1
|
A Y K, E M, R B, E M, M D, L C, F D. Independent genetic factors control floret number and spikelet number in Triticum turgidum ssp. FRONTIERS IN PLANT SCIENCE 2024; 15:1390401. [PMID: 39253571 PMCID: PMC11381284 DOI: 10.3389/fpls.2024.1390401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024]
Abstract
Wheat grain yield is a complex trait resulting from a trade-off among many distinct components. During wheat evolution, domestication events and then modern breeding have strongly increased the yield potential of wheat plants, by enhancing spike fertility. To address the genetic bases of spike fertility in terms of spikelet number per spike and floret number per spikelet, a population of 110 recombinant inbred lines (RILS) obtained crossing a Triticum turgidum ssp. durum cultivar (Latino) and a T. dicoccum accession (MG5323) was exploited. Being a modern durum and a semi-domesticated genotype, respectively, the two parents differ for spike architecture and fertility, and thus the corresponding RIL population is the ideal genetic material to dissect genetic bases of yield components. The RIL population was phenotyped in four environments. Using a high-density SNP genetic map and taking advantage of several genome sequencing available for Triticeae, a total of 94 QTLs were identified for the eight traits considered; these QTLs were further reduced to 17 groups, based on their genetic and physical co-location. QTLs controlling floret number per spikelet and spikelet number per spike mapped in non-overlapping chromosomal regions, suggesting that independent genetic factors determine these fertility-related traits. The physical intervals of QTL groups were considered for possible co-location with known genes functionally involved in spike fertility traits and with yield-related QTLs previously mapped in tetraploid wheat. The most interesting result concerns a QTL group on chromosome 5B, associated with spikelet number per spike, since it could host genes still uncharacterized for their association to spike fertility. Finally, we identified two different regions where the trade-off between fertility related traits and kernel weight is overcome. Further analyses of these regions could pave the way for a future identification of new genetic loci contributing to fertility traits essential for yield improvement in durum wheat.
Collapse
Affiliation(s)
- Kiros A Y
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Mica E
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, Vercelli, Italy
| | - Battaglia R
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Mazzucotelli E
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Dell'Acqua M
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Cattivelli L
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Desiderio F
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| |
Collapse
|
2
|
Liu B, Li C, Li X, Wang J, Xie W, Woods DP, Li W, Zhu X, Yang S, Dong A, Amasino RM. The H3K4 demethylase JMJ1 is required for proper timing of flowering in Brachypodium distachyon. THE PLANT CELL 2024; 36:2729-2745. [PMID: 38652680 PMCID: PMC11218787 DOI: 10.1093/plcell/koae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/25/2024]
Abstract
Flowering is a key developmental transition in the plant life cycle. In temperate climates, flowering often occurs in response to the perception of seasonal cues such as changes in day-length and temperature. However, the mechanisms that have evolved to control the timing of flowering in temperate grasses are not fully understood. We identified a Brachypodium distachyon mutant whose flowering is delayed under inductive long-day conditions due to a mutation in the JMJ1 gene, which encodes a Jumonji domain-containing protein. JMJ1 is a histone demethylase that mainly demethylates H3K4me2 and H3K4me3 in vitro and in vivo. Analysis of the genome-wide distribution of H3K4me1, H3K4me2, and H3K4me3 in wild-type plants by chromatin immunoprecipitation and sequencing combined with RNA sequencing revealed that H3K4m1 and H3K4me3 are positively associated with gene transcript levels, whereas H3K4me2 is negatively correlated with transcript levels. Furthermore, JMJ1 directly binds to the chromatin of the flowering regulator genes VRN1 and ID1 and affects their transcription by modifying their H3K4me2 and H3K4me3 levels. Genetic analyses indicated that JMJ1 promotes flowering by activating VRN1 expression. Our study reveals a role for JMJ1-mediated chromatin modification in the proper timing of flowering in B. distachyon.
Collapse
Affiliation(s)
- Bing Liu
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Chengzhang Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Xiang Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Jiachen Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Wenhao Xie
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Daniel P Woods
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Weiya Li
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Xiaoyu Zhu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Shuoming Yang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Richard M Amasino
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
3
|
Helmsorig G, Walla A, Rütjes T, Buchmann G, Schüller R, Hensel G, von Korff M. early maturity 7 promotes early flowering by controlling the light input into the circadian clock in barley. PLANT PHYSIOLOGY 2024; 194:849-866. [PMID: 37951242 PMCID: PMC10828213 DOI: 10.1093/plphys/kiad551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/26/2023] [Indexed: 11/13/2023]
Abstract
Breeding for variation in photoperiod response is crucial to adapt crop plants to various environments. Plants measure changes in day length by the circadian clock, an endogenous timekeeper that allows plants to anticipate changes in diurnal and seasonal light-dark cycles. Here, we describe the early maturity 7 (eam7) locus in barley (Hordeum vulgare), which interacts with PHOTOPERIOD 1 (Ppd-H1) to cause early flowering under non-inductive short days. We identify LIGHT-REGULATED WD 1 (LWD1) as a putative candidate to underlie the eam7 locus in barley as supported by genetic mapping and CRISPR-Cas9-generated lwd1 mutants. Mutations in eam7 cause a significant phase advance and a misregulation of core clock and clock output genes under diurnal conditions. Early flowering was linked to an upregulation of Ppd-H1 during the night and consequent induction of the florigen FLOWERING LOCUS T1 under short days. We propose that EAM7 controls photoperiodic flowering in barley by controlling the light input into the clock and diurnal expression patterns of the major photoperiod response gene Ppd-H1.
Collapse
Affiliation(s)
- Gesa Helmsorig
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, 40223 Düsseldorf, Germany
| | - Agatha Walla
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, 40223 Düsseldorf, Germany
| | - Thea Rütjes
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, 40223 Düsseldorf, Germany
| | - Gabriele Buchmann
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, 40223 Düsseldorf, Germany
| | - Rebekka Schüller
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, 40223 Düsseldorf, Germany
| | - Götz Hensel
- Cluster of Excellence on Plant Sciences “SMART Plants for Tomorrow's Needs”, 40223 Düsseldorf, Germany
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-Universität Düsseldorf, 40223 Düsseldorf, Germany
- Division of Molecular Biology, Centre of the Region Hana for Biotechnological and Agriculture Research, Faculty of Science, Palacký University, CZ-779 00 Olomouc, Czech
| | - Maria von Korff
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, 40223 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences “SMART Plants for Tomorrow's Needs”, 40223 Düsseldorf, Germany
| |
Collapse
|
4
|
Wu S, Gao Y, Zhang Q, Liu F, Hu W. Application of Multi-Omics Technologies to the Study of Phytochromes in Plants. Antioxidants (Basel) 2024; 13:99. [PMID: 38247523 PMCID: PMC10812741 DOI: 10.3390/antiox13010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Phytochromes (phy) are distributed in various plant organs, and their physiological effects influence plant germination, flowering, fruiting, and senescence, as well as regulate morphogenesis throughout the plant life cycle. Reactive oxygen species (ROS) are a key regulatory factor in plant systemic responses to environmental stimuli, with an attractive regulatory relationship with phytochromes. With the development of high-throughput sequencing technology, omics techniques have become powerful tools, and researchers have used omics techniques to facilitate the big data revolution. For an in-depth analysis of phytochrome-mediated signaling pathways, integrated multi-omics (transcriptomics, proteomics, and metabolomics) approaches may provide the answer from a global perspective. This article comprehensively elaborates on applying multi-omics techniques in studying phytochromes. We describe the current research status and future directions on transcriptome-, proteome-, and metabolome-related network components mediated by phytochromes when cells are subjected to various stimulation. We emphasize the importance of multi-omics technologies in exploring the effects of phytochromes on cells and their molecular mechanisms. Additionally, we provide methods and ideas for future crop improvement.
Collapse
Affiliation(s)
- Shumei Wu
- Basic Medical Experiment Center, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (S.W.); (Y.G.); (Q.Z.)
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China
| | - Yue Gao
- Basic Medical Experiment Center, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (S.W.); (Y.G.); (Q.Z.)
| | - Qi Zhang
- Basic Medical Experiment Center, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (S.W.); (Y.G.); (Q.Z.)
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China
| | - Weiming Hu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China
| |
Collapse
|
5
|
Rodríguez Del Río Á, Monteagudo A, Contreras-Moreira B, Kiss T, Mayer M, Karsai I, Igartua E, Casas AM. Diversity of gene expression responses to light quality in barley. Sci Rep 2023; 13:17143. [PMID: 37816785 PMCID: PMC10564772 DOI: 10.1038/s41598-023-44263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
Light quality influence on barley development is poorly understood. We exposed three barley genotypes with either sensitive or insensitive response to two light sources producing different light spectra, fluorescent bulbs, and metal halide lamps, keeping constant light intensity, duration, and temperature. Through RNA-seq, we identified the main genes and pathways involved in the genotypic responses. A first analysis identified genotypic differences in gene expression of development-related genes, including photoreceptors and flowering time genes. Genes from the vernalization pathway of light quality-sensitive genotypes were affected by fluorescent light. In particular, vernalization-related repressors reacted differently: HvVRN2 did not experience relevant changes, whereas HvOS2 expression increased under fluorescent light. To identify the genes primarily related to light quality responses, and avoid the confounding effect of plant developmental stage, genes influenced by development were masked in a second analysis. Quantitative expression levels of PPD-H1, which influenced HvVRN1 and HvFT1, explained genotypic differences in development. Upstream mechanisms (light signaling and circadian clock) were also altered, but no specific genes linking photoreceptors and the photoperiod pathway were identified. The variety of light-quality sensitivities reveals the presence of possible mechanisms of adaptation of winter and facultative barley to latitudinal variation in light quality, which deserves further research.
Collapse
Affiliation(s)
- Álvaro Rodríguez Del Río
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain
- Centro de Biotecnología y Genómica de Plantas, UPM/INIA-CSIC, Madrid, Spain
| | - Arantxa Monteagudo
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain
| | - Bruno Contreras-Moreira
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
| | - Tibor Kiss
- Centre for Agriculture Research ELKH (ATK), Martonvásár, Hungary
- Center for Research and Development, Food and Wine Center of Excellence, Eszterházy Károly Catholic University, Eger, Hungary
| | - Marianna Mayer
- Centre for Agriculture Research ELKH (ATK), Martonvásár, Hungary
| | - Ildikó Karsai
- Centre for Agriculture Research ELKH (ATK), Martonvásár, Hungary
| | - Ernesto Igartua
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain.
| | - Ana M Casas
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain
| |
Collapse
|
6
|
Taranto F, Esposito S, Fania F, Sica R, Marzario S, Logozzo G, Gioia T, De Vita P. Breeding effects on durum wheat traits detected using GWAS and haplotype block analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1206517. [PMID: 37794940 PMCID: PMC10546023 DOI: 10.3389/fpls.2023.1206517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/08/2023] [Indexed: 10/06/2023]
Abstract
Introduction The recent boosting of genomic data in durum wheat (Triticum turgidum subsp. durum) offers the opportunity to better understand the effects of breeding on the genetic structures that regulate the expression of traits of agronomic interest. Furthermore, the identification of DNA markers useful for marker-assisted selection could also improve the reliability of technical protocols used for variety protection and registration. Methods Within this motivation context, 123 durum wheat accessions, classified into three groups: landraces (LR), ancient (OC) and modern cultivars (MC), were evaluated in two locations, for 34 agronomic traits, including UPOV descriptors, to assess the impact of changes that occurred during modern breeding. Results The association mapping analysis, performed with 4,241 SNP markers and six multi-locus-GWAS models, revealed 28 reliable Quantitative Trait Nucleotides (QTNs) related to plant morphology and kernel-related traits. Some important genes controlling flowering time and plant height were in linkage disequilibrium (LD) decay with QTNs identified in this study. A strong association for yellow berry was found on chromosome 6A (Q.Yb-6A) in a region containing the nadh-ubiquinone oxidoreductase subunit, a gene involved in starch metabolism. The Q.Kcp-2A harbored the PPO locus, with the associated marker (Ku_c13700_1196) in LD decay with Ppo-A1 and Ppo-A2. Interestingly, the Q.FGSGls-2B.1, identified by RAC875_c34512_685 for flag leaf glaucosity, mapped less than 1 Mb from the Epistatic inhibitors of glaucousness (Iw1), thus representing a good candidate for supporting the morphological DUS traits also with molecular markers. LD haplotype block approach revealed a higher diversity, richness and length of haploblocks in MC than OC and LR (580 in LR, 585 in OC and 612 in MC), suggesting a possible effect exerted by breeding programs on genomic regions associated with the agronomic traits. Discussion Our findings pave new ways to support the phenotypic characterization necessary for variety registration by using a panel of cost-effectiveness SNP markers associated also to the UPOV descriptors. Moreover, the panel of associated SNPs might represent a reservoir of favourable alleles to use in durum wheat breeding and genetics.
Collapse
Affiliation(s)
- F. Taranto
- Italian National Council of Research (CNR), Institute of Biosciences and Bioresources (IBBR), Bari, Italy
| | - S. Esposito
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| | - F. Fania
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE) - University of Foggia, Foggia, Italy
| | - R. Sica
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - S. Marzario
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - G. Logozzo
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - T. Gioia
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - P. De Vita
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| |
Collapse
|
7
|
Leung CC, Tarté DA, Oliver LS, Wang Q, Gendron JM. Systematic characterization of photoperiodic gene expression patterns reveals diverse seasonal transcriptional systems in Arabidopsis. PLoS Biol 2023; 21:e3002283. [PMID: 37699055 PMCID: PMC10497145 DOI: 10.1371/journal.pbio.3002283] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/31/2023] [Indexed: 09/14/2023] Open
Abstract
Photoperiod is an annual cue measured by biological systems to align growth and reproduction with the seasons. In plants, photoperiodic flowering has been intensively studied for over 100 years, but we lack a complete picture of the transcriptional networks and cellular processes that are photoperiodic. We performed a transcriptomics experiment on Arabidopsis plants grown in 3 different photoperiods and found that thousands of genes show photoperiodic alteration in gene expression. Gene clustering, daily expression integral calculations, and cis-element analysis then separate photoperiodic genes into co-expression subgroups that display 19 diverse seasonal expression patterns, opening the possibility that many photoperiod measurement systems work in parallel in Arabidopsis. Then, functional enrichment analysis predicts co-expression of important cellular pathways. To test these predictions, we generated a comprehensive catalog of genes in the phenylpropanoid biosynthesis pathway, overlaid gene expression data, and demonstrated that photoperiod intersects with 2 major phenylpropanoid pathways differentially, controlling flavonoids but not lignin. Finally, we describe the development of a new app that visualizes photoperiod transcriptomic data for the wider community.
Collapse
Affiliation(s)
- Chun Chung Leung
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Daniel A. Tarté
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Lilijana S. Oliver
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Qingqing Wang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Joshua M. Gendron
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
8
|
Wang S, Wen B, Yang Y, Long S, Liu J, Li M. Genome-Wide Identification and Expression Analysis of the RADIALIS-like Gene Family in Camellia sinensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3039. [PMID: 37687288 PMCID: PMC10490161 DOI: 10.3390/plants12173039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023]
Abstract
The RADIALIS-like (RL) proteins are v-myb avian myeloblastosis viral oncogene homolog (MYB)-related transcription factors (TFs), and are involved in many biological processes, including metabolism, development, and response to biotic and abiotic stresses. However, the studies on the RL genes of Camellia sinensis are not comprehensive enough. Therefore, we undertook this study and identified eight CsaRLs based on the typical conserved domain SANT Associated domain (SANT) of RL. These genes have low molecular weights and theoretical pI values ranging from 5.67 to 9.76. Gene structure analysis revealed that six CsaRL genes comprise two exons and one intron, while the other two contain a single exon encompassing motifs 1 and 2, and part of motif 3. The phylogenetic analysis divided one hundred and fifty-eight RL proteins into five primary classes, in which CsaRLs clustered in Group V and were homologous with CssRLs of the Shuchazao variety. In addition, we selected different tissue parts to analyze the expression profile of CsaRLs, and the results show that almost all genes displayed variable expression levels across tissues, with CsaRL1a relatively abundant in all tissues. qRT-PCR (real-time fluorescence quantitative PCR) was used to detect the relative expression levels of the CsaRL genes under various abiotic stimuli, and it was found that CsaRL1a expression levels were substantially higher than other genes, with abscisic acid (ABA) causing the highest expression. The self-activation assay with yeast two-hybrid system showed that CsaRL1a has no transcriptional activity. According to protein functional interaction networks, CsaRL1a was well connected with WIN1-like, lysine histidine transporter-1-like, β-amylase 3 chloroplastic-like, carbonic anhydrase-2-like (CA2), and carbonic anhydrase dnaJC76 (DJC76). This study adds to our understanding of the RL family and lays the groundwork for further research into the function and regulatory mechanisms of the CsaRLs gene family in Camellia sinensis.
Collapse
Affiliation(s)
| | | | | | | | - Jianjun Liu
- College of Tea Sciences, Guizhou University, Guiyang 550025, China; (S.W.); (B.W.); (Y.Y.); (S.L.)
| | - Meifeng Li
- College of Tea Sciences, Guizhou University, Guiyang 550025, China; (S.W.); (B.W.); (Y.Y.); (S.L.)
| |
Collapse
|
9
|
Abstract
Photoperiod-measuring mechanisms allow organisms to anticipate seasonal changes to align reproduction and growth with appropriate times of the year. This review provides historical and modern context to studies of plant photoperiodism. We describe how studies of photoperiodic flowering in plants led to the first theoretical models of photoperiod-measuring mechanisms in any organism. We discuss how more recent molecular genetic studies in Arabidopsis and rice have revisited these concepts. We then discuss how photoperiod transcriptomics provides new lessons about photoperiodic gene regulatory networks and the discovery of noncanonical photoperiod-measuring systems housed in metabolic networks of plants. This leads to an examination of nonflowering developmental processes controlled by photoperiod, including metabolism and growth. Finally, we highlight the importance of understanding photoperiodism in the context of climate change, delving into the rapid latitudinal migration of plant species and the potential role of photoperiod-measuring systems in generating photic barriers during migration.
Collapse
Affiliation(s)
- Joshua M Gendron
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA;
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany;
| |
Collapse
|
10
|
Alvarez MA, Li C, Lin H, Joe A, Padilla M, Woods DP, Dubcovsky J. EARLY FLOWERING 3 interactions with PHYTOCHROME B and PHOTOPERIOD1 are critical for the photoperiodic regulation of wheat heading time. PLoS Genet 2023; 19:e1010655. [PMID: 37163495 PMCID: PMC10171656 DOI: 10.1371/journal.pgen.1010655] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/04/2023] [Indexed: 05/12/2023] Open
Abstract
The photoperiodic response is critical for plants to adjust their reproductive phase to the most favorable season. Wheat heads earlier under long days (LD) than under short days (SD) and this difference is mainly regulated by the PHOTOPERIOD1 (PPD1) gene. Tetraploid wheat plants carrying the Ppd-A1a allele with a large deletion in the promoter head earlier under SD than plants carrying the wildtype Ppd-A1b allele with an intact promoter. Phytochromes PHYB and PHYC are necessary for the light activation of PPD1, and mutations in either of these genes result in the downregulation of PPD1 and very late heading time. We show here that both effects are reverted when the phyB mutant is combined with loss-of-function mutations in EARLY FLOWERING 3 (ELF3), a component of the Evening Complex (EC) in the circadian clock. We also show that the wheat ELF3 protein interacts with PHYB and PHYC, is rapidly modified by light, and binds to the PPD1 promoter in planta (likely as part of the EC). Deletion of the ELF3 binding region in the Ppd-A1a promoter results in PPD1 upregulation at dawn, similar to PPD1 alleles with intact promoters in the elf3 mutant background. The upregulation of PPD1 is correlated with the upregulation of the florigen gene FLOWERING LOCUS T1 (FT1) and early heading time. Loss-of-function mutations in PPD1 result in the downregulation of FT1 and delayed heading, even when combined with the elf3 mutation. Taken together, these results indicate that ELF3 operates downstream of PHYB as a direct transcriptional repressor of PPD1, and that this repression is relaxed both by light and by the deletion of the ELF3 binding region in the Ppd-A1a promoter. In summary, the regulation of the light mediated activation of PPD1 by ELF3 is critical for the photoperiodic regulation of wheat heading time.
Collapse
Affiliation(s)
- Maria Alejandra Alvarez
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Chengxia Li
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Huiqiong Lin
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Anna Joe
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Mariana Padilla
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Daniel P Woods
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
11
|
Hu L, Zhang M, Shang J, Liu Z, Weng Y, Yue H, Li Y, Chen P. A 5.5-kb LTR-retrotransposon insertion inside phytochrome B gene (CsPHYB) results in long hypocotyl and early flowering in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:68. [PMID: 36952021 DOI: 10.1007/s00122-023-04271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
The novel spontaneous long hypocotyl and early flowering (lhef) mutation in cucumber is due to a 5551-bp LTR-retrotransposon insertion in CsPHYB gene encoding PHYTOCHROME B, which plays a major role in regulating photomorphogenic hypocotyl growth and flowering. Hypocotyl length and flowering time are important for establishing high-quality seedlings in modern cucumber production, but little is known for the underlying molecular mechanisms of these two traits. In this study, a spontaneous cucumber long hypocotyl and early flowering mutant was identified and characterized. Based on multiple lines of evidence, we show that cucumber phytochrome B (CsPHYB) is the candidate gene for this mutation, and a 5551-bp LTR-retrotransposon insertion in the first exon of CsPHYB was responsible for the mutant phenotypes. Uniqueness of the mutant allele at CsPHYB was verified in 114 natural cucumber lines. Ectopic expression of the CsPHYB in Arabidopsis phyB mutant rescued the long hypocotyl and early flowering phenotype of phyB-9 mutant. The wild-type CsPHYB protein was localized on the membrane and cytoplasm under white light condition, whereas in the nucleus under red light, it is consistent with its roles as a red-light photoreceptor in Arabidopsis. However, the mutant csphyb protein was localized on the membrane and cytoplasm under both white and red-light conditions. Expression dynamics of CsPHYB and several cell elongation-related genes were positively correlated with hypocotyl elongation; the transcription levels of key positive and negative regulators for flowering time were also consistent with the anthesis dates in the mutant and wild-type plants. Yeast two hybrid and bimolecular fluorescence complementation assays identified physical interactions between CsPHYB and phytochrome interacting factor 3/4 (CsPIF3/4). These findings will provide new insights into the roles of the CsPHYB in cucumber hypocotyl growth and flowering time.
Collapse
Affiliation(s)
- Liangliang Hu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Miaomiao Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jingjing Shang
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zichen Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiqun Weng
- Horticulture Department, USDA-ARS Vegetable Crops Research Unit, University of Wisconsin, Madison, WI, 53706, USA
| | - Hongzhong Yue
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
12
|
Huang J, Qiu ZY, He J, Xu HS, Wang K, Du HY, Gao D, Zhao WN, Sun QG, Wang YS, Wen PZ, Li Q, Dong XO, Xie XZ, Jiang L, Wang HY, Liu YQ, Wan JM. Phytochrome B mediates dim-light-reduced insect resistance by promoting the ethylene pathway in rice. PLANT PHYSIOLOGY 2023; 191:1272-1287. [PMID: 36437699 PMCID: PMC9922401 DOI: 10.1093/plphys/kiac518] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Increasing planting density is one of the most effective ways to improve crop yield. However, one major factor that limits crop planting density is the weakened immunity of plants to pathogens and insects caused by dim light (DL) under shade conditions. The molecular mechanism underlying how DL compromises plant immunity remains unclear. Here, we report that DL reduces rice (Oryza sativa) resistance against brown planthopper (BPH; Nilaparvata lugens) by elevating ethylene (ET) biosynthesis and signaling in a Phytochrome B (OsPHYB)-dependent manner. The DL-reduced BPH resistance is relieved in osphyB mutants, but aggravated in OsPHYB overexpressing plants. Further, we found that DL reduces the nuclear accumulation of OsphyB, thus alleviating Phytochrome Interacting Factor Like14 (OsPIL14) degradation, consequently leading to the up-regulation of 1-Aminocyclopropane-1-Carboxylate Oxidase1 (OsACO1) and an increase in ET levels. In addition, we found that nuclear OsphyB stabilizes Ethylene Insensitive Like2 (OsEIL2) by competitively interacting with EIN3 Binding F-Box Protein (OsEBF1) to enhance ET signaling in rice, which contrasts with previous findings that phyB blocks ET signaling by facilitating Ethylene Insensitive3 (EIN3) degradation in other plant species. Thus, enhanced ET biosynthesis and signaling reduces BPH resistance under DL conditions. Our findings provide insights into the molecular mechanism of the light-regulated ET pathway and host-insect interactions and potential strategies for sustainable insect management.
Collapse
Affiliation(s)
- Jie Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Ze-Yu Qiu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao-Sen Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Kan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua-Ying Du
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Dong Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei-Ning Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Quan-Guang Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong-Sheng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Pei-Zheng Wen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao-Ou Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Xian-Zhi Xie
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ling Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Hai-Yang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yu-Qiang Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian-Min Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
13
|
Wittern L, Steed G, Taylor LJ, Ramirez DC, Pingarron-Cardenas G, Gardner K, Greenland A, Hannah MA, Webb AAR. Wheat EARLY FLOWERING 3 affects heading date without disrupting circadian oscillations. PLANT PHYSIOLOGY 2023; 191:1383-1403. [PMID: 36454669 PMCID: PMC9922389 DOI: 10.1093/plphys/kiac544] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 09/23/2022] [Accepted: 11/29/2022] [Indexed: 05/26/2023]
Abstract
Plant breeders have indirectly selected for variation at circadian-associated loci in many of the world's major crops, when breeding to increase yield and improve crop performance. Using an eight-parent Multiparent Advanced Generation Inter-Cross (MAGIC) population, we investigated how variation in circadian clock-associated genes contributes to the regulation of heading date in UK and European winter wheat (Triticum aestivum) varieties. We identified homoeologues of EARLY FLOWERING 3 (ELF3) as candidates for the Earliness per se (Eps) D1 and B1 loci under field conditions. We then confirmed a single-nucleotide polymorphism within the coding region of TaELF3-B1 as a candidate polymorphism underlying the Eps-B1 locus. We found that a reported deletion at the Eps-D1 locus encompassing TaELF3-D1 is, instead, an allele that lies within an introgression region containing an inversion relative to the Chinese Spring D genome. Using Triticum turgidum cv. Kronos carrying loss-of-function alleles of TtELF3, we showed that ELF3 regulates heading, with loss of a single ELF3 homoeologue sufficient to alter heading date. These studies demonstrated that ELF3 forms part of the circadian oscillator; however, the loss of all homoeologues was required to affect circadian rhythms. Similarly, loss of functional LUX ARRHYTHMO (LUX) in T. aestivum, an orthologue of a protein partner of Arabidopsis (Arabidopsis thaliana) ELF3, severely disrupted circadian rhythms. ELF3 and LUX transcripts are not co-expressed at dusk, suggesting that the structure of the wheat circadian oscillator might differ from that of Arabidopsis. Our demonstration that alterations to ELF3 homoeologues can affect heading date separately from effects on the circadian oscillator suggests a role for ELF3 in cereal photoperiodic responses that could be selected for without pleiotropic deleterious alterations to circadian rhythms.
Collapse
Affiliation(s)
- Lukas Wittern
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Gareth Steed
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Laura J Taylor
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Dora Cano Ramirez
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | | | - Keith Gardner
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Andy Greenland
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Matthew A Hannah
- BASF, BBCC – Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Gent, Belgium
| | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
14
|
Arce AL, Mencia R, Cambiagno DA, Lang PL, Liu C, Burbano HA, Weigel D, Manavella PA. Polymorphic inverted repeats near coding genes impact chromatin topology and phenotypic traits in Arabidopsis thaliana. Cell Rep 2023; 42:112029. [PMID: 36689329 DOI: 10.1016/j.celrep.2023.112029] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 01/23/2023] Open
Abstract
Transposons are mobile elements that are commonly silenced to protect eukaryotic genome integrity. In plants, transposable element (TE)-derived inverted repeats (IRs) are commonly found near genes, where they affect host gene expression. However, the molecular mechanisms of such regulation are unclear in most cases. Expression of these IRs is associated with production of 24-nt small RNAs, methylation of the IRs, and drastic changes in local 3D chromatin organization. Notably, many of these IRs differ between Arabidopsis thaliana accessions, causing variation in short-range chromatin interactions and gene expression. CRISPR-Cas9-mediated disruption of two IRs leads to a switch in genome topology and gene expression with phenotypic consequences. Our data show that insertion of an IR near a gene provides an anchor point for chromatin interactions that profoundly impact the activity of neighboring loci. This turns IRs into powerful evolutionary agents that can contribute to rapid adaptation.
Collapse
Affiliation(s)
- Agustín L Arce
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Regina Mencia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Damian A Cambiagno
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Patricia L Lang
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Chang Liu
- Department of Epigenetics, Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Hernán A Burbano
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany; Centre for Life's Origins and Evolution, University College London, London, UK
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Pablo A Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| |
Collapse
|
15
|
Wang H, Jia G, Zhang N, Zhi H, Xing L, Zhang H, Sui Y, Tang S, Li M, Zhang H, Feng B, Wu C, Diao X. Domestication-associated PHYTOCHROME C is a flowering time repressor and a key factor determining Setaria as a short-day plant. THE NEW PHYTOLOGIST 2022; 236:1809-1823. [PMID: 36178253 DOI: 10.1111/nph.18493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Phytochromes play vital roles in the regulation of flowering time, but little is known in Panicoideae species, especially the C4 model Setaria. Here, genomic variations of PHYTOCHROME C (PHYC) between wild and cultivated Setaria gene pools were analysed and three SiphyC mutants were identified. The function of SiPHYC was verified by CRISPR-Cas9 approach and transcriptome sequencing. Furthermore, efficiency of indoor cultivation of SiphyC mutants were systematically evaluated. An extreme purified selection of PHYC was detected in wild to cultivated domestication process of Setaria. SiphyC mutants and knockout transgenic plants showed an early heading date and a loss of response to short-day photoperiod. Furthermore, variable expression of SiFTa, SiMADS14 and SiMADS15 might be responsible for promoting flowering of SiphyC mutants. Moreover, SiphyC mutant was four times that of the indoor plot ratio of wild-type and produced over 200 seeds within 45 d per individual. Our results suggest that domestication-associated SiPHYC repressed flowering and determined Setaria as a short-day plant, and SiphyC mutants possess the potential for creating efficient indoor cultivation system suitable for research on Setaria as a model, and either for maize or sorghum as well.
Collapse
Affiliation(s)
- Hailong Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712000, China
| | - Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ning Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lihe Xing
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haoshan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yi Sui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mingzhe Li
- Institute of Dry-land Agriculture, Hebei Academy of Agricultural and Forestry Sciences, Hengshui, Hebei, 053000, China
| | - Haijin Zhang
- Institute of Dry Land Agroforestry, Liaoning Academy of Agricultural Sciences, Chaoyang, Liaoning, 122000, China
| | - Baili Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712000, China
| | - Chuanyin Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
16
|
Yan J, He J, Li J, Ren S, Wang Y, Zhou J, Tan X. Analysis of Camellia oleifera transcriptome reveals key pathways and hub genes involved during different photoperiods. BMC PLANT BIOLOGY 2022; 22:435. [PMID: 36089577 PMCID: PMC9465947 DOI: 10.1186/s12870-022-03798-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Camellia oleifera Abel. (C. oleifera) is an important traditional woody species in China that produces edible oil. However, the current literature lacks a proper understanding of C. oleifera's ability to adapt to different photoperiods. RESULTS Our results indicate that the photoperiod can significantly impact flowering time in C. oleifera. We grew a total of nine samples under the short day condition (SD), middle day condition (MD) and long day condition (LD). Transcriptome analysis yielded 66.94 Gb of high-quality clean reads, with an average of over 6.73 Gb of reads for per sample. Following assembly, a total of 120,080 transcripts were obtained and 94,979 unigenes annotated. A total of 3475 differentially expressed genes (DEGs) were identified between the SD_MD, SD_LD, and MD_LD gene sets. Moreover, WGCNA identified ten gene modules. Genes in pink module (92 genes) were positively correlated with SD, and negatively correlated with both MD and LD. Genes in the magenta module (42 genes) were positively correlated with MD and negatively correlated with both LD and SD. Finally, genes in the yellow module (1758 genes) were positively correlated with both SD and MD, but negatively correlated with LD. KEGG enrichment analysis revealed that genes in the pink, magenta, and yellow modules were involved in flavonoid biosynthesis, amino sugar and nucleotide sugar metabolism and circadian rhythm pathways. Additionally, eight hub genes (GI, AP2, WRKY65, SCR, SHR, PHR1, ERF106, and SCL3) were obtained through network analysis. The hub genes had high connectivity with other photoperiod-sensitive DEGs. The expression levels of hub genes were verified by qRT-PCR analysis. CONCLUSION An increase in light duration promotes earlier flowering of C. oleifera. Flavonoid biosynthesis, amino sugar and nucleotide sugar metabolism, and circadian rhythm pathways may function in the photoperiodic flowering pathway of C. oleifera. We also identified eight hub genes that may play a role in this pathway. Ultimately, this work contributes to our understanding of the photoperiodic flowering pathway of C. oleifera and further informs molecular breeding programs on the plant's photoperiodic sensitivity.
Collapse
Affiliation(s)
- Jindong Yan
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, 410004, Changsha, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, 410004, Changsha, China
| | - Jiacheng He
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, 410004, Changsha, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, 410004, Changsha, China
| | - Jian'an Li
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, 410004, Changsha, China.
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, 410004, Changsha, China.
| | - Shuangshuang Ren
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, 410004, Changsha, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, 410004, Changsha, China
| | - Ying Wang
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, 410004, Changsha, China
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, 410004, Changsha, China
| | - Junqin Zhou
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, 410004, Changsha, China
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, 410004, Changsha, China.
- Engineering Technology Research Center of Southern Hilly and Mountainous Ecological Non-Wood Forest Industry of Hunan Province, 410004, Changsha, China.
| |
Collapse
|
17
|
Bouché F, Woods DP, Linden J, Li W, Mayer KS, Amasino RM, Périlleux C. EARLY FLOWERING 3 and Photoperiod Sensing in Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2022; 12:769194. [PMID: 35069625 PMCID: PMC8770904 DOI: 10.3389/fpls.2021.769194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/13/2021] [Indexed: 05/26/2023]
Abstract
The proper timing of flowering, which is key to maximize reproductive success and yield, relies in many plant species on the coordination between environmental cues and endogenous developmental programs. The perception of changes in day length is one of the most reliable cues of seasonal change, and this involves the interplay between the sensing of light signals and the circadian clock. Here, we describe a Brachypodium distachyon mutant allele of the evening complex protein EARLY FLOWERING 3 (ELF3). We show that the elf3 mutant flowers more rapidly than wild type plants in short days as well as under longer photoperiods but, in very long (20 h) days, flowering is equally rapid in elf3 and wild type. Furthermore, flowering in the elf3 mutant is still sensitive to vernalization, but not to ambient temperature changes. Molecular analyses revealed that the expression of a short-day marker gene is suppressed in elf3 grown in short days, and the expression patterns of clock genes and flowering time regulators are altered. We also explored the mechanisms of photoperiodic perception in temperate grasses by exposing B. distachyon plants grown under a 12 h photoperiod to a daily night break consisting of a mixture of red and far-red light. We showed that 2 h breaks are sufficient to accelerate flowering in B. distachyon under non-inductive photoperiods and that this acceleration of flowering is mediated by red light. Finally, we discuss advances and perspectives for research on the perception of photoperiod in temperate grasses.
Collapse
Affiliation(s)
- Frédéric Bouché
- Laboratory of Plant Physiology, InBioS-PhytoSYSTEMS, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Daniel P. Woods
- Plant Sciences Department, University of California, Davis, Davis, CA, United States
- Laboratory of Genetics, University of Wisconsin, Madison, WI, United States
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
- United States Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Julie Linden
- Laboratory of Plant Physiology, InBioS-PhytoSYSTEMS, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Weiya Li
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
| | - Kevin S. Mayer
- Laboratory of Genetics, University of Wisconsin, Madison, WI, United States
| | - Richard M. Amasino
- Laboratory of Genetics, University of Wisconsin, Madison, WI, United States
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
- United States Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI, United States
| | - Claire Périlleux
- Laboratory of Plant Physiology, InBioS-PhytoSYSTEMS, Department of Life Sciences, University of Liège, Liège, Belgium
| |
Collapse
|
18
|
Hernando CE, Murcia MG, Pereyra ME, Sellaro R, Casal JJ. Phytochrome B links the environment to transcription. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4068-4084. [PMID: 33704448 DOI: 10.1093/jxb/erab037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Phytochrome B (phyB) senses the difference between darkness and light, the level of irradiance, the red/far-red ratio, and temperature. Thanks to these sensory capacities, phyB perceives whether plant organs are buried in the soil, exposed to full sunlight, in the presence of nearby vegetation, and/or under risk of heat stress. In some species, phyB perceives seasonal daylength cues. phyB affects the activity of several transcriptional regulators either by direct physical interaction or indirectly by physical interaction with proteins involved in the turnover of transcriptional regulators. Typically, interaction of a protein with phyB has either negative or positive effects on the interaction of the latter with a third party, this being another protein or DNA. Thus, phyB mediates the context-dependent modulation of the transcriptome underlying changes in plant morphology, physiology, and susceptibility to biotic and abiotic stress. phyB operates as a dynamic switch that improves carbon balance, prioritizing light interception and photosynthetic capacity in open places and the projection of the shoot towards light in the soil, under shade and in warm conditions.
Collapse
Affiliation(s)
- Carlos Esteban Hernando
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Mauro Germán Murcia
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Matías Ezequiel Pereyra
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - Romina Sellaro
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - Jorge José Casal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| |
Collapse
|
19
|
Skalicky M, Kubes J, Vachova P, Hajihashemi S, Martinkova J, Hejnak V. Effect of Gibberellic Acid on Growing-Point Development of Non-Vernalized Wheat Plants under Long-Day Conditions. PLANTS 2020; 9:plants9121735. [PMID: 33316881 PMCID: PMC7763098 DOI: 10.3390/plants9121735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022]
Abstract
The goal of this study was to determine whether the application of gibberellic acid (GA3) to seeds of common wheat varieties with different vernalization and photoperiod requirements affects the transition from vegetative to generative stage. Three varieties of wheat with different photoperiod sensitivities and vernalization were selected for the experiment—the winter varieties, Mironovskaya and Bezostaya, and the spring variety, Sirael. Seeds were treated with different concentrations of GA3 and plants were grown under long-day conditions with monitoring of their photosynthetic activity (Fv/Fm, Pn, E, gs). We monitored the activity of the photosynthetic apparatus by checking the plants to see if they were growing properly. The phenological stages of the wheat species were checked for indications of a transition from the vegetative to the generative stage. Selected concentrations of GA3 had no effect on the compensation of the vernalization process (transition to the generative phase). Chlorophyll fluorescence was one of the factors for monitoring stress. The variety, Bezostaya, is similar to the spring variety, Sirael, in its trends and values. The growth conditions of Bezostaya and Sirael were not affected by the activity of the photosynthetic apparatus. The development of growing points in winter varieties occurred at the prolonged single ridge stage. The spring variety reached the stage of head emergence after sixty days of growth (changes to the flowering phase did not appear in winter wheat). Application of GA3 to the seeds had no effect on the transition of the growing point to the double-ridge generative stage. The present study highlights the priming effect of GA3 on seeds of common wheat varieties with different vernalization and photoperiod requirements as it affected the transition from vegetative to generative stage.
Collapse
Affiliation(s)
- Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic; (J.K.); (P.V.); (J.M.); (V.H.)
- Correspondence: ; Tel.: +420-22438-2520
| | - Jan Kubes
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic; (J.K.); (P.V.); (J.M.); (V.H.)
| | - Pavla Vachova
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic; (J.K.); (P.V.); (J.M.); (V.H.)
| | - Shokoofeh Hajihashemi
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Khuzestan 63616-47189, Iran;
| | - Jaroslava Martinkova
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic; (J.K.); (P.V.); (J.M.); (V.H.)
| | - Vaclav Hejnak
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic; (J.K.); (P.V.); (J.M.); (V.H.)
| |
Collapse
|
20
|
Shaw LM, Li C, Woods DP, Alvarez MA, Lin H, Lau MY, Chen A, Dubcovsky J. Epistatic interactions between PHOTOPERIOD1, CONSTANS1 and CONSTANS2 modulate the photoperiodic response in wheat. PLoS Genet 2020; 16:e1008812. [PMID: 32658893 PMCID: PMC7394450 DOI: 10.1371/journal.pgen.1008812] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/31/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
In Arabidopsis, CONSTANS (CO) integrates light and circadian clock signals to promote flowering under long days (LD). In the grasses, a duplication generated two paralogs designated as CONSTANS1 (CO1) and CONSTANS2 (CO2). Here we show that in tetraploid wheat plants grown under LD, combined loss-of-function mutations in the A and B-genome homeologs of CO1 and CO2 (co1 co2) result in a small (3 d) but significant (P<0.0001) acceleration of heading time both in PHOTOPERIOD1 (PPD1) sensitive (Ppd-A1b, functional ancestral allele) and insensitive (Ppd-A1a, functional dominant allele) backgrounds. Under short days (SD), co1 co2 mutants headed 13 d earlier than the wild type (P<0.0001) in the presence of Ppd-A1a. However, in the presence of Ppd-A1b, spikes from both genotypes failed to emerge by 180 d. These results indicate that CO1 and CO2 operate mainly as weak heading time repressors in both LD and SD. By contrast, in ppd1 mutants with loss-of-function mutations in both PPD1 homeologs, the wild type Co1 allele accelerated heading time >60 d relative to the co1 mutant allele under LD. We detected significant genetic interactions among CO1, CO2 and PPD1 genes on heading time, which were reflected in complex interactions at the transcriptional and protein levels. Loss-of-function mutations in PPD1 delayed heading more than combined co1 co2 mutations and, more importantly, PPD1 was able to perceive and respond to differences in photoperiod in the absence of functional CO1 and CO2 genes. Similarly, CO1 was able to accelerate heading time in response to LD in the absence of a functional PPD1. Taken together, these results indicate that PPD1 and CO1 are able to respond to photoperiod in the absence of each other, and that interactions between these two photoperiod pathways at the transcriptional and protein levels are important to fine-tune the flowering response in wheat.
Collapse
Affiliation(s)
- Lindsay M. Shaw
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Currently at Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Chengxia Li
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Daniel P. Woods
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Maria A. Alvarez
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Huiqiong Lin
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Mei Y. Lau
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Andrew Chen
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|