiber during initiation and early development. Nat Commun 2025; 16:858. [PMID: 39833150 PMCID: PMC11746981 DOI: 10.1038/s41467-025-55869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
Cotton fibers are single cells that develop from the epidermal cells in the outer integument of developing seeds. The processes regulating fiber cell development have been extensively studied; however, the spatiotemporal transcriptome and metabolome profiles during the early stages of fiber development remain largely unknown. In this study, we profile the dynamics of transcriptome and metabolome during the early stages of cotton fiber cell development using a combination of spatial transcriptomic, single-cell transcriptomic, and spatial metabolomic analyses. We identify the key genes (e.g., DOX2, KCS19.4, BEE3, and HOS3.7) and metabolites (e.g., linoleic acid, spermine, spermidine, and α-linolenic acid) that may regulate the early development of fiber cells. Finally, knockdown and gain-of-function analyses identify the crucial role of GhBEE3/Gh_A09G062900 in cotton fiber initiation. We also construct a publicly accessible website ( https://cotton.cricaas.com.cn/ovule/ ) for visualization of the spatiotemporal gene expression in cotton, providing a reference dataset for further studies on cotton fiber development.
Collapse
Affiliation(s)
- Xuwu Sun
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Aizhi Qin
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xingxing Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhixin Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Chenxi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiaole Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xianliang Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yao Lu
- Shanghai OE Biotech Co., Ltd, Shanghai, China
| | - Jincheng Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaping Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yumeng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Mengke Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Hao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zihao Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Guanjing Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Wei Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinshan Zang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuai Dai
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Susu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lenin Yong-Villalobos
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA
| | - Luis Herrera-Estrella
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Liu K, Hou Q, Yu R, Deng H, Shen L, Wang Q, Wen X. Genome-wide analysis of C2H2 zinc finger family and their response to abiotic stresses in apple. Gene 2024; 904:148164. [PMID: 38224923 DOI: 10.1016/j.gene.2024.148164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/26/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024]
Abstract
C2H2-type zinc finger proteins are one of the most widely studied families in plants and play important roles in abiotic stress responses. In the present study, the physicochemical properties, chromosomal locations, evolutionary relationships, and gene structures of 54 C2H2 zinc finger protein (ZFP) family members were analyzed in apple. The MdC2H2-ZFP genes were phylogenetically clustered into seven subfamilies distributed in different densities on 16 chromosomes. The RNA-seq data from various tissues revealed that MdC2H2-ZFPs differentially expressed among root, stem, leaf, flower, and fruits. Quantitative analysis of its expression characteristics showed that the MdC2H2-ZFP genes were rapidly induced as exposure to abiotic stresses such as drought, salt and low temperature etc. Under drought stress, the expression of eight members was significantly up-regulated, and the highest was obtained from MdC2H2-17; as exposure to salt stress, nine MdC2H2-ZFPs was obviously up-regulated, with the highest expression of MdC2H2-13; and under low temperature stress, the expression of seven members was highly up-regulated, and MdC2H2-13 also demonstrated the highest expression which is same as the case under salt stress. Therefore, some members of MdC2H2-ZFP gene family considerably involve in the multiple abiotic stress responses, which may better understand the function of this family and facilitate the breeding of apple for stress tolerance.
Collapse
Affiliation(s)
- Ke Liu
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China; Guizhou Key Laboratory of Agro-Bioengineering, Institute of Agro-bioengineering/College of Life Sciences, Guiyang 550025, Guizhou Province, China; National-Local Joint Engineering Research Center of Karst Region Plant Resources Utilization & Breeding (Guizhou), Guiyang 550025, Guizhou Province, China
| | - Qiandong Hou
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China; Guizhou Key Laboratory of Agro-Bioengineering, Institute of Agro-bioengineering/College of Life Sciences, Guiyang 550025, Guizhou Province, China; National-Local Joint Engineering Research Center of Karst Region Plant Resources Utilization & Breeding (Guizhou), Guiyang 550025, Guizhou Province, China
| | - Runrun Yu
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China; Guizhou Key Laboratory of Agro-Bioengineering, Institute of Agro-bioengineering/College of Life Sciences, Guiyang 550025, Guizhou Province, China; National-Local Joint Engineering Research Center of Karst Region Plant Resources Utilization & Breeding (Guizhou), Guiyang 550025, Guizhou Province, China
| | - Hong Deng
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China; Guizhou Key Laboratory of Agro-Bioengineering, Institute of Agro-bioengineering/College of Life Sciences, Guiyang 550025, Guizhou Province, China; National-Local Joint Engineering Research Center of Karst Region Plant Resources Utilization & Breeding (Guizhou), Guiyang 550025, Guizhou Province, China
| | - Luonan Shen
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China; Institute for Forest Resources & Environment of Guizhou/ College of Forestry, Guizhou University, Guiyang 550025, China
| | - Qian Wang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China; Guizhou Key Laboratory of Agro-Bioengineering, Institute of Agro-bioengineering/College of Life Sciences, Guiyang 550025, Guizhou Province, China; National-Local Joint Engineering Research Center of Karst Region Plant Resources Utilization & Breeding (Guizhou), Guiyang 550025, Guizhou Province, China.
| | - Xiaopeng Wen
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China; Guizhou Key Laboratory of Agro-Bioengineering, Institute of Agro-bioengineering/College of Life Sciences, Guiyang 550025, Guizhou Province, China; National-Local Joint Engineering Research Center of Karst Region Plant Resources Utilization & Breeding (Guizhou), Guiyang 550025, Guizhou Province, China.
| |
Collapse
|
3
|
Yang Y, Zhou T, Xu J, Wang Y, Pu Y, Qu Y, Sun G. Genome-Wide Identification and Expression Analysis Unveil the Involvement of the Cold Shock Protein (CSP) Gene Family in Cotton Hypothermia Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:643. [PMID: 38475489 DOI: 10.3390/plants13050643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/10/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
Cold shock proteins (CSPs) are DNA/RNA binding proteins with crucial regulatory roles in plant growth, development, and stress responses. In this study, we employed bioinformatics tools to identify and analyze the physicochemical properties, conserved domains, gene structure, phylogenetic relationships, cis-acting elements, subcellular localization, and expression patterns of the cotton CSP gene family. A total of 62 CSP proteins were identified across four cotton varieties (Gossypium arboreum, Gossypium raimondii, Gossypium barbadense, Gossypium hirsutum) and five plant varieties (Arabidopsis thaliana, Brassica chinensis, Camellia sinensis, Triticum aestivum, and Oryza sativa). Phylogenetic analysis categorized cotton CSP proteins into three evolutionary branches, revealing similar gene structures and motif distributions within each branch. Analysis of gene structural domains highlighted the conserved CSD and CCHC domains across all cotton CSP families. Subcellular localization predictions indicated predominant nuclear localization for CSPs. Examination of cis-elements in gene promoters revealed a variety of elements responsive to growth, development, light response, hormones, and abiotic stresses, suggesting the potential regulation of the cotton CSP family by different hormones and their involvement in diverse stress responses. RT-qPCR results suggested that GhCSP.A1, GhCSP.A2, GhCSP.A3, and GhCSP.A7 may play roles in cotton's response to low-temperature stress. In conclusion, our findings underscore the significant role of the CSP gene family in cotton's response to low-temperature stress, providing a foundational basis for further investigations into the functional aspects and molecular mechanisms of cotton's response to low temperatures.
Collapse
Affiliation(s)
- Yejun Yang
- College of Agronomy, Shanxi Agricultural University, Jinzhong 030800, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ting Zhou
- College of Agronomy, Shanxi Agricultural University, Jinzhong 030800, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianglin Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yongqiang Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yuanchun Pu
- Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yunfang Qu
- College of Agronomy, Shanxi Agricultural University, Jinzhong 030800, China
| | - Guoqing Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Liu Y, Ma X, Li Y, Yang X, Cheng W. Zinc Finger Protein8 ( GhZFP8) Regulates the Initiation of Trichomes in Arabidopsis and the Development of Fiber in Cotton. PLANTS (BASEL, SWITZERLAND) 2024; 13:492. [PMID: 38498441 PMCID: PMC10892670 DOI: 10.3390/plants13040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
Cotton is one of the most important natural fibers used in the textile industry worldwide. It is important to identify the key factors involved in cotton fiber development. In this study, zinc finger protein8 (GhZFP8) encoding a C2H2 transcription factor (TF) was cloned from cotton. qPCR showed that the transcripts of GhZFP8 in cotton were detected in the leaves and fibers at 3, 6, and 30 days post-anthesis (DPA), but not in the roots, stems, or flowers. The overexpression of GhZFP8 increased the trichome number on the siliques, leaves, and inflorescence, but inhibited the growth. The expression of trichome development and cell-elongation-related genes decreased obviously in GhZFP8 overexpressor Arabidopsis. Indole-3-acetic acid (IAA) and 1-Aminocyclopropanecarboxylic acid (ACC) contents were much higher in GhZFP8 overexpressors than that found in the wild type, but the gibberellin (GA) content was lower. The interference of GhZFP8 in cotton caused smaller bolls and shorter fibers than that of the control. The results of DNA affinity purification (DAP)-seq showed that GhZFP8 could bind to the promoter, exon, intron, and intergenic region of the target genes, which are involved in photosynthesis, signal transduction, synthesis of biomass, etc. Our findings implied that GhZFP8 processed multiple biological functions and regulated the development of cotton fiber.
Collapse
Affiliation(s)
- Yongchang Liu
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China; (Y.L.); (X.Y.)
| | - Xiaomei Ma
- Cotton Research Institute, Xinjiang Science Academy of Agriculture and Reclaimation, Shihezi 832000, China;
| | - Ying Li
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China; (Y.L.); (X.Y.)
| | - Xiaoyu Yang
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China; (Y.L.); (X.Y.)
| | - Wenhan Cheng
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China; (Y.L.); (X.Y.)
| |
Collapse
|
5
|
Li P, Yu A, Sun R, Liu A. Function and Evolution of C1-2i Subclass of C2H2-Type Zinc Finger Transcription Factors in POPLAR. Genes (Basel) 2022; 13:genes13101843. [PMID: 36292728 PMCID: PMC9602059 DOI: 10.3390/genes13101843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
C2H2 zinc finger (C2H2-ZF) transcription factors participate in various aspects of normal plant growth regulation and stress responses. C1-2i C2H2-ZFs are a special subclass of conserved proteins that contain two ZnF-C2H2 domains. Some C1-2i C2H2-ZFs in Arabidopsis (ZAT) are involved in stress resistance and other functions. However, there is limited information on C1-2i C2H2-ZFs in Populus trichocarpa (PtriZATs). To analyze the function and evolution of C1-2i C2H2-ZFs, eleven PtriZATs were identified in P. trichocarpa, which can be classified into two subgroups. The protein structure, conserved ZnF-C2H2 domains and QALGGH motifs, showed high conservation during the evolution of PtriZATs in P. trichocarpa. The spacing between two ZnF-C2H2 domains, chromosomal locations and cis-elements implied the original proteins and function of PtriZATs. Furthermore, the gene expression of different tissues and stress treatment showed the functional differentiation of PtriZATs subgroups and their stress response function. The analysis of C1-2i C2H2-ZFs in different Populus species and plants implied their evolution and differentiation, especially in terms of stress resistance. Cis-elements and expression pattern analysis of interaction proteins implied the function of PtriZATs through binding with stress-related genes, which are involved in gene regulation by via epigenetic modification through histone regulation, DNA methylation, ubiquitination, etc. Our results for the origin and evolution of PtriZATs will contribute to understanding the functional differentiation of C1-2i C2H2-ZFs in P. trichocarpa. The interaction and expression results will lay a foundation for the further functional investigation of their roles and biological processes in Populus.
Collapse
|
6
|
Genome-Wide Identification and Expression Analysis of the Zinc Finger Protein Gene Subfamilies under Drought Stress in Triticum aestivum. PLANTS 2022; 11:plants11192511. [PMID: 36235376 PMCID: PMC9572532 DOI: 10.3390/plants11192511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 12/05/2022]
Abstract
The zinc finger protein (ZFP) family is one of plants’ most diverse family of transcription factors. These proteins with finger-like structural domains have been shown to play a critical role in plant responses to abiotic stresses such as drought. This study aimed to systematically characterize Triticum aestivum ZFPs (TaZFPs) and understand their roles under drought stress. A total of 9 TaC2H2, 38 TaC3HC4, 79 TaCCCH, and 143 TaPHD were identified, which were divided into 4, 7, 12, and 14 distinct subgroups based on their phylogenetic relationships, respectively. Segmental duplication dominated the evolution of four subfamilies and made important contributions to the large-scale amplification of gene families. Syntenic relationships, gene duplications, and Ka/Ks result consistently indicate a potential strong purifying selection on TaZFPs. Additionally, TaZFPs have various abiotic stress-associated cis-acting regulatory elements and have tissue-specific expression patterns showing different responses to drought and heat stress. Therefore, these genes may play multiple functions in plant growth and stress resistance responses. This is the first comprehensive genome-wide analysis of ZFP gene families in T. aestivum to elucidate the basis of their function and resistance mechanisms, providing a reference for precise manipulation of genetic engineering for drought resistance in T. aestivum.
Collapse
|
7
|
Dou L, Li Z, Wang H, Li H, Xiao G, Zhang X. The hexokinase Gene Family in Cotton: Genome-Wide Characterization and Bioinformatics Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:882587. [PMID: 35651774 PMCID: PMC9149573 DOI: 10.3389/fpls.2022.882587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/21/2022] [Indexed: 05/02/2023]
Abstract
Hexokinase (HXK) is involved in hexose phosphorylation, sugar sensing, and signal transduction, all of which regulate plant growth and adaptation to stresses. Gossypium hirsutum L. is one of the most important fiber crops in the world, however, little is known about the HXKs gene family in G. hirsutum L. We identified 17 GhHXKs from the allotetraploid G. hirsutum L. genome (AADD). G. raimondii (DD) and G. arboreum (AA) are the diploid progenitors of G. hirsutum L. and contributed equally to the At_genome and Dt_genome GhHXKs genes. The chromosomal locations and exon-intron structures of GhHXK genes among cotton species are conservative. Phylogenetic analysis grouped the HXK proteins into four and three groups based on whether they were monocotyledons and dicotyledons, respectively. Duplication event analysis demonstrated that HXKs in G. hirsutum L. primarily originated from segmental duplication, which prior to diploid hybridization. Experiments of qRT-PCR, transcriptome and promoter cis-elements demonstrated that GhHXKs' promoters have auxin and GA responsive elements that are highly expressed in the fiber initiation and elongation stages, while the promoters contain ABA-, MeJA-, and SA-responsive elements that are highly expressed during the synthesis of the secondary cell wall. We performed a comprehensive analysis of the GhHXK gene family is a vital fiber crop, which lays the foundation for future studies assessing its role in fiber development.
Collapse
Affiliation(s)
- Lingling Dou
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, China
| | - Zihan Li
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Huiqin Wang
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - HuaiZhu Li
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
- *Correspondence: Guanghui Xiao,
| | - Xianliang Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Xianliang Zhang,
| |
Collapse
|
8
|
Zhu L, Dou L, Shang H, Li H, Yu J, Xiao G. GhPIPLC2D promotes cotton fiber elongation by enhancing ethylene biosynthesis. iScience 2021; 24:102199. [PMID: 33718844 PMCID: PMC7921840 DOI: 10.1016/j.isci.2021.102199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/13/2021] [Accepted: 02/12/2021] [Indexed: 11/29/2022] Open
Abstract
Inositol-1,4,5-trisphosphate (IP3) is an important second messenger and one of the products of phosphoinositide-specific phospholipase C (PIPLC)-mediated phosphatidylinositol (4,5) bisphosphate (PIP2) hydrolysis. However, the function of IP3 in cotton is unknown. Here, we characterized the function of GhPIPLC2D in cotton fiber elongation. GhPIPLC2D was preferentially expressed in elongating fibers. Suppression of GhPIPLC2D transcripts resulted in shorter fibers and decreased IP3 accumulation and ethylene biosynthesis. Exogenous application of linolenic acid (C18:3) and phosphatidylinositol (PI), the precursor of IP3, improved IP3 and myo-inositol-1,2,3,4,5,6-hexakisphosphate (IP6) accumulation, as well as ethylene biosynthesis. Moreover, fiber length in GhPIPLC2D-silenced plant was reduced after exogenous application of IP6 and ethylene. These results indicate that GhPIPLC2D positively regulates fiber elongation and IP3 promotes fiber elongation by enhancing ethylene biosynthesis. Our study broadens our understanding of the function of IP3 in cotton fiber elongation and highlights the possibility of cultivating better cotton varieties by manipulating GhPIPLC2D in the future. GhPIPLC2D positively regulates cotton fiber elongation GhPIPLC2D cleaves PIP2 into IP3, which could be phosphorylated to IP6 IP6 enhances fiber elongation via improving ethylene biosynthesis
Collapse
Affiliation(s)
- Liping Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Lingling Dou
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang 712000, China
| | - Haihong Shang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Jianing Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
9
|
Dou L, Li Z, Shen Q, Shi H, Li H, Wang W, Zou C, Shang H, Li H, Xiao G. Genome-wide characterization of the WAK gene family and expression analysis under plant hormone treatment in cotton. BMC Genomics 2021; 22:85. [PMID: 33509085 PMCID: PMC7842020 DOI: 10.1186/s12864-021-07378-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/08/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Wall-associated kinases (WAK), one of the receptor-like kinases (RLK), function directly in the connection and communication between the plant cell wall and the cytoplasm. WAK genes are highly conserved and have been identified in plants, such as rice, but there is little research on the WAK gene family in cotton. RESULTS In the present study, we identified 29 GhWAK genes in Gossypium hirsutum. Phylogenetic analysis showed that cotton WAK proteins can be divided into five clades. The results of synteny and Ka/Ks analysis showed that the GhWAK genes mainly originated from whole genome duplication (WGD) and were then mainly under purifying selection. Transcriptome data and real-time PCR showed that 97% of GhWAK genes highly expressed in cotton fibers and ovules. β-glucuronidase (GUS) staining assays showed that GhWAK5 and GhWAK16 expressed in Arabidopsis leaf trichomes. Fourteen GhWAK genes were found to possess putative gibberellin (GA) response elements in the promoter regions, 13 of which were significantly induced by GA treatment. Ten GhWAK genes contained auxin (IAA) response elements and the expression level of nine GhWAKs significantly increased under auxin treatment. CONCLUSIONS We provide a preliminary analysis of the WAK gene family in G. hirsutum, which sheds light on the potantial roles of GhWAK genes in cotton fiber cell development. Our data also provides a useful resource for future studies on the functional roles of GhWAK genes.
Collapse
Affiliation(s)
- Lingling Dou
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, 712000, Shaanxi, China
| | - Zhifang Li
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, Henan, China
| | - Qian Shen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Huiran Shi
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Huaizhu Li
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, 712000, Shaanxi, China
| | - Wenbo Wang
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, 712000, Shaanxi, China
| | - Changsong Zou
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, Henan, China
| | - Haihong Shang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi, 832003, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
10
|
Zhang J, Wu A, Wei H, Hao P, Zhang Q, Tian M, Yang X, Cheng S, Fu X, Ma L, Wang H, Yu S. Genome-wide identification and expression patterns analysis of the RPD3/HDA1 gene family in cotton. BMC Genomics 2020; 21:643. [PMID: 32948145 PMCID: PMC7501681 DOI: 10.1186/s12864-020-07069-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 09/14/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Histone deacetylases (HDACs) catalyze histone deacetylation and suppress gene transcription during various cellular processes. Within the superfamily of HDACs, RPD3/HDA1-type HDACs are the most studied, and it is reported that RPD3 genes play crucial roles in plant growth and physiological processes. However, there is a lack of systematic research on the RPD3/HDA1 gene family in cotton. RESULTS In this study, genome-wide analysis identified 9, 9, 18, and 18 RPD3 genes in Gossypium raimondii, G. arboreum, G. hirsutum, and G. barbadense, respectively. This gene family was divided into 4 subfamilies through phylogenetic analysis. The exon-intron structure and conserved motif analysis revealed high conservation in each branch of the cotton RPD3 genes. Collinearity analysis indicated that segmental duplication was the primary driving force during the expansion of the RPD3 gene family in cotton. There was at least one presumed cis-element related to plant hormones in the promoter regions of all GhRPD3 genes, especially MeJA- and ABA-responsive elements, which have more members than other hormone-relevant elements. The expression patterns showed that most GhRPD3 genes had relatively high expression levels in floral organs and performed higher expression in early-maturity cotton compared with late-maturity cotton during flower bud differentiation. In addition, the expression of GhRPD3 genes could be significantly induced by one or more abiotic stresses as well as exogenous application of MeJA or ABA. CONCLUSIONS Our findings reveal that GhRPD3 genes may be involved in flower bud differentiation and resistance to abiotic stresses, which provides a basis for further functional verification of GhRPD3 genes in cotton development and a foundation for breeding better early-maturity cotton cultivars in the future.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Aimin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Pengbo Hao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Qi Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Miaomiao Tian
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xu Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shuaishuai Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiaokang Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|