1
|
Chu D, Zhang Z, Hu Y, Fang C, Xu X, Yuan J, Zhang J, Tian Z, Wang G. Genome-wide scan for oil quality reveals a coregulation mechanism of tocopherols and fatty acids in soybean seeds. PLANT COMMUNICATIONS 2023; 4:100598. [PMID: 37029487 PMCID: PMC10504561 DOI: 10.1016/j.xplc.2023.100598] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 06/01/2023]
Abstract
Tocopherols (vitamin E) play essential roles in human health because of their antioxidant activity, and plant-derived oils are the richest sources of tocopherols in the human diet. Although soybean (Glycine max) is one of the main sources of plant-derived oil and tocopherol in the world, the relationship between tocopherol and oil in soybean seeds remains unclear. Here, we focus on dissecting tocopherol metabolism with the long-term goal of increasing α-tocopherol content and soybean oil quality. We first collected tocopherol and fatty acid profiles in a soybean population (>800 soybean accessions) and found that tocopherol content increased during soybean domestication. A strong positive correlation between tocopherol and oil content was also detected. Five tocopherol pathway-related loci were identified using a metabolite genome-wide association study strategy. Genetic variations in three tocopherol pathway genes were responsible for total tocopherol content and composition in the soybean population through effects on enzyme activity, mainly caused by non-conserved amino acid substitution or changes in gene transcription level. Moreover, the fatty acid regulatory transcription factor GmZF351 directly activated tocopherol pathway gene expression, increasing both fatty acid and tocopherol contents in soybean seeds. Our study reveals the functional differentiation of tocopherol pathway genes in soybean populations and provides a framework for development of new soybean varieties with high α-tocopherol content and oil quality in seeds.
Collapse
Affiliation(s)
- Danni Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhifang Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chao Fang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xindan Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jia Yuan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinsong Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
2
|
Jha R, Yadav HK, Raiya R, Singh RK, Jha UC, Sathee L, Singh P, Thudi M, Singh A, Chaturvedi SK, Tripathi S. Integrated breeding approaches to enhance the nutritional quality of food legumes. FRONTIERS IN PLANT SCIENCE 2022; 13:984700. [PMID: 36161025 PMCID: PMC9490089 DOI: 10.3389/fpls.2022.984700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/26/2022] [Indexed: 05/31/2023]
Abstract
Global food security, both in terms of quantity and quality remains as a challenge with the increasing population. In parallel, micronutrient deficiency in the human diet leads to malnutrition and several health-related problems collectively known as "hidden hunger" more prominent in developing countries around the globe. Biofortification is a potential tool to fortify grain legumes with micronutrients to mitigate the food and nutritional security of the ever-increasing population. Anti-nutritional factors like phytates, raffinose (RFO's), oxalates, tannin, etc. have adverse effects on human health upon consumption. Reduction of the anti-nutritional factors or preventing their accumulation offers opportunity for enhancing the intake of legumes in diet besides increasing the bioavailability of micronutrients. Integrated breeding methods are routinely being used to exploit the available genetic variability for micronutrients through modern "omic" technologies such as genomics, transcriptomics, ionomics, and metabolomics for developing biofortified grain legumes. Molecular mechanism of Fe/Zn uptake, phytate, and raffinose family oligosaccharides (RFOs) biosynthesis pathways have been elucidated. Transgenic, microRNAs and genome editing tools hold great promise for designing nutrient-dense and anti-nutrient-free grain legumes. In this review, we present the recent efforts toward manipulation of genes/QTLs regulating biofortification and Anti-nutrient accumulation in legumes using genetics-, genomics-, microRNA-, and genome editing-based approaches. We also discuss the success stories in legumes enrichment and recent advances in development of low Anti-nutrient lines. We hope that these emerging tools and techniques will expedite the efforts to develop micronutrient dense legume crop varieties devoid of Anti-nutritional factors that will serve to address the challenges like malnutrition and hidden hunger.
Collapse
Affiliation(s)
- Rintu Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Hemant Kumar Yadav
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rahul Raiya
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajesh Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Uday Chand Jha
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, India
| | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prashant Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mahendar Thudi
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India
- Shandong Academy of Agricultural Sciences, Jinan, China
- Center for Crop Health, University of Southern Queensland, Toowmba, QLD, Australia
| | - Anshuman Singh
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, India
| | - Sushil Kumar Chaturvedi
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, India
| | - Shailesh Tripathi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
3
|
Singh L, Dhillon GS, Kaur S, Dhaliwal SK, Kaur A, Malik P, Kumar A, Gill RK, Kaur S. Genome-wide Association Study for Yield and Yield-Related Traits in Diverse Blackgram Panel (Vigna mungo L. Hepper) Reveals Novel Putative Alleles for Future Breeding Programs. Front Genet 2022; 13:849016. [PMID: 35899191 PMCID: PMC9310006 DOI: 10.3389/fgene.2022.849016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Blackgram (Vigna mungo L. Hepper) is an important tropical and sub-tropical short-duration legume that is rich in dietary protein and micronutrients. Producing high-yielding blackgram varieties is hampered by insufficient genetic variability, absence of suitable ideotypes, low harvest index and susceptibility to biotic-abiotic stresses. Seed yield, a complex trait resulting from the expression and interaction of multiple genes, necessitates the evaluation of diverse germplasm for the identification of novel yield contributing traits. Henceforth, a panel of 100 blackgram genotypes was evaluated at two locations (Ludhiana and Gurdaspur) across two seasons (Spring 2019 and Spring 2020) for 14 different yield related traits. A wide range of variability, high broad-sense heritability and a high correlation of grain yield were observed for 12 out of 14 traits studied among all environments. Investigation of population structure in the panel using a set of 4,623 filtered SNPs led to identification of four sub-populations based on ad-hoc delta K and Cross entropy value. Using Farm CPU model and Mixed Linear Model algorithms, a total of 49 significant SNP associations representing 42 QTLs were identified. Allelic effects were found to be statistically significant at 37 out of 42 QTLs and 50 known candidate genes were identified in 24 of QTLs.
Collapse
Affiliation(s)
- Lovejit Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | | | - Sarabjit Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Sandeep Kaur Dhaliwal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Amandeep Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Palvi Malik
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Ashok Kumar
- Regional Research Station, Punjab Agricultural University, Gurdaspur, India
| | - Ranjit Kaur Gill
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
- *Correspondence: Satinder Kaur,
| |
Collapse
|
4
|
Genome-wide association identifies a missing hydrolase for tocopherol synthesis in plants. Proc Natl Acad Sci U S A 2022; 119:e2113488119. [PMID: 35639691 DOI: 10.1073/pnas.2113488119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceTocopherols (vitamin E) are plant-synthesized, lipid-soluble antioxidants whose dietary intake, primarily from seed oils, is essential for human health. Tocopherols contain a phytol-derived hydrophobic tail whose in vivo source has been elusive. The most significant genome-wide association signal for Arabidopsis seed tocopherols identified an uncharacterized, seed-specific esterase (VTE7) localized to the chloroplast envelope, where tocopherol synthesis occurs. VTE7 disruption and overexpression had large impacts on tissue tocopherol contents with metabolic phenotypes consistent with release of prenyl alcohols, including phytol, during chlorophyll synthesis, rather than from the bulk degradation of thylakoid chlorophylls as has long been assumed. Understanding the source of phytol for tocopherols will enable breeding and engineering plants for vitamin E biofortification and enhanced stress resilience.
Collapse
|
5
|
QTL and Candidate Genes for Seed Tocopherol Content in ‘Forrest’ by ‘Williams 82’ Recombinant Inbred Line (RIL) Population of Soybean. PLANTS 2022; 11:plants11091258. [PMID: 35567259 PMCID: PMC9103746 DOI: 10.3390/plants11091258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/22/2022]
Abstract
Soybean seeds are rich in secondary metabolites which are beneficial for human health, including tocopherols. Tocopherols play an important role in human and animal nutrition thanks to their antioxidant activity. In this study, the ‘Forrest’ by ‘Williams 82’ (F×W82) recombinant inbred line (RIL) population (n = 306) was used to map quantitative trait loci (QTL) for seed α-tocopherol, β-tocopherol, δ -tocopherol, γ-tocopherol, and total tocopherol contents in Carbondale, IL over two years. Also, the identification of the candidate genes involved in soybean tocopherols biosynthetic pathway was performed. A total of 32 QTL controlling various seed tocopherol contents have been identified and mapped on Chrs. 1, 2, 5, 6, 7, 8, 9, 10, 12, 13, 16, 17, and 20. One major and novel QTL was identified on Chr. 6 with an R2 of 27.8, 9.9, and 6.9 for δ-tocopherol, α-tocopherol, and total tocopherol content, respectively. Reverse BLAST analysis of the genes that were identified in Arabidopsis allowed the identification of 37 genes involved in soybean tocopherol pathway, among which 11 were located close to the identified QTLs. The tocopherol cyclase gene (TC) Glyma.06G084100 is located close to the QTLs controlling δ-tocopherol (R2 = 27.8), α-tocopherol (R2 = 9.96), and total-tocopherol (R2 = 6.95). The geranylgeranyl diphosphate reductase (GGDR) Glyma.05G026200 gene is located close to a QTL controlling total tocopherol content in soybean (R2 = 4.42). The two methylphytylbenzoquinol methyltransferase (MPBQ-MT) candidate genes Glyma.02G002000 and Glyma.02G143700 are located close to a QTL controlling δ-tocopherol content (R2 = 3.57). The two γ-tocopherol methyltransferase (γ-TMT) genes, Glyma.12G014200 and Glyma.12G014300, are located close to QTLs controlling (γ+ß) tocopherol content (R2 = 8.86) and total tocopherol (R2 = 5.94). The identified tocopherol seed QTLs and candidate genes will be beneficial in breeding programs to develop soybean cultivars with high tocopherol contents.
Collapse
|
6
|
Nayak SN, Aravind B, Malavalli SS, Sukanth BS, Poornima R, Bharati P, Hefferon K, Kole C, Puppala N. Omics Technologies to Enhance Plant Based Functional Foods: An Overview. Front Genet 2021; 12:742095. [PMID: 34858472 PMCID: PMC8631721 DOI: 10.3389/fgene.2021.742095] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022] Open
Abstract
Functional foods are natural products of plants that have health benefits beyond necessary nutrition. Functional foods are abundant in fruits, vegetables, spices, beverages and some are found in cereals, millets, pulses and oilseeds. Efforts to identify functional foods in our diet and their beneficial aspects are limited to few crops. Advances in sequencing and availability of different omics technologies have given opportunity to utilize these tools to enhance the functional components of the foods, thus ensuring the nutritional security. Integrated omics approaches including genomics, transcriptomics, proteomics, metabolomics coupled with artificial intelligence and machine learning approaches can be used to improve the crops. This review provides insights into omics studies that are carried out to find the active components and crop improvement by enhancing the functional compounds in different plants including cereals, millets, pulses, oilseeds, fruits, vegetables, spices, beverages and medicinal plants. There is a need to characterize functional foods that are being used in traditional medicines, as well as utilization of this knowledge to improve the staple foods in order to tackle malnutrition and hunger more effectively.
Collapse
Affiliation(s)
- Spurthi N. Nayak
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - B. Aravind
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Sachin S. Malavalli
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - B. S. Sukanth
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - R. Poornima
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Pushpa Bharati
- Department of Food Science and Nutrition, University of Agricultural Sciences, Dharwad, India
| | - Kathleen Hefferon
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| | - Chittaranjan Kole
- President, International Phytomedomics and Nutriomics Consortium (ipnc.info), Daejeon, South Korea
| | - Naveen Puppala
- New Mexico State University-Agricultural Science Center at Clovis, New Mexico, NM, United States
| |
Collapse
|
7
|
|
8
|
Jiang L, Strobbe S, Van Der Straeten D, Zhang C. Regulation of plant vitamin metabolism: backbone of biofortification for the alleviation of hidden hunger. MOLECULAR PLANT 2021; 14:40-60. [PMID: 33545049 DOI: 10.1016/j.molp.2020.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 05/04/2023]
|