1
|
Zhou J, Gao S, Du Z, Jin S, Yang Z, Xu T, Zheng C, Liu Y. Seasonal variations and sensory profiles of oolong tea: Insights from metabolic analysis of Tieguanyin cultivar. Food Chem 2025; 462:140977. [PMID: 39232274 DOI: 10.1016/j.foodchem.2024.140977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/28/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
The impact of seasonal variations on the quality of oolong tea products remains a subject of ongoing exploration. This study delves into the intricate relationships between seasonality, metabolites, and sensory characteristics in finished oolong tea products. Metabolomic data from 266 Tieguanyin oolong tea products harvested in both spring and autumn, along with corresponding sensory evaluations, were acquired. Using OPLS-DA and PLS-DA models with UPLC-QToF/MS data, our findings showed that seasonal effects were notably more pronounced in light-scented Tieguanyin products (lightly-roasted) compared to strong-scented products (moderately-roasted). Furthermore, over half of the identified key seasonal discriminant metabolites happened to be crucial for determining the sensory grade. The study marks the first-time recognition of triterpene saponins as critical factors in determining both the harvest season and the sensory grade of oolong tea. These insights deepen our understanding of the interplays between seasonal variations, metabolites, and sensory attributes in oolong tea products.
Collapse
Affiliation(s)
- Junling Zhou
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350007, China
| | - Shuilian Gao
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, 350007, China
| | - Zhenghua Du
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350007, China
| | - Shan Jin
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350007, China
| | - Zhenbiao Yang
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350007, China
| | - Tongda Xu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350007, China.
| | - Chao Zheng
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350007, China.
| | - Ying Liu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350007, China.
| |
Collapse
|
2
|
Zubova MY, Goncharuk EA, Nechaeva TL, Aksenova MA, Zaitsev GP, Katanskaya VM, Kazantseva VV, Zagoskina NV. Influence of Primary Light Exposure on the Morphophysiological Characteristics and Phenolic Compounds Accumulation of a Tea Callus Culture ( Camellia sinensis L.). Int J Mol Sci 2024; 25:10420. [PMID: 39408751 PMCID: PMC11477156 DOI: 10.3390/ijms251910420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 10/20/2024] Open
Abstract
Tea plant calli (Camellia sinensis L.) are characterized by the accumulation of various phenolic compounds (PC)-substances with high antioxidant activity. However, there is still no clarity on the response of tea cells to light exposure of varying intensity. The purpose of the research was to study tea callus cultures grown under the influence of primary exposure to different light intensities (50, 75, and 100 µmol·m-2·s-1). The cultures' growth, morphology, content of malondialdehyde and photosynthetic pigments (chlorophyll a and b), accumulation of various PC, including phenylpropanoids and flavanols, and the composition of catechins were analyzed. Primary exposure to different light intensities led to the formation of chloroplasts in tea calli, which was more pronounced at 100 µmol·m-2·s-1. Significant similarity in the growth dynamics of cultures, accumulation of pigments, and content of malondialdehyde and various phenolics in tea calli grown at light intensities of 50 and 75 µmol·m-2·s-1 has been established, which is not typical for calli grown at 100 µmol·m-2·s-1. According to data collected using high-performance liquid chromatography, (+)-catechin, (-)-epicatechin, epigallocatechin, gallocatechin gallate, epicatechin gallate, and epigallocatechin gallate were the main components of the tea callus culture's phenolic complex. Its content changed under the influence of primary exposure to light, reaching the greatest accumulation in the final stages of growth, and depended on the light intensity. The data obtained indicate changes in the morphophysiological and biochemical characteristics of tea callus cultures, including the accumulation of PC and their individual representatives under primary exposure to light exposure of varying intensity, which is most pronounced at its highest values (100 µmol·m-2·s-1).
Collapse
Affiliation(s)
- Maria Y. Zubova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Evgenia A. Goncharuk
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Tatiana L. Nechaeva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Maria A. Aksenova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Georgiy P. Zaitsev
- All-Russia National Research Institute of Viticulture and Winemaking “Magarach”, Russian Academy of Sciences, 298600 Yalta, Russia;
| | - Vera M. Katanskaya
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Varvara V. Kazantseva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Natalia V. Zagoskina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| |
Collapse
|
3
|
Han M, Lin S, Zhu B, Tong W, Xia E, Wang Y, Yang T, Zhang S, Wan X, Liu J, Niu Q, Zhu J, Bao S, Zhang Z. Dynamic DNA Methylation Regulates Season-Dependent Secondary Metabolism in the New Shoots of Tea Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3984-3997. [PMID: 38357888 DOI: 10.1021/acs.jafc.3c08568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Plant secondary metabolites are critical quality-conferring compositions of plant-derived beverages, medicines, and industrial materials. The accumulations of secondary metabolites are highly variable among seasons; however, the underlying regulatory mechanism remains unclear, especially in epigenetic regulation. Here, we used tea plants to explore an important epigenetic mark DNA methylation (5mC)-mediated regulation of plant secondary metabolism in different seasons. Multiple omics analyses were performed on spring and summer new shoots. The results showed that flavonoids and theanine metabolism dominated in the metabolic response to seasons in the new shoots. In summer new shoots, the genes encoding DNA methyltransferases and demethylases were up-regulated, and the global CG and CHG methylation reduced and CHH methylation increased. 5mC methylation in promoter and gene body regions influenced the seasonal response of gene expression; the amplitude of 5mC methylation was highly correlated with that of gene transcriptions. These differentially methylated genes included those encoding enzymes and transcription factors which play important roles in flavonoid and theanine metabolic pathways. The regulatory role of 5mC methylation was further verified by applying a DNA methylation inhibitor. These findings highlight that dynamic DNA methylation plays an important role in seasonal-dependent secondary metabolism and provide new insights for improving tea quality.
Collapse
Affiliation(s)
- Mengxue Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shijia Lin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Biying Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Hefei, Anhui 230036, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Hefei, Anhui 230036, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Hefei, Anhui 230036, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Hefei, Anhui 230036, China
| | - Yuanrong Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Hefei, Anhui 230036, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Hefei, Anhui 230036, China
| | - Shupei Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Hefei, Anhui 230036, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Hefei, Anhui 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Hefei, Anhui 230036, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Hefei, Anhui 230036, China
| | - Jianjun Liu
- College of Tea Sciences, Guizhou University, Guiyang 550025, China
| | - Qingfeng Niu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jianhua Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Hefei, Anhui 230036, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Hefei, Anhui 230036, China
| |
Collapse
|
4
|
Xu J, Zhang Y, Zhang M, Wei X, Zhou Y. Effects of foliar selenium application on Se accumulation, elements uptake, nutrition quality, sensory quality and antioxidant response in summer-autumn tea. Food Res Int 2024; 175:113618. [PMID: 38128974 DOI: 10.1016/j.foodres.2023.113618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 12/23/2023]
Abstract
Summer-autumn tea is characterized by high polyphenol content and low amino acid content, resulting in bitter and astringent teast. However, these qualities often lead to low economic benefits, ultimately resulting in a wastage of tea resources. The study focused on evaluating the effects of foliar spraying of glucosamine selenium (GLN-Se) on summer-autumn tea. This foliar fertilizer was applied to tea leaves to assess its impact on plant development, nutritional quality, elemental uptake, organoleptic quality, and antioxidant responses. The results revealed that GlcN-Se enhanced photosynthesis and yield by improving the antioxidant system. Additionally, the concentration of GlcN-Se positively correlated with the total and organic selenium contents in tea. The foliar application of GlcN-Se reduced toxic heavy metal content and increased the levels of macronutrients and micronutrients, which facilitated adaptation to environmental changes and abiotic stresses. Furthermore, GlcN-Se significantly improved both non-volatile and volatile components of tea leaves, resulting in a sweet aftertaste and nectar aroma in the tea soup. To conclude, the accurate and rational application of exogenous GlcN-Se can effectively enhance the selenium content and biochemical status of tea. This improvement leads to enhanced nutritional quality and sensory characteristics, making it highly significant for the tea industry.
Collapse
Affiliation(s)
- Jia Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yayuan Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, NO. 100 Haiquan Road, Shanghai 201418, PR China
| | - Mengke Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Yiming Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, NO. 100 Haiquan Road, Shanghai 201418, PR China.
| |
Collapse
|
5
|
Chen S, Wang P, Kong W, Chai K, Zhang S, Yu J, Wang Y, Jiang M, Lei W, Chen X, Wang W, Gao Y, Qu S, Wang F, Wang Y, Zhang Q, Gu M, Fang K, Ma C, Sun W, Ye N, Wu H, Zhang X. Gene mining and genomics-assisted breeding empowered by the pangenome of tea plant Camellia sinensis. NATURE PLANTS 2023; 9:1986-1999. [PMID: 38012346 DOI: 10.1038/s41477-023-01565-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/20/2023] [Indexed: 11/29/2023]
Abstract
Tea is one of the world's oldest crops and is cultivated to produce beverages with various flavours. Despite advances in sequencing technologies, the genetic mechanisms underlying key agronomic traits of tea remain unclear. In this study, we present a high-quality pangenome of 22 elite cultivars, representing broad genetic diversity in the species. Our analysis reveals that a recent long terminal repeat burst contributed nearly 20% of gene copies, introducing functional genetic variants that affect phenotypes such as leaf colour. Our graphical pangenome improves the efficiency of genome-wide association studies and allows the identification of key genes controlling bud flush timing. We also identified strong correlations between allelic variants and flavour-related chemistries. These findings deepen our understanding of the genetic basis of tea quality and provide valuable genomic resources to facilitate its genomics-assisted breeding.
Collapse
Affiliation(s)
- Shuai Chen
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Pengjie Wang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Weilong Kong
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kun Chai
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shengcheng Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jiaxin Yu
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yibin Wang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Mengwei Jiang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenlong Lei
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao Chen
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenling Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yingying Gao
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shenyang Qu
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Fang Wang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yinghao Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Mengya Gu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kaixing Fang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, China
| | - Chunlei Ma
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Naixing Ye
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Hualing Wu
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, China.
| | - Xingtan Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
6
|
Baruah PM, Bordoloi KS, Gill SS, Agarwala N. CircRNAs responsive to winter dormancy and spring flushing conditions of tea leaf buds. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111828. [PMID: 37586421 DOI: 10.1016/j.plantsci.2023.111828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Circular RNAs (circRNAs) are important regulators of diverse biological processes of plants. However, the evolution and potential functions of circRNAs during winter dormancy and spring bud flushing of tea plant is largely unknown. Using RNA-seq data, a total of 1184 circRNAs were identified in the winter dormant and spring bud flushing leaf samples of tea plants in two different cultivars exhibiting different duration of winter dormancy. A total of 156 circRNAs are found to be differentially expressed and the weighted gene co-expression network (WGCNA) analysis revealed that 22 and 20 differentially expressed-circRNAs (DE-circRNAs) positively correlated with the flushing and dormant leaf traits, respectively, in both the tea cultivars used. Some transcription factors (TFs) viz. MYB, WRKY, ERF, bHLH and several genes related to secondary metabolite biosynthetic pathways are found to co-express with circRNAs. DE-circRNAs also predicted to interact with miRNAs and can regulate phytohormone biosynthesis and various signalling pathways in tea plant. This study uncovers the potential roles of circRNAs to determine winter dormancy and spring bud flushing conditions in tea plants.
Collapse
Affiliation(s)
- Pooja Moni Baruah
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Guwahati 781014, Assam, India
| | - Kuntala Sarma Bordoloi
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Guwahati 781014, Assam, India; Mangaldai College, Upahupara, Mangaldai 784125, Assam, India
| | - Sarvajeet Singh Gill
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| | - Niraj Agarwala
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Guwahati 781014, Assam, India.
| |
Collapse
|
7
|
Li H, Song K, Zhang X, Wang D, Dong S, Liu Y, Yang L. Application of Multi-Perspectives in Tea Breeding and the Main Directions. Int J Mol Sci 2023; 24:12643. [PMID: 37628823 PMCID: PMC10454712 DOI: 10.3390/ijms241612643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/29/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Tea plants are an economically important crop and conducting research on tea breeding contributes to enhancing the yield and quality of tea leaves as well as breeding traits that satisfy the requirements of the public. This study reviews the current status of tea plants germplasm resources and their utilization, which has provided genetic material for the application of multi-omics, including genomics and transcriptomics in breeding. Various molecular markers for breeding were designed based on multi-omics, and available approaches in the direction of high yield, quality and resistance in tea plants breeding are proposed. Additionally, future breeding of tea plants based on single-cellomics, pangenomics, plant-microbe interactions and epigenetics are proposed and provided as references. This study aims to provide inspiration and guidance for advancing the development of genetic breeding in tea plants, as well as providing implications for breeding research in other crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
8
|
Qi D, Lu M, Li J, Ma C. Metabolomics Reveals Distinctive Metabolic Profiles and Marker Compounds of Camellia ( Camellia sinensis L.) Bee Pollen. Foods 2023; 12:2661. [PMID: 37509753 PMCID: PMC10378613 DOI: 10.3390/foods12142661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Camellia bee pollen (CBP) is a major kind of bee product which is collected by honeybees from tea tree (Camellia sinensis L.) flowers and agglutinated into pellets via oral secretion. Due to its special healthcare value, the authenticity of its botanical origin is of great interest. This study aimed at distinguishing CBP from other bee pollen, including rose, apricot, lotus, rape, and wuweizi bee pollen, based on a non-targeted metabolomics approach using ultra-high performance liquid chromatography-mass spectrometry. Among the bee pollen groups, 54 differential compounds were identified, including flavonol glycosides and flavone glycosides, catechins, amino acids, and organic acids. A clear separation between CBP and all other samples was observed in the score plots of the principal component analysis, indicating distinctive metabolic profiles of CBP. Notably, L-theanine (864.83-2204.26 mg/kg) and epicatechin gallate (94.08-401.82 mg/kg) were identified exclusively in all CBP and were proposed as marker compounds of CBP. Our study unravels the distinctive metabolic profiles of CBP and provides specific and quantified metabolite indicators for the assessment of authentic CBP.
Collapse
Affiliation(s)
- Dandan Qi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
- Tea Research Institute, Shangdong Academy of Agricultural Sciences, Jinan 250000, China
| | - Meiling Lu
- Agilent Technologies (China) Co., Ltd., Beijing 100102, China
| | - Jianke Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Chuan Ma
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| |
Collapse
|
9
|
Qiu Z, Liao J, Chen J, Chen P, Sun B, Li A, Pan Y, Liu H, Zheng P, Liu S. The Cultivar Effect on the Taste and Aroma Substances of Hakka Stir-Fried Green Tea from Guangdong. Foods 2023; 12:2067. [PMID: 37238885 PMCID: PMC10217579 DOI: 10.3390/foods12102067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The flavor and quality of tea largely depends on the cultivar from which it is processed; however, the cultivar effect on the taste and aroma characteristics of Hakka stir-fried green tea (HSGT) has received little attention. High-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), and sensory evaluations were used to detect and predict the essential taste and aroma-contributing substances of HSGTs made from Huangdan (HD), Meizhan (MZ) and Qingliang Mountain (QL) cultivars. Orthogonal partial least squares data analysis (OPLS-DA) ranked four substances that putatively distinguished the tastes of the HSGTs, epigallocatechin gallate (EGCG) > theanine > epigallocatechin (EGC) > epicatechin gallate (ECG). Ten substances with variable importance in projections (VIPs) ≥ 1 and odor activation values (OAVs) ≥ 1 contributed to their overall aromas, with geranylacetone having the most significant effect on HD (OAV 1841), MZ (OAV 4402), and QL (OAV 1211). Additionally, sensory evaluations found that HD was relatively equivalent to QL in quality, and both were superior to MZ. HD had a distinct floral aroma, MZ had a distinct fried rice aroma, and QL had a balance of fried rice and fresh aromas. The results provide a theoretical framework for evaluating the cultivar effect on the quality of HSGT and put forward ideas for future HSGT cultivar development.
Collapse
Affiliation(s)
- Zihao Qiu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Jinmei Liao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Jiahao Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Peifen Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Binmei Sun
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Ansheng Li
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Yiyu Pan
- Meizhou Runqi Culture and Technology Development Co., Ltd., Meizhou 514000, China;
| | - Hongmei Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Peng Zheng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Shaoqun Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| |
Collapse
|
10
|
Chang M, Ma J, Sun Y, Tian L, Liu L, Chen Q, Zhang Z, Wan X, Sun J. γ-Glutamyl-transpeptidase CsGGT2 functions as light-activated theanine hydrolase in tea plant (Camellia sinensis L.). PLANT, CELL & ENVIRONMENT 2023; 46:1596-1609. [PMID: 36757089 DOI: 10.1111/pce.14561] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Theanine is an important secondary metabolite endowing tea with umami taste and health effects. It is essential to explore the metabolic pathway and regulatory mechanism of theanine to improve tea quality. Here, we demonstrated that the expression patterns of CsGGT2 (γ-glutamyl-transpeptidase), participated in theanine synthesis in vitro in our previous research, are significantly different in the aboveground and underground tissues of tea plants and regulated by light. Light up-regulated the expression of CsHY5, directly binding to the promoter of CsGGT2 and acting as an activator of CsGGT2, with a negative correlation with theanine accumulation. The enzyme activity assays and transient expression in Nicotiana benthamiana showed that CsGGT2, acting as bifunctional protein, synthesize and degrade theanine in vitro and in planta. The results of enzyme kinetics, Surface plasmon resonance (SPR) assays and targeted gene-silencing assays showed that CsGGT2 had a higher substrate affinity of theanine than that of ethylamine, and performed a higher theanine degradation catalytic efficiency. Therefore, light mediates the degradation of theanine in different tissues by regulating the expression of the theanine hydrolase CsGGT2 in tea plants, and these results provide new insights into the degradation of theanine mediated by light in tea plants.
Collapse
Affiliation(s)
- Manman Chang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Jingyu Ma
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Ying Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Liying Tian
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Jun Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
- College of Horticulture, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| |
Collapse
|
11
|
Kisiel A, Krzemińska A, Cembrowska-Lech D, Miller T. Data Science and Plant Metabolomics. Metabolites 2023; 13:metabo13030454. [PMID: 36984894 PMCID: PMC10054611 DOI: 10.3390/metabo13030454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The study of plant metabolism is one of the most complex tasks, mainly due to the huge amount and structural diversity of metabolites, as well as the fact that they react to changes in the environment and ultimately influence each other. Metabolic profiling is most often carried out using tools that include mass spectrometry (MS), which is one of the most powerful analytical methods. All this means that even when analyzing a single sample, we can obtain thousands of data. Data science has the potential to revolutionize our understanding of plant metabolism. This review demonstrates that machine learning, network analysis, and statistical modeling are some techniques being used to analyze large quantities of complex data that provide insights into plant development, growth, and how they interact with their environment. These findings could be key to improving crop yields, developing new forms of plant biotechnology, and understanding the relationship between plants and microbes. It is also necessary to consider the constraints that come with data science such as quality and availability of data, model complexity, and the need for deep knowledge of the subject in order to achieve reliable outcomes.
Collapse
Affiliation(s)
- Anna Kisiel
- Institute of Marine and Environmental Sciences, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
- Polish Society of Bioinformatics and Data Science BIODATA, Popiełuszki 4c, 71-214 Szczecin, Poland
| | - Adrianna Krzemińska
- Polish Society of Bioinformatics and Data Science BIODATA, Popiełuszki 4c, 71-214 Szczecin, Poland
| | - Danuta Cembrowska-Lech
- Polish Society of Bioinformatics and Data Science BIODATA, Popiełuszki 4c, 71-214 Szczecin, Poland
- Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland
| | - Tymoteusz Miller
- Institute of Marine and Environmental Sciences, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
- Polish Society of Bioinformatics and Data Science BIODATA, Popiełuszki 4c, 71-214 Szczecin, Poland
| |
Collapse
|
12
|
Farag MA, Elmetwally F, Elghanam R, Kamal N, Hellal K, Hamezah HS, Zhao C, Mediani A. Metabolomics in tea products; a compile of applications for enhancing agricultural traits and quality control analysis of Camellia sinensis. Food Chem 2023; 404:134628. [DOI: 10.1016/j.foodchem.2022.134628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|
13
|
Wang J, Su C, Cui Z, Huang L, Gu S, Jiang S, Feng J, Xu H, Zhang W, Jiang L, Zhao M. Transcriptomics and metabolomics reveal tolerance new mechanism of rice roots to Al stress. Front Genet 2023; 13:1063984. [PMID: 36704350 PMCID: PMC9871393 DOI: 10.3389/fgene.2022.1063984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023] Open
Abstract
The prevalence of soluble aluminum (Al) ions is one of the major limitations to crop production worldwide on acid soils. Therefore, understanding the Al tolerance mechanism of rice and applying Al tolerance functional genes in sensitive plants can significantly improve Al stress resistance. In this study, transcriptomics and metabolomics analyses were performed to reveal the mechanism of Al tolerance differences between two rice landraces (Al-tolerant genotype Shibanzhan (KR) and Al-sensitive genotype Hekedanuo (MR) with different Al tolerance. The results showed that DEG related to phenylpropanoid biosynthesis was highly enriched in KR and MR after Al stress, indicating that phenylpropanoid biosynthesis may be closely related to Al tolerance. E1.11.1.7 (peroxidase) was the most significant enzyme of phenylpropanoid biosynthesis in KR and MR under Al stress and is regulated by multiple genes. We further identified that two candidate genes Os02g0770800 and Os06g0521900 may be involved in the regulation of Al tolerance in rice. Our results not only reveal the resistance mechanism of rice to Al stress to some extent, but also provide a useful reference for the molecular mechanism of different effects of Al poisoning on plants.
Collapse
|
14
|
Combined analysis of transcriptome and metabolome provides insights into nano-selenium foliar applications to improve summer tea quality (Camellia sinensis). Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Wan C, Ouyang J, Li M, Rengasamy KRR, Liu Z. Effects of green tea polyphenol extract and epigallocatechin-3-O-gallate on diabetes mellitus and diabetic complications: Recent advances. Crit Rev Food Sci Nutr 2022; 64:5719-5747. [PMID: 36533409 DOI: 10.1080/10408398.2022.2157372] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetes mellitus is one of the major non-communicable diseases accounting for millions of death annually and increasing economic burden. Hyperglycemic condition in diabetes creates oxidative stress that plays a pivotal role in developing diabetes complications affecting multiple organs such as the heart, liver, kidney, retina, and brain. Green tea from the plant Camellia sinensis is a common beverage popular in many countries for its health benefits. Green tea extract (GTE) is rich in many biologically active compounds, e.g., epigallocatechin-3-O-gallate (EGCG), which acts as a potent antioxidant. Recently, several lines of evidence have shown the promising results of GTE and EGCG for diabetes management. Here, we have critically reviewed the effects of GTE and EGCC on diabetes in animal models and clinical studies. The concerns and challenges regarding the clinical use of GTE and EGCG against diabetes are also briefly discussed. Numerous beneficial effects of green tea and its catechins, particularly EGCG, make this natural product an attractive pharmacological agent that can be further developed to treat diabetes and its complications.
Collapse
Affiliation(s)
- Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jian Ouyang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Kannan R R Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
16
|
Zhang C, Zhou C, Xu K, Tian C, Zhang M, Lu L, Zhu C, Lai Z, Guo Y. A Comprehensive Investigation of Macro-Composition and Volatile Compounds in Spring-Picked and Autumn-Picked White Tea. Foods 2022; 11:foods11223628. [PMID: 36429222 PMCID: PMC9688969 DOI: 10.3390/foods11223628] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The flavour of white tea can be influenced by the season in which the fresh leaves are picked. In this study, the sensory evaluation results indicated that spring-picked white tea (SPWT) was stronger than autumn-picked white tea (APWT) in terms of the taste of umami, smoothness, astringency, and thickness as well as the aromas of flower and fresh. To explore key factors of sensory differences, a combination of biochemical composition determination, widely targeted volatilomics (WTV) analysis, multivariate statistical analysis, and odour activity value (OAV) analysis was employed. The phytochemical analysis showed that the free amino acid, tea polyphenol, and caffeine contents of SPWTs were significantly higher than those of APWTs, which may explain the higher umami, smoothness, thickness, and astringency scores of SPWTs than those of APWTs. The sabinene, (2E, 4E)-2, 4-octadienal, (-)-cis-rose oxide, caramel furanone, trans-rose oxide, and rose oxide contents were significantly higher in SPWTs than in APWTs, which may result in stronger flowery, fresh, and sweet aromas in SPWTs than in APWTs. Among these, (2E,4E)-2,4-octadienal and (-)-cis-rose oxide can be identified as key volatiles. This study provides an objective and accurate basis for classifying SPWTs and APWTs at the metabolite level.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kai Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Caiyun Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengcong Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Lu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence:
| |
Collapse
|
17
|
Combined analysis of transcriptomics and metabolomics revealed complex metabolic genes for diterpenoids biosynthesis in different organs of Anoectochilus roxburghii. CHINESE HERBAL MEDICINES 2022. [DOI: 10.1016/j.chmed.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Li M, Luo X, Ho CT, Li D, Guo H, Xie Z. A new strategy for grading of Lu’an guapian green tea by combination of differentiated metabolites and hypoglycaemia effect. Food Res Int 2022; 159:111639. [DOI: 10.1016/j.foodres.2022.111639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/08/2022]
|
19
|
Huang X, Tang Q, Li Q, Lin H, Li J, Zhu M, Liu Z, Wang K. Integrative analysis of transcriptome and metabolome reveals the mechanism of foliar application of Bacillus amyloliquefaciens to improve summer tea quality (Camellia sinensis). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:302-313. [PMID: 35728422 DOI: 10.1016/j.plaphy.2022.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Bacillus amyloliquefaciens is a promising microbial agent for quality improvement in crops; however, the effects of B. amyloliquefaciens biofertilizers on tea leaf metabolites are relatively unknown. Herein, a combination of metabolome profiling and transcriptome analysis was employed to investigate the effects of foliar spraying with B. amyloliquefaciens biofertilizers on tea leaf quality. The tea polyphenol to amino acid ratio (TP/AA), catechin, and caffeine levels decreased, but theanine level increased in tea leaves after foliar spraying with B. amyloliquefaciens. The differentially accumulated metabolites included flavonoids, phenolic acids, organic acids, amino acids, and carbohydrates. The decrease in catechin was correlated with the catechin/flavonoid biosynthesis pathway. The AMPD gene was highly associated with caffeine content, while the GOGAT gene was associated with theanine accumulation. Foliar spraying with B. amyloliquefaciens biofertilizers may improve summer tea quality. Our findings provide a basis for the application of B. amyloliquefaciens biofertilizers in tea plants and new insights on summer tea leaf resource utilization.
Collapse
Affiliation(s)
- Xiangxiang Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China.
| | - Qian Tang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China.
| | - Qin Li
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China.
| | - Haiyan Lin
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China.
| | - Juan Li
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China.
| | - Mingzhi Zhu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China.
| | - Zhonghua Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China.
| | - Kunbo Wang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
20
|
Feng H, Xiang Y, Wang X, Xue W, Yue Z. MTAGCN: predicting miRNA-target associations in Camellia sinensis var. assamica through graph convolution neural network. BMC Bioinformatics 2022; 23:271. [PMID: 35820798 PMCID: PMC9275082 DOI: 10.1186/s12859-022-04819-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background MircoRNAs (miRNAs) play a central role in diverse biological processes of Camellia sinensis var.assamica (CSA) through their associations with target mRNAs, including CSA growth, development and stress response. However, although the experiment methods of CSA miRNA-target identifications are costly and time-consuming, few computational methods have been developed to tackle the CSA miRNA-target association prediction problem. Results In this paper, we constructed a heterogeneous network for CSA miRNA and targets by integrating rich biological information, including a miRNA similarity network, a target similarity network, and a miRNA-target association network. We then proposed a deep learning framework of graph convolution networks with layer attention mechanism, named MTAGCN. In particular, MTAGCN uses the attention mechanism to combine embeddings of multiple graph convolution layers, employing the integrated embedding to score the unobserved CSA miRNA-target associations. Discussion Comprehensive experiment results on two tasks (balanced task and unbalanced task) demonstrated that our proposed model achieved better performance than the classic machine learning and existing graph convolution network-based methods. The analysis of these results could offer valuable information for understanding complex CSA miRNA-target association mechanisms and would make a contribution to precision plant breeding. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04819-3.
Collapse
Affiliation(s)
- Haisong Feng
- School of Information and Computer, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Ying Xiang
- School of Information and Computer, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xiaosong Wang
- School of Information and Computer, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Wei Xue
- School of Information and Computer, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Zhenyu Yue
- School of Information and Computer, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
21
|
Impact of harvest season on bioactive compounds, amino acids and in vitro antioxidant capacity of white tea through multivariate statistical analysis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
Yong L, Song Y, Xiao X, Sui H, Xu H, Tan R, Yang X, Song J, Li J, Wei S. Quantitative probabilistic assessment of caffeine intake from tea in Chinese adult consumers based on nationwide caffeine content determination and tea consumption survey. Food Chem Toxicol 2022; 165:113102. [PMID: 35513285 DOI: 10.1016/j.fct.2022.113102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Caffeine has known effects on the central nervous and cardiovascular systems. An intake up to 400 mg/day does not give rise to health concerns. Tea, a major source of caffeine, is highly consumed in China. However, the potential health risk of caffeine from tea has not been well evaluated. The present study assessed caffeine intake levels from tea for Chinese adult consumers. We collected 1,398 samples of green, black, dark, jasmine, oolong, white, and yellow tea from 17 provinces. The caffeine content was determined by HPLC. The average contents were 27 (oolong tea) - 43 (yellow tea) mg/g. The leaching rate of caffeine into the water was about 100%. Tea consumption data were from the National Beverage Consumption Survey 2013-2014. Monte Carlo simulations were applied to estimate the distribution of caffeine intake. The average caffeine intake from tea was 180 mg/day of all consumers. Green, dark, and black tea were the primary sources. Males (197 mg/day) consumed more caffeine than females (136 mg/day) on average, but females older than 71 years had the highest intake level (259 mg/day) among all subgroups. Over 90% of Chinese adult tea drinkers have caffeine intake under 400 mg/day.
Collapse
Affiliation(s)
- Ling Yong
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China; Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Yan Song
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Xiao Xiao
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Haixia Sui
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Haibin Xu
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Rong Tan
- Hangzhou Tea Research Institute, China coop, Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Recourses, Hangzhou, 310018, China
| | - Xiufang Yang
- Hangzhou Tea Research Institute, China coop, Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Recourses, Hangzhou, 310018, China
| | - Jian Song
- Food and Nutrition Institute, Shandong Center for Disease Control and Prevention, Jinan, 250000, China
| | - Jianwen Li
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Sheng Wei
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
23
|
Li MY, Liu HY, Wu DT, Kenaan A, Geng F, Li HB, Gunaratne A, Li H, Gan RY. L-Theanine: A Unique Functional Amino Acid in Tea ( Camellia sinensis L.) With Multiple Health Benefits and Food Applications. Front Nutr 2022; 9:853846. [PMID: 35445053 PMCID: PMC9014247 DOI: 10.3389/fnut.2022.853846] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 11/24/2022] Open
Abstract
Tea (Camellia sinensis L.) is a very popular health drink and has attracted increasing attention in recent years due to its various bioactive substances. Among them, L-theanine, a unique free amino acid, is one of the most important substances in tea and endows tea with a special flavor. Moreover, L-theanine is also a bioactive compound with plenty of health benefits, including antioxidant, anti-inflammatory, neuroprotective, anticancer, metabolic regulatory, cardiovascular protective, liver and kidney protective, immune regulatory, and anti-obesity effects. Due to the unique characteristics and beneficial functions, L-theanine has potential applications in the development of functional foods. This review summarized the influencing factors of L-theanine content in teas, the main health benefits and related molecular mechanisms of L-theanine, and its applications in food, understanding of which can provide updated information for the further research of L-theanine.
Collapse
Affiliation(s)
- Ming-Yue Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China.,Research Center for Plants and Human Health, Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hong-Yan Liu
- Research Center for Plants and Human Health, Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ahmad Kenaan
- National Graphene Institute, The University of Manchester, Manchester, United Kingdom
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Anil Gunaratne
- Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
| | - Hang Li
- Research Center for Plants and Human Health, Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Ren-You Gan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China.,Research Center for Plants and Human Health, Chengdu National Agricultural Science and Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
24
|
Lin S, Chen Z, Chen T, Deng W, Wan X, Zhang Z. Theanine metabolism and transport in tea plants ( Camellia sinensis L.): advances and perspectives. Crit Rev Biotechnol 2022; 43:327-341. [PMID: 35430936 DOI: 10.1080/07388551.2022.2036692] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Theanine, a tea plant-specific non-proteinogenic amino acid, is the most abundant free amino acid in tea leaves. It is also one of the most important quality components of tea because it endows the "umami" taste, relaxation-promoting, and many other health benefits of tea infusion. Its content in tea leaves is directly correlated with the quality and price of green tea. Theanine biosynthesis primarily occurs in roots and is transported to new shoots in tea plants. Recently, great advances have been made in theanine metabolism and transport in tea plants. Along with the deciphering of the genomic sequences of tea plants, new genes in theanine metabolic pathway were discovered and functionally characterized. Theanine transporters were identified and were characterized on the affinity for: theanine, substrate specificity, spatiotemporal expression, and the role in theanine root-to-shoot transport. The mechanisms underlying the regulation of theanine accumulation by: cultivars, seasons, nutrients, and environmental factors are also being rapidly uncovered. Transcription factors were identified to be critical regulators of theanine biosynthesis. In this review, we summarize the progresses in theanine: biosynthesis, catabolism, and transport processes. We also discuss the future studies on theanine in tea plants, and application of the knowledge to crops to synthesize theanine to improve the health-promoting quality of non-tea crops.
Collapse
Affiliation(s)
- Shijia Lin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| | - Ziping Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| | - Tingting Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| | - Weiwei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| |
Collapse
|
25
|
Mei S, Yu Z, Chen J, Zheng P, Sun B, Guo J, Liu S. The Physiology of Postharvest Tea (Camellia sinensis) Leaves, According to Metabolic Phenotypes and Gene Expression Analysis. Molecules 2022; 27:molecules27051708. [PMID: 35268809 PMCID: PMC8911848 DOI: 10.3390/molecules27051708] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Proper postharvest storage preserves horticultural products, including tea, until they can be processed. However, few studies have focused on the physiology of ripening and senescence during postharvest storage, which affects the flavor and quality of tea. In this study, physiological and biochemical indexes of the leaves of tea cultivar ‘Yinghong 9′ preserved at a low temperature and high relative humidity (15–18 °C and 85–95%, PTL) were compared to those of leaves stored at ambient conditions (24 ± 2 °C and relative humidity of 65% ± 5%, UTL). Water content, chromatism, chlorophyll fluorescence, and key metabolites (caffeine, theanine, and catechins) were analyzed over a period of 24 h, and volatilized compounds were determined after 24 h. In addition, the expression of key biosynthesis genes for catechin, caffeine, theanine, and terpene were quantified. The results showed that water content, chromatism, and chlorophyll fluorescence of preserved leaves were more similar to fresh tea leaves than unpreserved tea leaves. After 24 h, the content of aroma volatiles and caffeine significantly increased, while theanine decreased in both groups. Multiple catechin monomers showed distinct changes within 24 h, and EGCG was significantly higher in preserved tea. The expression levels of CsFAS and CsTSI were consistent with the content of farnesene and theanine, respectively, but TCS1 and TCS2 expression did not correlate with caffeine content. Principal component analysis considered results from multiple indexes and suggested that the freshness of PTL was superior to that of UTL. Taken together, preservation conditions in postharvest storage caused a series of physiological and metabolic variations of tea leaves, which were different from those of unpreserved tea leaves. Comprehensive evaluation showed that the preservation conditions used in this study were effective at maintaining the freshness of tea leaves for 2–6 h. This study illustrates the metabolic changes that occur in postharvest tea leaves, which will provide a foundation for improvements to postharvest practices for tea leaves.
Collapse
Affiliation(s)
- Shuang Mei
- College of Engineering, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zizi Yu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Y.); (J.C.); (P.Z.); (B.S.)
| | - Jiahao Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Y.); (J.C.); (P.Z.); (B.S.)
| | - Peng Zheng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Y.); (J.C.); (P.Z.); (B.S.)
| | - Binmei Sun
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Y.); (J.C.); (P.Z.); (B.S.)
| | - Jiaming Guo
- College of Engineering, South China Agricultural University, Guangzhou 510642, China;
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 525000, China
- Correspondence: (J.G.); (S.L.)
| | - Shaoqun Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Y.); (J.C.); (P.Z.); (B.S.)
- Correspondence: (J.G.); (S.L.)
| |
Collapse
|
26
|
Molecular and Metabolic Changes under Environmental Stresses: The Biosynthesis of Quality Components in Preharvest Tea Shoots. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Severe environments impose various abiotic stresses on tea plants. Although much is known about the physiological and biochemical responses of tea (Camellia sinensis L.) shoots under environmental stresses, little is known about how these stresses impact the biosynthesis of quality components. This review summarizes and analyzes the changes in molecular and quality components in tea shoots subjected to major environmental stresses during the past 20 years, including light (shade, blue light, green light, and UV-B), drought, high/low temperature, CO2, and salinity. These studies reveal that carbon and nitrogen metabolism is critical to the downstream biosynthesis of quality components. Based on the molecular responses of tea plants to stresses, a series of artificial methods have been suggested to treat the pre-harvest tea plants that are exposed to inhospitable environments to improve the quality components in shoots. Furthermore, many pleiotropic genes that are up- or down-regulated under both single and concurrent stresses were analyzed as the most effective genes for regulating multi-resistance and quality components. These findings deepen our understanding of how environmental stresses affect the quality components of tea, providing novel insights into strategies for balancing plant resistance, growth, and quality components in field-based cultivation and for breeding plants using pleiotropic genes.
Collapse
|
27
|
Zhou B, Wang Z, Yin P, Ma B, Ma C, Xu C, Wang J, Wang Z, Yin D, Xia T. Impact of prolonged withering on phenolic compounds and antioxidant capability in white tea using LC-MS-based metabolomics and HPLC analysis: Comparison with green tea. Food Chem 2022; 368:130855. [PMID: 34496334 DOI: 10.1016/j.foodchem.2021.130855] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/19/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022]
Abstract
Contents of 20 bioactive compounds in 12 teas produced in Xinyang Region were determined by high performance liquid chromatography. Ultra-high performance liquid chromatography-quadrupole time of flight-mass spectrometry was developed for untargeted metabolomics analysis. Antioxidant activities were measured by 4 various assays. Those teas could be completely divided into green and white tea through principal component analysis, hierarchical cluster analysis and orthonormal partial least squares-discriminant analysis (R2Y = 0.996 and Q2 = 0.982, respectively). The prolonged withering generated 472 differentiated metabolites between white and green tea, prompted significant decreases (variable importance in the projection > 1.0, p-value < 0.05 and fold change > 1.50) of most catechins and 8 phenolic acids to form 4 theaflavins, and benefited for the accumulation of 17 flavonoids and flavonoid glycosides, 8 flavanone and their derivatives, 20 free amino acids, 12 sugars and 1 purine alkaloid. Additionally, kaempferol and taxifolin contributed to 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging ability of white tea.
Collapse
Affiliation(s)
- Binxing Zhou
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| | - Zihao Wang
- Henan Key Laboratory of Tea Comprehensive Utilization in South Henan, Tea College, Xinyang Agriculture and Forestry University, Xinyang 464000, Henan, China
| | - Peng Yin
- Henan Key Laboratory of Tea Comprehensive Utilization in South Henan, Tea College, Xinyang Agriculture and Forestry University, Xinyang 464000, Henan, China; Key Laboratory of Tea Science of Education of Ministry, College of Horticulture, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Bingsong Ma
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Cunqiang Ma
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| | - Chengcheng Xu
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Jiacai Wang
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Ziyu Wang
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Dingfang Yin
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| |
Collapse
|
28
|
Feng L, Yu Y, Lin S, Yang T, Chen Q, Liu L, Sun J, Zheng P, Zhang Z, Wan X. Tonoplast-Localized Theanine Transporter CsCAT2 May Mediate Theanine Storage in the Root of Tea Plants ( Camellia sinensis L.). FRONTIERS IN PLANT SCIENCE 2021; 12:797854. [PMID: 34975988 PMCID: PMC8719441 DOI: 10.3389/fpls.2021.797854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Theanine is the component endowing tea infusion with "umami" taste and antidepression benefits. Theanine is primarily synthesized and stored in root in winter and is transported via vascular tissues to the new shoot in spring. However, the mechanism underlying theanine storage in the root of tea plants remains largely unknown. Cationic amino acid transporter 2 (CsCAT2) in tea plants is homologous to glutamine permease 1 (GNP1), the specific glutamine transporter in yeast. In this study, we identified CsCAT2 as an H+-dependent theanine transporter with medium affinity for theanine. The result of subcellular localization showed that CsCAT2 was a tonoplast-localized transporter. Importantly, CsCAT2 highly expressed in the root in winter during theanine storage and reduced its expression in the root during theanine transport from root-to-shoot in spring. In addition, CsCAT2 expression in the roots of 5 varieties at four time points during December and April was significant negatively correlated with the capacity of theanine root-to-shoot movement. Taken together, these results suggested that CsCAT2 may mediate theanine storage in the vacuole of root cells and may negatively modulate theanine transport from root to shoot.
Collapse
Affiliation(s)
- Lin Feng
- State Key Laboratory of Tea Biology and Resource Utilization, School of Tea and Food science and Technology, Anhui Agricutural University, Hefei, China
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yongchao Yu
- State Key Laboratory of Tea Biology and Resource Utilization, School of Tea and Food science and Technology, Anhui Agricutural University, Hefei, China
| | - Shijia Lin
- State Key Laboratory of Tea Biology and Resource Utilization, School of Tea and Food science and Technology, Anhui Agricutural University, Hefei, China
| | - Tianyuan Yang
- State Key Laboratory of Tea Biology and Resource Utilization, School of Tea and Food science and Technology, Anhui Agricutural University, Hefei, China
| | - Qi Chen
- State Key Laboratory of Tea Biology and Resource Utilization, School of Tea and Food science and Technology, Anhui Agricutural University, Hefei, China
| | - Linlin Liu
- State Key Laboratory of Tea Biology and Resource Utilization, School of Tea and Food science and Technology, Anhui Agricutural University, Hefei, China
| | - Jun Sun
- State Key Laboratory of Tea Biology and Resource Utilization, School of Tea and Food science and Technology, Anhui Agricutural University, Hefei, China
| | - Pengcheng Zheng
- State Key Laboratory of Tea Biology and Resource Utilization, School of Tea and Food science and Technology, Anhui Agricutural University, Hefei, China
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Biology and Resource Utilization, School of Tea and Food science and Technology, Anhui Agricutural University, Hefei, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Biology and Resource Utilization, School of Tea and Food science and Technology, Anhui Agricutural University, Hefei, China
| |
Collapse
|
29
|
Xia X, Mi X, Jin L, Guo R, Zhu J, Xie H, Liu L, An Y, Zhang C, Wei C, Liu S. CsLAZY1 mediates shoot gravitropism and branch angle in tea plants (Camellia sinensis). BMC PLANT BIOLOGY 2021; 21:243. [PMID: 34049485 PMCID: PMC8164267 DOI: 10.1186/s12870-021-03044-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/13/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Branch angle is a pivotal component of tea plant architecture. Tea plant architecture not only affects tea quality and yield but also influences the efficiency of automatic tea plant pruning. However, the molecular mechanism controlling the branch angle, which is an important aspect of plant architecture, is poorly understood in tea plants. RESULTS In the present study, three CsLAZY genes were identified from tea plant genome data through sequence homology analysis. Phylogenetic tree displayed that the CsLAZY genes had high sequence similarity with LAZY genes from other plant species, especially those in woody plants. The expression patterns of the three CsLAZYs were surveyed in eight tissues. We further verified the expression levels of the key CsLAZY1 transcript in different tissues among eight tea cultivars and found that CsLAZY1 was highly expressed in stem. Subcellular localization analysis showed that the CsLAZY1 protein was localized in the plasma membrane. CsLAZY1 was transferred into Arabidopsis thaliana to investigate its potential role in regulating shoot development. Remarkably, the CsLAZY1 overexpressed plants responded more effectively than the wild-type plants to a gravity inversion treatment under light and dark conditions. The results indicate that CsLAZY1 plays an important role in regulating shoot gravitropism in tea plants. CONCLUSIONS The results provide important evidence for understanding the functions of CsLAZY1 in regulating shoot gravitropism and influencing the stem branch angle in tea plants. This report identifies CsLAZY1 as a promising gene resource for the improvement of tea plant architecture.
Collapse
Affiliation(s)
- Xiaobo Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| | - Xiaozeng Mi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| | - Ling Jin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| | - Rui Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| | - Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| | - Hui Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| | - Lu Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| | - Yanlin An
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| | - Cao Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China.
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, China.
| |
Collapse
|
30
|
Morreeuw ZP, Escobedo-Fregoso C, Ríos-González LJ, Castillo-Quiroz D, Reyes AG. Transcriptome-based metabolic profiling of flavonoids in Agave lechuguilla waste biomass. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110748. [PMID: 33691954 DOI: 10.1016/j.plantsci.2020.110748] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/26/2020] [Accepted: 10/31/2020] [Indexed: 05/23/2023]
Abstract
Agave lechuguilla is one of the most abundant species in arid and semiarid regions of Mexico, and is used to extract fiber. However, 85 % of the harvested plant material is discarded. Previous bioprospecting studies of the waste biomass suggest the presence of bioactive compounds, although the extraction process limited metabolite characterization. This work achieved flavonoid profiling of A. lechuguilla in both processed and non-processed leaf tissues using transcriptomic analysis. Functional annotation of the first de novo transcriptome of A. lechuguilla (255.7 Mbp) allowed identifying genes coding for 33 enzymes and 8 transcription factors involved in flavonoid biosynthesis. The flavonoid metabolic pathway was mostly elucidated by HPLC-MS/MS screening of alcoholic extracts. Key genes of flavonoid synthesis were higher expressed in processed leaf tissues than in non-processed leaves, suggesting a high content of flavonoids and glycoside derivatives in the waste biomass. Targeted HPLC-UV-MS analyses confirmed the concentration of isorhamnetin (1251.96 μg), flavanone (291.51 μg), hesperidin (34.23 μg), delphinidin (24.23 μg), quercetin (15.57 μg), kaempferol (13.71 μg), cyanidin (12.32 μg), apigenin (9.70 μg) and catechin (7.91 μg) per gram of dry residue. Transcriptomic and biochemical profiling concur in the potential of lechuguilla by-products with a wide range of applications in agriculture, feed, food, cosmetics, and pharmaceutical industries.
Collapse
Affiliation(s)
- Zoé P Morreeuw
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo Santa Rita Sur, C.P. 23096, La Paz, BCS, Mexico
| | - Cristina Escobedo-Fregoso
- CONACYT-CIBNOR, Av. Instituto Politécnico Nacional 195, Col. Playa Palo Santa Rita Sur, C.P. 23096, La Paz, BCS, Mexico
| | - Leopoldo J Ríos-González
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila (UAdeC), Blvd. V. Carranza, Col. Republica Oriente, C.P. 25280, Saltillo, Coahuila, Mexico
| | - David Castillo-Quiroz
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Saltillo, Carretera Saltillo-Zacatecas 9515, Col. Hacienda Buenavista, C.P. 25315, Saltillo, Coahuila, Mexico
| | - Ana G Reyes
- CONACYT-CIBNOR, Av. Instituto Politécnico Nacional 195, Col. Playa Palo Santa Rita Sur, C.P. 23096, La Paz, BCS, Mexico.
| |
Collapse
|