1
|
Cao J, Wang T, Yu D, He J, Qian W, Tang B, Bi X, Wang H, Zhang Y. MsDUF3700 overexpression enhances aluminum tolerance in alfalfa shoots. PLANT CELL REPORTS 2024; 43:301. [PMID: 39630276 DOI: 10.1007/s00299-024-03385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024]
Abstract
KEY MESSAGE This study identified a gene associated with aluminum stress through GWAS, which regulates aluminum tolerance in alfalfa by contributing to the antioxidant system. Aluminum (Al) ions precipitate in acidic soils with a pH < 5.5, where they are absorbed alongside other nutrients by plants, negatively impacting plant growth. Alfalfa, the most widely grown perennial legume forage in the world, is especially vulnerable to acidic soil conditions. Our research pinpointed MsDUF3700 as a potential gene linked to Al-response traits via genome-wide association analysis in Medicago sativa. MsDUF3700 encodes the domain of unknown function (DUF). We observed higher expression of MsDUF3700 in Al-tolerant alfalfa compared to Al-sensitive ecotypes. MsDUF3700-overexpressing transgenic alfalfa (MsDUF3700-OE) showed shorter root elongation and higher Al accumulation in roots than wild type (WT) under Al conditions. However, the shoots of MsDUF3700-OE lines showed enhanced growth rates under both normal and Al stress conditions. Under Al stress, MsDUF3700-OE lines showed increased H2O2 and malondialdehyde (MDA) levels in the roots, alongside reduced catalase activity, In contrast, the shoots showed an inverse trend. In addition, we found that MsDUF3700-OE alfalfa plants had high Al accumulation in the roots and low Al accumulation in the shoots. Transcripts of MsALS3 and MsPALT1, homologs of Al translocation in alfalfa, were downregulated, while MsNrat1, a homolog of transporters absorb Al, was upregulated in the roots of MsDUF3700-OE in alfalfa. Our research indicates that MsDUF3700 plays a role in aluminum stress by participating in antioxidative defense and facilitating aluminum transport from roots to shoots.
Collapse
Affiliation(s)
- Jiamin Cao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Tingting Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dian Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junyi He
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wenwu Qian
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bingxia Tang
- Chongqing Yubei District Rural Property Rights Transfer Service Co, Chongqing, 401120, China
| | - Xiaojing Bi
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hui Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Yunwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Su X, Li C, Yu Y, Li L, Wang L, Lu D, Zhao Y, Sun Y, Tan Z, Liang H. Comprehensive Transcriptomic and Physiological Insights into the Response of Root Growth Dynamics During the Germination of Diverse Sesame Varieties to Heat Stress. Curr Issues Mol Biol 2024; 46:13311-13327. [PMID: 39727922 PMCID: PMC11727563 DOI: 10.3390/cimb46120794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Heat stress constitutes a serious threat to sesame (Sesamum indicum L.). Root development during seed germination plays an essential role in plant growth and development. Nevertheless, the regulatory mechanisms underlying heat stress remain poorly understood. In this study, two sesame varieties differing in leaf heat tolerance (Zheng Taizhi 3 (heat-tolerant) and SP19 (heat-sensitive)) have been employed to investigate the impact of heat stress on root growth during germination. The results showed that heat stress significantly reduced the radicle length by 35.71% and 67.02% in Zheng Taizhi 3 and SP19, respectively, while germination rates remained unchanged. In addition, heat stress induced oxidative stress, as evidenced by increased reactive oxygen species (ROS) production, malondialdehyde (MDA) content, and reduced indole-3-acetic acid (IAA) content, accompanied by enhanced antioxidant enzyme activities, including those of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and the abscisic acid (ABA) content significantly increased in both varieties. However, the oxidation resistance in the roots of Zheng Taizhi 3 was enhanced compared to that of SP19 under heat stress, while IAA production was maintained and ABA content was reduced. A comparative transcriptome analysis identified 6164 and 6933 differentially expressed genes (DEGs) in Zheng Taizhi 3 and SP19, respectively, with 4346 overlapping DEGs. These DEGs included those related to stress tolerance, such as heat-shock proteins (HSPs), the antioxidant defense system, hormone signal transduction, and the biosynthetic pathway of phenylpropanoid. These findings provide insights into the physiological and molecular mechanisms underlying the adaptation of sesame to heat stress, which could inform breeding strategies for developing heat-tolerant sesame varieties.
Collapse
Affiliation(s)
- Xiaoyu Su
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| | - Chunming Li
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| | - Yongliang Yu
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| | - Lei Li
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| | - Lina Wang
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| | - Dandan Lu
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| | - Yulong Zhao
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| | - Yao Sun
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| | - Zhengwei Tan
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| | - Huizhen Liang
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| |
Collapse
|
3
|
Li ST, Kong WY, Chen JB, Hao DL, Guo HL. Genome-Wide Identification and Expression Analysis of the Cyclic Nucleotide-Gated Channel Gene Family in Zoysia japonica under Salt Stress. Int J Mol Sci 2024; 25:10114. [PMID: 39337599 PMCID: PMC11432434 DOI: 10.3390/ijms251810114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Salt stress severely inhibits plant growth. Understanding the mechanism of plant salt tolerance is highly important to improving plant salt tolerance. Previous studies have shown that nonselective cyclic nucleotide-gated ion channels (CNGCs) play an important role in plant salt tolerance. However, current research on CNGCs mainly focuses on CNGCs in glycophytic plants, and research on CNGCs in halophytes that exhibit special salt tolerance strategies is still scarce. This study used the halophilic plant Zoysia japonica, an excellent warm-season turfgrass, as the experimental material. Through bioinformatics analysis, 18 members of the CNGC family were identified in Zoysia japonica; they were designated ZjCNGC1 through ZjCNGC18 according to their scaffold-level chromosomal positions. ZjCNGCs are divided into four groups (I-IV), with the same groups having differentiated protein-conserved domains and gene structures. ZjCNGCs are unevenly distributed on 16 scaffold-level chromosomes. Compared with other species, the ZjCNGCs in Group III exhibit obvious gene expansion, mainly due to duplication of gene segments. The collinearity between ZjCNGCs, OsCNGCs, and SjCNGCs suggests that CNGCs are evolutionarily conserved among gramineous plants. However, the Group III ZjCNGCs are only partially collinear with OsCNGCs and SjCNGCs, implying that the expansion of Group III ZjCNGC genes may have been an independent event occurring in Zoysia japonica. Protein interaction prediction revealed that ZjCNGCs, calcium-dependent protein kinase, H+-ATPase, outwardly rectifying potassium channel protein, and polyubiquitin 3 interact with ZjCNGCs. Multiple stress response regulatory elements, including those involved in salt stress, are present on the ZjCNGC promoter. The qPCR results revealed differences in the expression patterns of ZjCNGCs in different parts of the plant. Under salt stress conditions, the expression of ZjCNGCs was significantly upregulated in roots and leaves, with ZjCNGC8 and ZjCNGC13 showing the greatest increase in expression in the roots. These results collectively suggest that ZjCNGCs play an important role in salt tolerance and that their expansion into Group III may be a special mechanism underlying the salt tolerance of Zoysia japonica.
Collapse
Affiliation(s)
- Shu-Tong Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Wei-Yi Kong
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Jing-Bo Chen
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Dong-Li Hao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Hai-Lin Guo
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| |
Collapse
|
4
|
Farooq MA, Zeeshan Ul Haq M, Zhang L, Wu S, Mushtaq N, Tahir H, Wang Z. Transcriptomic Insights into Salt Stress Response in Two Pepper Species: The Role of MAPK and Plant Hormone Signaling Pathways. Int J Mol Sci 2024; 25:9355. [PMID: 39273302 PMCID: PMC11394676 DOI: 10.3390/ijms25179355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Salt stress imposes significant plant limitations, altering their molecular, physiological, and biochemical functions. Pepper, a valuable herbaceous plant species of the Solanaceae family, is particularly susceptible to salt stress. This study aimed to elucidate the physiological and molecular mechanisms that contribute to the development of salt tolerance in two pepper species (Capsicum baccatum (moderate salt tolerant) and Capsicum chinense (salt sensitive)) through a transcriptome and weighted gene co-expression network analysis (WGCNA) approach to provide detailed insights. A continuous increase in malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels in C. chinense and higher activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) in C. baccatum indicated more tissue damage in C. chinense than in C. baccatum. In transcriptome analysis, we identified 39 DEGs related to salt stress. Meanwhile, KEGG pathway analysis revealed enrichment of MAPK and hormone signaling pathways, with six DEGs each. Through WGCNA, the ME.red module was identified as positively correlated. Moreover, 10 genes, A-ARR (CQW23_24856), CHIb (CQW23_04881), ERF1b (CQW23_08898), PP2C (CQW23_15893), ABI5 (CQW23_29948), P450 (CQW23_16085), Aldedh1 (CQW23_06433), GDA (CQW23_12764), Aldedh2 (CQW23_14182), and Aldedh3 (CQW23_11481), were validated by qRT-PCR. This study provides valuable insights into the genetic mechanisms underlying salt stress tolerance in pepper. It offers potential targets for future breeding efforts to enhance salt stress resilience in this crop.
Collapse
Affiliation(s)
- Muhammad Aamir Farooq
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Muhammad Zeeshan Ul Haq
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China
| | - Liping Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shuhua Wu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Naveed Mushtaq
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Hassam Tahir
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Sun D, Xu J, Wang H, Guo H, Chen Y, Zhang L, Li J, Hao D, Yao X, Li X. Genome-Wide Identification and Expression Analysis of the PUB Gene Family in Zoysia japonica under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:788. [PMID: 38592813 PMCID: PMC10974829 DOI: 10.3390/plants13060788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024]
Abstract
The U-box protein family of ubiquitin ligases is important in the biological processes of plant growth, development, and biotic and abiotic stress responses. Plants in the genus Zoysia are recognized as excellent warm-season turfgrass species with drought, wear and salt tolerance. In this study, we conducted the genome-wide identification of plant U-box (PUB) genes in Zoysia japonica based on U-box domain searching. In total, 71 ZjPUB genes were identified, and a protein tree was constructed of AtPUBs, OsPUBs, and ZjPUBs, clustered into five groups. The gene structures, characteristics, cis-elements and protein interaction prediction network were analyzed. There were mainly ABRE, ERE, MYB and MYC cis-elements distributed in the promoter regions of ZjPUBs. ZjPUBs were predicted to interact with PDR1 and EXO70B1, related to the abscisic acid signaling pathway. To better understand the roles of ZjPUBs under salt stress, the expression levels of 18 ZjPUBs under salt stress were detected using transcriptome data and qRT-PCR analysis, revealing that 16 ZjPUBs were upregulated in the roots under salt treatment. This indicates that ZjPUBs might participate in the Z. japonica salt stress response. This research provides insight into the Z. japonica PUB gene family and may support the genetic improvement in the molecular breeding of salt-tolerant zoysiagrass varieties.
Collapse
Affiliation(s)
- Daojin Sun
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (D.S.); (H.G.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Jingya Xu
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (D.S.); (H.G.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Haoran Wang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (D.S.); (H.G.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Hailin Guo
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (D.S.); (H.G.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Yu Chen
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Zhang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (D.S.); (H.G.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Jianjian Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (D.S.); (H.G.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Dongli Hao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (D.S.); (H.G.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Xiang Yao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (D.S.); (H.G.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Xiaohui Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (D.S.); (H.G.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| |
Collapse
|
6
|
Wu ZH, He LL, Wang CC, Liang C, Li HY, Zhong DW, Dong ZX, Zhang LJ, Zhang XQ, Ge LF, Chen S. Unveiling unique alternative splicing responses to low temperature in Zoysia japonica through ZjRTD1.0, a high-quality reference transcript dataset. PHYSIOLOGIA PLANTARUM 2024; 176:e14280. [PMID: 38644527 DOI: 10.1111/ppl.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/29/2024] [Accepted: 03/09/2024] [Indexed: 04/23/2024]
Abstract
Inadequate reference databases in RNA-seq analysis can hinder data utilization and interpretation. In this study, we have successfully constructed a high-quality reference transcript dataset, ZjRTD1.0, for Zoysia japonica, a widely-used turfgrass with exceptional tolerance to various abiotic stress, including low temperatures and salinity. This dataset comprises 113,089 transcripts from 57,143 genes. BUSCO analysis demonstrates exceptional completeness (92.4%) in ZjRTD1.0, with reduced proportions of fragmented (3.3%) and missing (4.3%) orthologs compared to prior datasets. ZjRTD1.0 enables more precise analyses, including transcript quantification and alternative splicing assessments using public datasets, which identified a substantial number of differentially expressed transcripts (DETs) and differential alternative splicing (DAS) events, leading to several novel findings on Z. japonica's responses to abiotic stresses. First, spliceosome gene expression influenced alternative splicing significantly under abiotic stress, with a greater impact observed during low-temperature stress. Then, a significant positive correlation was found between the number of differentially expressed genes (DEGs) encoding protein kinases and the frequency of DAS events, suggesting the role of protein phosphorylation in regulating alternative splicing. Additionally, our results suggest possible involvement of serine/arginine-rich (SR) proteins and heterogeneous nuclear ribonucleoproteins (hnRNPs) in generating inclusion/exclusion isoforms under low-temperature stress. Furthermore, our investigation revealed a significantly enhanced overlap between DEGs and differentially alternatively spliced genes (DASGs) in response to low-temperature stress, suggesting a unique co-regulatory mechanism governing transcription and splicing in the context of low-temperature response. In conclusion, we have proven that ZjRTD1.0 will serve as a reliable and useful resource for future transcriptomic analyses in Z. japonica.
Collapse
Affiliation(s)
- Zhi-Hao Wu
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Liang-Liang He
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Cong-Cong Wang
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Chen Liang
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Han-Ying Li
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Dan-Wen Zhong
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Zhao-Xia Dong
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Li-Juan Zhang
- Shenzhen Tourism College of Jinan University, Shenzhen, Guangdong, China
| | - Xiang-Qian Zhang
- College of Food Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Liang-Fa Ge
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Shu Chen
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| |
Collapse
|
7
|
Tada Y, Kochiya R, Toyoizumi M, Takano Y. Salt tolerance and regulation of Na +, K +, and proline contents in different wild turfgrasses under salt stress. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:301-309. [PMID: 38434114 PMCID: PMC10904837 DOI: 10.5511/plantbiotechnology.23.0721a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/21/2023] [Indexed: 03/05/2024]
Abstract
Turfgrasses show a wide range of salinity tolerance. In this study, twenty wild turfgrasses were collected from coastal regions in Japan, and their species; evolutionary lineage; salt tolerance levels; shoot and root K+, Na+, and proline contents; and amounts of ions secreted from their salt glands were determined. Among them, eighteen turfgrass species were determined based on the internal transcribed spacer 1 sequences. All collected wild turfgrasses were identified as halophytes and were divided into two salt-tolerant levels. They maintained the shoot relative water contents and suppressed excess Na+ accumulation in their shoots and roots and K+ content homeostasis compared with rice, resulting in the maintenance of a higher K+/Na+ ratio under salt stress. These characteristics must be part of the salt tolerance mechanisms. Among the four turfgrasses with salt glands, three selectively secreted Na+ from their salt glands; however, interestingly, one secreted K+ over Na+, although it still maintained a K+/Na+ ratio comparable to that of the other turfgrasses. A significant amount of proline synthesis was observed in most of the turfgrasses in response to salt stress, and the proline content was highly correlated with the salt tolerance, suggesting its key role in the salt tolerance mechanisms. These wild turfgrasses with such diverse ion control mechanisms and proline synthesis profiles are useful materials for investigating the salt tolerant mechanisms and breeding salt tolerant turfgrasses.
Collapse
Affiliation(s)
- Yuichi Tada
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| | - Ryuto Kochiya
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| | - Masayuki Toyoizumi
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| | - Yuka Takano
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| |
Collapse
|
8
|
Xu Y, Li Y, Li Y, Zhai C, Zhang K. Transcriptome Analysis Reveals the Stress Tolerance Mechanisms of Cadmium in Zoysia japonica. PLANTS (BASEL, SWITZERLAND) 2023; 12:3833. [PMID: 38005730 PMCID: PMC10674853 DOI: 10.3390/plants12223833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
Cadmium (Cd) is a severe heavy metal pollutant globally. Zoysia japonica is an important perennial warm-season turf grass that potentially plays a role in phytoremediation in Cd-polluted soil areas; however, the molecular mechanisms underlying its Cd stress response are unknown. To further investigate the early gene response pattern in Z. japonica under Cd stress, plant leaves were harvested 0, 6, 12, and 24 h after Cd stress (400 μM CdCl2) treatment and used for a time-course RNA-sequencing analysis. Twelve cDNA libraries were constructed and sequenced, and high-quality data were obtained, whose mapped rates were all higher than 94%, and more than 601 million bp of sequence were generated. A total of 5321, 6526, and 4016 differentially expressed genes were identified 6, 12, and 24 h after Cd stress treatment, respectively. A total of 1660 genes were differentially expressed at the three time points, and their gene expression profiles over time were elucidated. Based on the analysis of these genes, the important mechanisms for the Cd stress response in Z. japonica were identified. Specific genes participating in glutathione metabolism, plant hormone signal and transduction, members of protein processing in the endoplasmic reticulum, transporter proteins, transcription factors, and carbohydrate metabolism pathways were further analyzed in detail. These genes may contribute to the improvement of Cd tolerance in Z. japonica. In addition, some candidate genes were highlighted for future studies on Cd stress resistance in Z. japonica and other plants. Our results illustrate the early gene expression response of Z. japonica leaves to Cd and provide some new understanding of the molecular mechanisms of Cd stress in Zosia and Gramineae species.
Collapse
Affiliation(s)
- Yi Xu
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.X.); (Y.L.); (Y.L.); (C.Z.)
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yonglong Li
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.X.); (Y.L.); (Y.L.); (C.Z.)
| | - Yan Li
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.X.); (Y.L.); (Y.L.); (C.Z.)
| | - Chenyuan Zhai
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.X.); (Y.L.); (Y.L.); (C.Z.)
| | - Kun Zhang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (Y.X.); (Y.L.); (Y.L.); (C.Z.)
| |
Collapse
|
9
|
Liu Q, Wen J, Wang S, Chen J, Sun Y, Liu Q, Li X, Dong S. Genome-wide identification, expression analysis, and potential roles under low-temperature stress of bHLH gene family in Prunus sibirica. FRONTIERS IN PLANT SCIENCE 2023; 14:1267107. [PMID: 37799546 PMCID: PMC10548393 DOI: 10.3389/fpls.2023.1267107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023]
Abstract
The basic helix-loop-helix (bHLH) family is one of the most well-known transcription factor families in plants, and it regulates growth, development, and abiotic stress responses. However, systematic analyses of the bHLH gene family in Prunus sibirica have not been reported to date. In this study, 104 PsbHLHs were identified and classified into 23 subfamilies that were unevenly distributed on eight chromosomes. Nineteen pairs of segmental replication genes and ten pairs of tandem replication genes were identified, and all duplicated gene pairs were under purifying selection. PsbHLHs of the same subfamily usually share similar motif compositions and exon-intron structures. PsbHLHs contain multiple stress-responsive elements. PsbHLHs exhibit functional diversity by interacting and coordinating with other members. Twenty PsbHLHs showed varying degrees of expression. Eleven genes up-regulated and nine genes down-regulated in -4°C. The majority of PsbHLHs were highly expressed in the roots and pistils. Transient transfection experiments demonstrated that transgenic plants with overexpressed PsbHLH42 have better cold tolerance. In conclusion, the results of this study have significant implications for future research on the involvement of bHLH genes in the development and stress responses of Prunus sibirica.
Collapse
Affiliation(s)
- Quangang Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Jiaxing Wen
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Shipeng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Jianhua Chen
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Yongqiang Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Qingbai Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Xi Li
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Shengjun Dong
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
10
|
Lv P, Wan J, Zhang C, Hina A, Al Amin GM, Begum N, Zhao T. Unraveling the Diverse Roles of Neglected Genes Containing Domains of Unknown Function (DUFs): Progress and Perspective. Int J Mol Sci 2023; 24:ijms24044187. [PMID: 36835600 PMCID: PMC9966272 DOI: 10.3390/ijms24044187] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Domain of unknown function (DUF) is a general term for many uncharacterized domains with two distinct features: relatively conservative amino acid sequence and unknown function of the domain. In the Pfam 35.0 database, 4795 (24%) gene families belong to the DUF type, yet, their functions remain to be explored. This review summarizes the characteristics of the DUF protein families and their functions in regulating plant growth and development, generating responses to biotic and abiotic stress, and other regulatory roles in plant life. Though very limited information is available about these proteins yet, by taking advantage of emerging omics and bioinformatic tools, functional studies of DUF proteins could be utilized in future molecular studies.
Collapse
Affiliation(s)
- Peiyun Lv
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinlu Wan
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunting Zhang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiman Hina
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - G M Al Amin
- Department of Botany, Jagannath University, Dhaka 1100, Bangladesh
| | - Naheeda Begum
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (N.B.); (T.Z.)
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (N.B.); (T.Z.)
| |
Collapse
|
11
|
Liu H, Todd JL, Luo H. Turfgrass Salinity Stress and Tolerance-A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:925. [PMID: 36840273 PMCID: PMC9961807 DOI: 10.3390/plants12040925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/04/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Turfgrasses are ground cover plants with intensive fibrous roots to encounter different edaphic stresses. The major edaphic stressors of turfgrasses often include soil salinity, drought, flooding, acidity, soil compaction by heavy traffic, unbalanced soil nutrients, heavy metals, and soil pollutants, as well as many other unfavorable soil conditions. The stressors are the results of either naturally occurring soil limitations or anthropogenic activities. Under any of these stressful conditions, turfgrass quality will be reduced along with the loss of economic values and ability to perform its recreational and functional purposes. Amongst edaphic stresses, soil salinity is one of the major stressors as it is highly connected with drought and heat stresses of turfgrasses. Four major salinity sources are naturally occurring in soils: recycled water as the irrigation, regular fertilization, and air-borne saline particle depositions. Although there are only a few dozen grass species from the Poaceae family used as turfgrasses, these turfgrasses vary from salinity-intolerant to halophytes interspecifically and intraspecifically. Enhancement of turfgrass salinity tolerance has been a very active research and practical area as well in the past several decades. This review attempts to target new developments of turfgrasses in those soil salinity stresses mentioned above and provides insight for more promising turfgrasses in the future with improved salinity tolerances to meet future turfgrass requirements.
Collapse
Affiliation(s)
- Haibo Liu
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA
| | - Jason L. Todd
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
12
|
Ming Q, Wang K, Wang J, Liu J, Li X, Wei P, Guo H, Chen J, Zong J. The combination of RNA-seq transcriptomics and data-independent acquisition proteomics reveals the mechanisms underlying enhanced salt tolerance by the ZmPDI gene in Zoysia matrella [L.] Merr. FRONTIERS IN PLANT SCIENCE 2022; 13:970651. [PMID: 36003810 PMCID: PMC9393727 DOI: 10.3389/fpls.2022.970651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Zoysia matrella [L.] Merr. is one of the three most economically important Zoysia species due to its strong salt tolerance and wide application. However, the molecular mechanisms regulating salt tolerance in Z. matrella remain unknown. The protein disulfide isomerase ZmPDI of Z. matrella was obtained by salt stress screening with yeast cells, and its expression was significantly upregulated after salt stress. Based on the obtained ZmPDI overexpression transgenic Z. matrella plants, we carried out salt tolerance identification and found that ZmPDI can significantly enhance the salt tolerance of Z. matrella. Root samples of OX-ZmPDI transgenic and wild-type plants were collected at 0 and 24 h after salt treatments for RNA-seq and data-independent acquisition (DIA) proteome sequencing. Combined analysis of the transcriptome and proteome revealed that ZmPDI may enhance the salt tolerance of Z. matrella by regulating TUBB2, PXG4, PLDα2, PFK4, and 4CL1. This research presents the molecular regulatory mechanism of the ZmPDI gene in Z. matrella for resistance to salt stress and facilitates the use of molecular breeding to improve the salt tolerance of grasses.
Collapse
Affiliation(s)
- Qiang Ming
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Kai Wang
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, China
| | - Jingjing Wang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jianxiu Liu
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Xiaohui Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Peipei Wei
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Hailin Guo
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jingbo Chen
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Junqin Zong
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
13
|
Wang N, Lin Y, Qi F, Xiaoyang C, Peng Z, Yu Y, Liu Y, Zhang J, Qi X, Deyholos M, Zhang J. Comprehensive Analysis of Differentially Expressed Genes and Epigenetic Modification-Related Expression Variation Induced by Saline Stress at Seedling Stage in Fiber and Oil Flax, Linum usitatissimum L. PLANTS (BASEL, SWITZERLAND) 2022; 11:2053. [PMID: 35956530 PMCID: PMC9370232 DOI: 10.3390/plants11152053] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The ability of different germplasm to adapt to a saline-alkali environment is critical to learning about the tolerance mechanism of saline-alkali stress in plants. Flax is an important oil and fiber crop in many countries. However, its molecular tolerance mechanism under saline stress is still not clear. In this study, we studied morphological, physiological characteristics, and gene expression variation in the root and leaf in oil and fiber flax types under saline stress, respectively. Abundant differentially expressed genes (DEGs) induced by saline stress, tissue/organ specificity, and different genotypes involved in plant hormones synthesis and metabolism and transcription factors and epigenetic modifications were detected. The present report provides useful information about the mechanism of flax response to saline stress and could lead to the future elucidation of the specific functions of these genes and help to breed suitable flax varieties for saline/alkaline soil conditions.
Collapse
Affiliation(s)
- Ningning Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 131018, China
| | - Yujie Lin
- Faculty of Agronomy, Jilin Agricultural University, Changchun 131018, China
| | - Fan Qi
- Faculty of Agronomy, Jilin Agricultural University, Changchun 131018, China
| | - Chunxiao Xiaoyang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 131018, China
| | - Zhanwu Peng
- Information Center, Jilin Agricultural University, Changchun 130000, China
| | - Ying Yu
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yingnan Liu
- Institute of Natural Resource and Ecology, Heilongjiang Academy of Science, Harbin 150040, China
| | - Jun Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 131018, China
| | - Xin Qi
- Faculty of Agronomy, Jilin Agricultural University, Changchun 131018, China
| | - Michael Deyholos
- Department of Biology, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| | - Jian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 131018, China
- Department of Biology, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
14
|
Wang W, Shao A, Xu X, Fan S, Fu J. Comparative genomics reveals the molecular mechanism of salt adaptation for zoysiagrasses. BMC PLANT BIOLOGY 2022; 22:355. [PMID: 35864464 PMCID: PMC9306052 DOI: 10.1186/s12870-022-03752-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Zoysiagrass (Zoysia spp.) is a warm-season turfgrass. It is widely used as turfgrasses throughout the world, offers good turf qualities, including salt tolerance, resistance to drought and heat. However, the underlying genetic mechanism of zoysiagrass responsive to salt stress remains largely unexplored. RESULTS In present study, we performed a whole-genome comparative analysis for ten plant genomes. Evolutionary analysis revealed that Chloridoideae diverged from Panicoideae approximately 33.7 million years ago (Mya), and the phylogenetic relationship among three zoysiagrasses species suggested that Zoysia matrella may represent an interspecific hybrid between Zoysia japonica and Zoysia pacifica. Genomic synteny indicated that Zoysia underwent a genus-specific whole-genome duplication (WGD) event approximately 20.8 Mya. The expression bais of homologous genes between the two subgenomes suggested that the B subgenome of Z. japonica contributes to salt tolerance. In additon, comparative genomic analyses revealed that the salt adaptation of Zoysia is likely attributable to the expanded cytochrome P450 and ABA biosynthetic gene families. Furthermore, we further found that many duplicated genes from the extra WGD event exhibited distinct functional divergence in response to salt stress using transcriptomic analysis, suggesting that this WGD event contributed to strong resistance to salt stress. CONCLUSIONS Here, our results revealed that expanded cytochrome P450 and ABA biosynthetic gene families, and many of those duplicated genes from recent zoysia-specific WGD event contributed to salt adaptation of zoysiagrass, which provided insight into the genetic underpinning of salt adaptation and valuable information for further studies on salt stress-related traits in Zoysia.
Collapse
Affiliation(s)
- Wei Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - An Shao
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Xiao Xu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Shugao Fan
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Jinmin Fu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China.
| |
Collapse
|
15
|
Guan J, Yin S, Yue Y, Liu L, Guo Y, Zhang H, Fan X, Teng K. Single-molecule long-read sequencing analysis improves genome annotation and sheds new light on the transcripts and splice isoforms of Zoysia japonica. BMC PLANT BIOLOGY 2022; 22:263. [PMID: 35614434 PMCID: PMC9134579 DOI: 10.1186/s12870-022-03640-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Zoysia japonica is an important warm-season turfgrass used worldwide. Although the draft genome sequence and a vast amount of next-generation sequencing data have been published, the current genome annotation and complete mRNA structure remain incomplete. Therefore, to analyze the full-length transcriptome of Z. japonica, we used the PacBio single-molecule long-read sequencing method in this study. RESULTS First, we generated 37,056 high-confidence non-redundant transcripts from 16,005 gene loci. Next, 32,948 novel transcripts, 913 novel gene loci, 8035 transcription factors, 89 long non-coding RNAs, and 254 fusion transcripts were identified. Furthermore, 15,675 alternative splicing events and 5325 alternative polyadenylation sites were detected. In addition, using bioinformatics analysis, the underlying transcriptional mechanism of senescence was explored based on the revised reference transcriptome. CONCLUSION This study provides a full-length reference transcriptome of Z. japonica using PacBio single-molecule long-read sequencing for the first time. These results contribute to our knowledge of the transcriptome and improve the knowledge of the reference genome of Z. japonica. This will also facilitate genetic engineering projects using Z. japonica.
Collapse
Affiliation(s)
- Jin Guan
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Shuxia Yin
- School of Grassland Science, Beijing Forestry University, Beijing, 100083 China
| | - Yuesen Yue
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Lingyun Liu
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Yidi Guo
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Hui Zhang
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Xifeng Fan
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Ke Teng
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| |
Collapse
|
16
|
Su X, Gao T, Zhang P, Li F, Wang D, Tian Y, Lu H, Zhang H, Wei S. Comparative physiological and transcriptomic analysis of sesame cultivars with different tolerance responses to heat stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1131-1146. [PMID: 35722520 PMCID: PMC9203651 DOI: 10.1007/s12298-022-01195-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 05/03/2023]
Abstract
High temperature is the main factor affecting plant growth and can cause plant growth inhibition and yield reduction. Here, seedlings of two contrasting sesame varieties, i.e., Zheng Taizhi 3 (heat-tolerant) and SP19 (heat-sensitive), were treated at 43 °C for 10 days. The results showed that the relative electrical conductivity, hydrogen peroxide levels, and superoxide anion radical levels of both varieties increased significantly under high temperature stress. Additionally, dry matter accumulation and chlorophyll content decreased significantly, and the activities of peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) increased. However, under HT stress, the content of reactive oxygen species in Zheng Taizhi 3 was lower than that in SP19, and the activities of SOD, CAT, and POD as well as the chlorophyll content in Zheng Taizhi 3 were higher than those in SP19. Comparative transcriptome analysis identified 6736 differentially expressed genes (DEGs); 5526 DEGs (2878 up and 2648 down) were identified in Zheng Taizhi 3, and 5186 DEGs (2695 up and 2491 down) were identified in SP19, with 3976 overlapping DEGs. These DEGs included stress tolerance-related heat-shock proteins, as well as genes related to carbohydrate and energy metabolism, signal transduction, endoplasmic reticulum protein processing, amino acid metabolism, and secondary metabolism. Overall, our results showed that the heat tolerance of Zheng Taizhi 3 was attributed to a stronger antioxidant defense system, enabling the variety to avoid oxidative damage compared with the heat-sensitive SP19. Moreover, some specifically expressed and high-abundance genes in Zheng Taizhi 3 were involved in regulatory mechanisms related to heat tolerance, including plant hormone signal transduction and heat shock protein regulation, thereby enhancing heat tolerance. The study contributes to a deeper understanding of the underlying complex molecular mechanisms involved in the responses of sesame seedlings to heat stress and provides a potential strategy for heat-resistant new varieties. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01195-3.
Collapse
Affiliation(s)
- Xiaoyu Su
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, #116 Huayuan Road, Zhengzhou, 450000 Henan People’s Republic of China
- The Shennong Laboratory, Zhengzhou, 450002 Henan People’s Republic of China
| | - Tongmei Gao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, #116 Huayuan Road, Zhengzhou, 450000 Henan People’s Republic of China
- The Shennong Laboratory, Zhengzhou, 450002 Henan People’s Republic of China
| | - Pengyu Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, #116 Huayuan Road, Zhengzhou, 450000 Henan People’s Republic of China
- The Shennong Laboratory, Zhengzhou, 450002 Henan People’s Republic of China
| | - Feng Li
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, #116 Huayuan Road, Zhengzhou, 450000 Henan People’s Republic of China
| | - Dongyong Wang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, #116 Huayuan Road, Zhengzhou, 450000 Henan People’s Republic of China
| | - Yuan Tian
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, #116 Huayuan Road, Zhengzhou, 450000 Henan People’s Republic of China
| | - Hailing Lu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, #116 Huayuan Road, Zhengzhou, 450000 Henan People’s Republic of China
| | - Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, #116 Huayuan Road, Zhengzhou, 450000 Henan People’s Republic of China
- The Shennong Laboratory, Zhengzhou, 450002 Henan People’s Republic of China
| | - Shuangling Wei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, #116 Huayuan Road, Zhengzhou, 450000 Henan People’s Republic of China
- The Shennong Laboratory, Zhengzhou, 450002 Henan People’s Republic of China
| |
Collapse
|
17
|
Zhang J, Zhang Z, Liu W, Li L, Han L, Xu L, Zhao Y. Transcriptome Analysis Revealed a Positive Role of Ethephon on Chlorophyll Metabolism of Zoysia japonica under Cold Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030442. [PMID: 35161421 PMCID: PMC8839986 DOI: 10.3390/plants11030442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 05/18/2023]
Abstract
Zoysia japonica is a warm-season turfgrass with a good tolerance and minimal maintenance requirements. However, its use in Northern China is limited due to massive chlorophyll loss in early fall, which is the main factor affecting its distribution and utilization. Although ethephon treatment at specific concentrations has reportedly improved stress tolerance and extended the green period in turfgrass, the potential mechanisms underlying this effect are not clear. In this study, we evaluated and analyzed chlorophyll changes in the physiology and transcriptome of Z. japonica plants in response to cold stress (4 °C) with and without ethephon pretreatment. Based on the transcriptome and chlorophyll content analysis, ethephon pretreatment increased the leaf chlorophyll content under cold stress by affecting two processes: the stimulation of chlorophyll synthesis by upregulating ZjMgCH2 and ZjMgCH3 expression; and the suppression of chlorophyll degradation by downregulating ZjPAO, ZjRCCR, and ZjSGR expression. Furthermore, ethephon pretreatment increased the ratio of chlorophyll a to chlorophyll b in the leaves under cold stress, most likely by suppressing the conversion of chlorophyll a to chlorophyll b due to decreased chlorophyll b synthesis via downregulation of ZjCAO. Additionally, the inhibition of chlorophyll b synthesis may result in energy redistribution between photosystem II and photosystem I.
Collapse
Affiliation(s)
- Jiahang Zhang
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (J.Z.); (Z.Z.); (W.L.); (L.L.); (L.H.)
| | - Zhiwei Zhang
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (J.Z.); (Z.Z.); (W.L.); (L.L.); (L.H.)
- CCTEG Ecological Environment Technology Co., Ltd., Beijing 100013, China
| | - Wen Liu
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (J.Z.); (Z.Z.); (W.L.); (L.L.); (L.H.)
| | - Lijing Li
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (J.Z.); (Z.Z.); (W.L.); (L.L.); (L.H.)
| | - Liebao Han
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (J.Z.); (Z.Z.); (W.L.); (L.L.); (L.H.)
| | - Lixin Xu
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (J.Z.); (Z.Z.); (W.L.); (L.L.); (L.H.)
- Correspondence: (L.X.); (Y.Z.)
| | - Yuhong Zhao
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China
- Correspondence: (L.X.); (Y.Z.)
| |
Collapse
|
18
|
A Survey of Enhanced Cold Tolerance and Low-Temperature-Induced Anthocyanin Accumulation in a Novel Zoysia japonica Biotype. PLANTS 2022; 11:plants11030429. [PMID: 35161412 PMCID: PMC8839389 DOI: 10.3390/plants11030429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/23/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022]
Abstract
Zoysia japonica is a warm-season turfgrass that is extensively used in landscaping, sports fields, and golf courses worldwide. Uncovering the low-temperature response mechanism of Z. japonica can help to accelerate the development of new cold-tolerant cultivars, which could be used to prolong the ornamental and usage duration of turf. A novel Z. japonica biotype, YueNong-9 (YN-9), was collected from northeastern China for this study. Phenotypic measurements, cold-tolerance investigation, and whole-transcriptome surveys were performed on YN-9 and LanYin-3 (LY-3), the most popular Z. japonica cultivar in Southern China. The results indicated the following: YN-9 has longer second and third leaves than LY-3; when exposed to the natural low temperature during winter in Guangzhou, YN-9 accumulated 4.74 times more anthocyanin than LY-3; after cold acclimation and freezing treatment, 83.25 ± 9.55% of YN-9 survived while all LY-3 leaves died, and the dark green color index (DGCI) value of YN-9 was 1.78 times that of LY-3; in YN-9, there was a unique up-regulation of Phenylalanine ammonia-lyase (PAL), Homeobox-leucine Zipper IV (HD-ZIP), and ATP-Binding Cassette transporter B8 (ABCB8) expressions, as well as a unique down-regulation of zinc-regulated transporters and iron-regulated transporter-like proteins (ZIPs) expression, which may promote anthocyanin biosynthesis, transport, and accumulation. In conclusion, YN-9 exhibited enhanced cold tolerance and is thus an excellent candidate for breeding cold-tolerant Z. japonica variety, and its unique low-temperature-induced anthocyanin accumulation and gene responses provide ideas and candidate genes for the study of low-temperature tolerance mechanisms and genetic engineering breeding.
Collapse
|
19
|
Wang R, Wang X, Liu K, Zhang XJ, Zhang LY, Fan SJ. Comparative Transcriptome Analysis of Halophyte Zoysia macrostachya in Response to Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2020; 9:E458. [PMID: 32260413 PMCID: PMC7238138 DOI: 10.3390/plants9040458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
As one of the most severe environmental stresses, salt stress can cause a series of changes in plants. In salt tolerant plant Zoysia macrostachya, germination, physiology, and genetic variation under salinity have been studied previously, and the morphology and distribution of salt glands have been clarified. However, no study has investigated the transcriptome of such species under salt stress. In the present study, we compared transcriptome of Z. macrostachya under normal conditions and salt stress (300 mmol/L NaCl, 24 h) aimed to identify transcriptome responses and molecular mechanisms under salt stress in Z. macrostachya. A total of 8703 differently expressed genes (DEGs) were identified, including 4903 up-regulated and 3800 down-regulated ones. Moreover, a series of molecular processes were identified by Gene Ontology (GO) analysis, and these processes were suggested to be closely related to salt tolerance in Z. macrostachya. The identified DEGs concentrated on regulating plant growth via plant hormone signal transduction, maintaining ion homeostasis via salt secretion and osmoregulatory substance accumulation and preventing oxidative damage via increasing the activity of ROS (reactive oxygen species) scavenging system. These changes may be the most important responses of Z. macrostachya under salt stress. Some key genes related to salt stress were identified meanwhile. Collectively, our findings provided valuable insights into the molecular mechanisms and genetic underpinnings of salt tolerance in Z. macrostachya.
Collapse
Affiliation(s)
| | | | | | | | - Luo-Yan Zhang
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (R.W.); (X.W.); (K.L.); (X.-J.Z.)
| | - Shou-Jin Fan
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (R.W.); (X.W.); (K.L.); (X.-J.Z.)
| |
Collapse
|