1
|
Chen J, Qiu X, Sun Z, Luan M, Chen J. Genome-wide analysis of UDP-glycosyltransferase family in Citrus sinensis and characterization of a UGT gene encoding flavonoid 1-2 rhamnosyltransferase. Int J Biol Macromol 2024; 280:135752. [PMID: 39299422 DOI: 10.1016/j.ijbiomac.2024.135752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
UDP-glycosyltransferases (UGTs) play a crucial role in the glycosylation of secondary metabolites in plants, which is of significant importance for growth and response to biotic or abiotic stress. Despite the wide identification of UGT family members in various species, limited information is available regarding this family in citrus. In this study, we identified 87 UGT genes from the Citrus sinensis genome and classified them into 14 groups. We characterized their gene structures and motif compositions, providing insights into the molecular basis underlying discrepant functions of UGT genes within each evolutionary branch. Tandem duplication events were found to be the main driving force behind UGT gene expansion. Additionally, we identified numerous cis-acting elements in the promoter region of UGT genes, including those responsive to light, growth factors, phytohormones, and stress conditions. Notably, light-responsive elements were found with a frequency of 100 %. We elucidated the expression pattern of UGTs during fruit development in Citrus aurantium using RNA-seq and quantitative real-time PCR (qRT-PCR), revealing that 10 key UGT genes are closely associated with biosynthesis of bitter flavanone neohesperidosides (FNHs). Furthermore, we identified Ca1,2RhaT as a flavonoid 1-2 rhamnosyltransferase (1,2RhaT) involved in FNHs biosynthesis for the first time. Isolation and functional characterization of the gene Ca1,2RhaT from Citrus aurantium in vitro and in vivo indicated that Ca1,2RhaT encoded a citrus 1,2RhaT and possessed rhamnosyl transfer activities. This work provides comprehensive information on the UGT family while offering new insights into understanding molecular mechanisms regulating specific accumulation patterns of FNHs or non-bitter flavanone rutinosides (FRTs) in citrus.
Collapse
Affiliation(s)
- Jing Chen
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, PR China; Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Xiaojun Qiu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Zhimin Sun
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Mingbao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572000, PR China.
| | - Jianhua Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| |
Collapse
|
2
|
Yang B, Qiao L, Zheng X, Zheng J, Wu B, Li X, Zhao J. Quantitative Trait Loci Mapping of Heading Date in Wheat under Phosphorus Stress Conditions. Genes (Basel) 2024; 15:1150. [PMID: 39336741 PMCID: PMC11431698 DOI: 10.3390/genes15091150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Wheat (Triticum aestivum L.) is a crucial cereal crop, contributing around 20% of global caloric intake. However, challenges such as diminishing arable land, water shortages, and climate change threaten wheat production, making yield enhancement crucial for global food security. The heading date (HD) is a critical factor influencing wheat's growth cycle, harvest timing, climate adaptability, and yield. Understanding the genetic determinants of HD is essential for developing high-yield and stable wheat varieties. This study used a doubled haploid (DH) population from a cross between Jinmai 47 and Jinmai 84. QTL analysis of HD was performed under three phosphorus (P) treatments (low, medium, and normal) across six environments, using Wheat15K high-density SNP technology. The study identified 39 QTLs for HD, distributed across ten chromosomes, accounting for 2.39% to 29.52% of the phenotypic variance. Notably, five stable and major QTLs (Qhd.saw-3A.7, Qhd.saw-3A.8, Qhd.saw-3A.9, Qhd.saw-4A.4, and Qhd.saw-4D.3) were consistently detected across varying P conditions. The additive effects of these major QTLs showed that favorable alleles significantly delayed HD. There was a clear trend of increasing HD delay as the number of favorable alleles increased. Among them, Qhd.saw-3A.8, Qhd.saw-3A.9, and Qhd.saw-4D.3 were identified as novel QTLs with no prior reports of HD QTLs/genes in their respective intervals. Candidate gene analysis highlighted seven highly expressed genes related to Ca2+ transport, hormone signaling, glycosylation, and zinc finger proteins, likely involved in HD regulation. This research elucidates the genetic basis of wheat HD under P stress, providing critical insights for breeding high-yield, stable wheat varieties suited to low-P environments.
Collapse
Affiliation(s)
- Bin Yang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Ling Qiao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Xingwei Zheng
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Jun Zheng
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Bangbang Wu
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Xiaohua Li
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Jiajia Zhao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| |
Collapse
|
3
|
Khalvandi M, Aghaie P, Siosemardeh A, Hosseini SJ, Ghorbanpour M, Reiahisamani N, Amerian M. Genome-wide study of UDP-glycosyltransferases gene family in Cannabis sativa. 3 Biotech 2024; 14:183. [PMID: 39050981 PMCID: PMC11263533 DOI: 10.1007/s13205-024-04025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024] Open
Abstract
The research focused on analyzing the UGT gene family in Cannabis sativa, which plays a crucial role in the plant's metabolism and glycosylation of secondary metabolites. The study identified 125 UGTs using conserved plant secondary product glycosyltransferase (PSPG) motif amino acid sequences. These UGT genes were categorized into 17 groups (A-Q) through phylogenetic analysis, showing their distribution across 10 chromosomes in C. sativa. The expansion of the CsUGT gene family was attributed to tandem and duplication events, as suggested by gene duplication analysis. Furthermore, the study found various cis-acting regulatory elements related to phytohormones and stress responses in CsUGT promoter regions. Subcellular localization analysis revealed that CsUGT is present in the cytoplasm, chloroplast, and nucleus. The study revealed that CsUGT plays a significant role in various biological processes, cellular components, and molecular functions as highlighted by Gene Ontology analysis. Additionally, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that some CsUGTs are associated with the biosynthesis of secondary metabolites. This research provides valuable insights into the genomic organization, evolutionary history, and potential regulatory mechanisms of UGT genes in C. sativa. It lays the foundation for further exploration of their specific biological roles and potential applications in the plant's metabolism and stress responses. These findings contribute to a better understanding of the UGT gene family and its relevance to the metabolic pathways in C. sativa. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04025-3.
Collapse
Affiliation(s)
- Masoumeh Khalvandi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Peyman Aghaie
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Adel Siosemardeh
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | | | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran
| | | | - Mohammadreza Amerian
- Department of Agronomy, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
4
|
Shi Y, Chen Z, Shen M, Li Q, Wang S, Jiang J, Zeng W. Identification and Functional Verification of the Glycosyltransferase Gene Family Involved in Flavonoid Synthesis in Rubus chingii Hu. PLANTS (BASEL, SWITZERLAND) 2024; 13:1390. [PMID: 38794460 PMCID: PMC11125054 DOI: 10.3390/plants13101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Glycosylation is catalyzed by UDP-glycosyltransferase (UGT) and plays an important role in enriching the diversity of flavonoids. Rubus plants contain a lot of natural flavonoid glycosides, which are important plants with a homology of medicine and food. However, information about the Rubus UGT gene family is very limited. In this study, we carried out genome-wide analysis and identified the 172, 121, 130, 121 UGT genes in R. chingii, R. corchorifolius, R. idaeus, and R. occidentalis, respectively, and divided them into 18 groups. The analysis of the protein motif and gene structure showed that there were structural and functional conservations in the same group, but there were differences among different groups. Gene replication analysis showed that raspberry and dicotyledons had a higher homology. The expansion of the UGTs gene family was mainly driven by tandem replication events, and experienced purified selection during the long evolution of the raspberry. Cis-acting element analysis showed that they were related to plant growth and development, hormone regulation, and stress response. In addition, according to a comprehensive analysis of the co-expression network constructed by transcriptome data and phylogenetic homology, RchUGT169 was identified as a flavonoid glucosyltransferase. Through the transient expression in tobacco, it was verified that RchUGT169 could catalyze the conversion of kaempferol and quercetin to the corresponding flavonoid glycosides. In conclusion, this research enriched the understanding of the diversity of UGTs in Rubus and determined that RcUGT169 can catalyze flavonoids.
Collapse
Affiliation(s)
- Yujie Shi
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou 318000, China; (Y.S.); (Z.C.); (S.W.)
| | - Zhen Chen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou 318000, China; (Y.S.); (Z.C.); (S.W.)
| | - Mingkai Shen
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (M.S.); (Q.L.)
| | - Qianfan Li
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (M.S.); (Q.L.)
| | - Shunli Wang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou 318000, China; (Y.S.); (Z.C.); (S.W.)
| | - Jingyong Jiang
- Institute of Horticulture, Taizhou Academy of Agricultural Sciences, Linhai 317000, China;
| | - Wei Zeng
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou 318000, China; (Y.S.); (Z.C.); (S.W.)
| |
Collapse
|
5
|
Chen B, Wang X, Yu H, Dong N, Li J, Chang X, Wang J, Jiang C, Liu J, Chi X, Zha L, Gui S. Genome-wide analysis of UDP-glycosyltransferases family and identification of UGT genes involved in drought stress of Platycodon grandiflorus. FRONTIERS IN PLANT SCIENCE 2024; 15:1363251. [PMID: 38742211 PMCID: PMC11089202 DOI: 10.3389/fpls.2024.1363251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Introduction The uridine diphosphate (UDP)-glycosyltransferase (UGT) family is the largest glycosyltransferase family, which is involved in the biosynthesis of natural plant products and response to abiotic stress. UGT has been studied in many medicinal plants, but there are few reports on Platycodon grandiflorus. This study is devoted to genome-wide analysis of UGT family and identification of UGT genes involved in drought stress of Platycodon grandiflorus (PgUGTs). Methods The genome data of Platycodon grandiflorus was used for genome-wide identification of PgUGTs, online website and bioinformatics analysis software was used to conduct bioinformatics analysis of PgUGT genes and the genes highly responsive to drought stress were screened out by qRT-PCR, these genes were cloned and conducted bioinformatics analysis. Results A total of 75 PgUGT genes were identified in P.grandiflorus genome and clustered into 14 subgroups. The PgUGTs were distributed on nine chromosomes, containing multiple cis-acting elements and 22 pairs of duplicate genes were identified. Protein-protein interaction analysis was performed to predict the interaction between PgUGT proteins. Additionally, six genes were upregulated after 3d under drought stress and three genes (PGrchr09G0563, PGrchr06G0523, PGrchr06G1266) responded significantly to drought stress, as confirmed by qRT-PCR. This was especially true for PGrchr06G1266, the expression of which increased 16.21-fold after 3d of treatment. We cloned and conducted bioinformatics analysis of three candidate genes, both of which contained conserved motifs and several cis-acting elements related to stress response, PGrchr06G1266 contained the most elements. Discussion PgGT1 was confirmed to catalyze the C-3 position of platycodin D and only eight amino acids showed differences between gene PGr008G1527 and PgGT1, which means PGr008G1527 may be able to catalyze the C-3 position of platycodin D in the same manner as PgGT1. Seven genes were highly expressed in the roots, stems, and leaves, these genes may play important roles in the development of the roots, stems, and leaves of P. grandiflorus. Three genes were highly responsive to drought stress, among which the expression of PGrchr06G1266 was increased 16.21-fold after 3d of drought stress treatment, indicating that PGrchr06G1266 plays an important role in drought stress tolerance. To summarize, this study laied the foundation to better understand the molecular bases of responses to drought stress and the biosynthesis of platycodin.
Collapse
Affiliation(s)
- Bowen Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Xinrui Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Hanwen Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Nan Dong
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jutao Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Chao Jiang
- State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU057), National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juan Liu
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU057), National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiulian Chi
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Liangping Zha
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
- Institute of Conservation and Development of Traditional Chinese Medicine Resources, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application Anhui University of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| |
Collapse
|
6
|
Yang F, Zhang L, Zhang X, Guan J, Wang B, Wu X, Song M, Wei A, Liu Z, Huo D. Genome-wide investigation of UDP-Glycosyltransferase family in Tartary buckwheat (Fagopyrum tataricum). BMC PLANT BIOLOGY 2024; 24:249. [PMID: 38580941 PMCID: PMC10998406 DOI: 10.1186/s12870-024-04926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Tartary buckwheat (Fagopyrum tataricum) belongs to Polygonaceae family and has attracted increasing attention owing to its high nutritional value. UDP-glycosyltransferases (UGTs) glycosylate a variety of plant secondary metabolites to control many metabolic processes during plant growth and development. However, there have been no systematic reports of UGT superfamily in F. tataricum. RESULTS We identified 173 FtUGTs in F. tataricum based on their conserved UDPGT domain. Phylogenetic analysis of FtUGTs with 73 Arabidopsis UGTs clustered them into 21 families. FtUGTs from the same family usually had similar gene structure and motif compositions. Most of FtUGTs did not contain introns or had only one intron. Tandem repeats contributed more to FtUGTs amplification than segmental duplications. Expression analysis indicates that FtUGTs are widely expressed in various tissues and likely play important roles in plant growth and development. The gene expression analysis response to different abiotic stresses showed that some FtUGTs were involved in response to drought and cadmium stress. Our study provides useful information on the UGTs in F. tataricum, and will facilitate their further study to better understand their function. CONCLUSIONS Our results provide a theoretical basis for further exploration of the functional characteristics of FtUGTs and for understanding the growth, development, and metabolic model in F. tataricum.
Collapse
Affiliation(s)
- Fan Yang
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China
| | - Lei Zhang
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China
| | - Xiao Zhang
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China
| | - Jingru Guan
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China
| | - Bo Wang
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoying Wu
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China
| | - Minli Song
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China
| | - Aili Wei
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China
| | - Zhang Liu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Dongao Huo
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, 030619, China.
| |
Collapse
|
7
|
Guan H, Zhang Y, Li J, Zhu Z, Chang J, Bakari A, Chen S, Zheng K, Cao S. Analysis of the UDP-Glucosyltransferase ( UGT) Gene Family and Its Functional Involvement in Drought and Salt Stress Tolerance in Phoebe bournei. PLANTS (BASEL, SWITZERLAND) 2024; 13:722. [PMID: 38475568 DOI: 10.3390/plants13050722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Uridine diphosphate glycosyltransferases (UDP-GTs, UGTs), which are regulated by UGT genes, play a crucial role in glycosylation. In vivo, the activity of UGT genes can affect the availability of metabolites and the rate at which they can be eliminated from the body. UGT genes can exert their regulatory effects through mechanisms such as post-transcriptional modification, substrate subtype specificity, and drug interactions. Phoebe bournei is an economically significant tree species that is endemic to southern China. Despite extensive studies on the UGT gene family in various species, a comprehensive investigation of the UGT family in P. bournei has not been reported. Therefore, we conducted a systematic analysis to identify 156 UGT genes within the entire P. bournei genome, all of which contained the PSPG box. The PbUGT family consists of 14 subfamilies, consistent with Arabidopsis thaliana. We observed varying expression levels of PbUGT genes across different tissues in P. bournei, with the following average expression hierarchy: leaf > stem xylem > stem bark > root xylem > root bark. Covariance analysis revealed stronger covariance between P. bournei and closely related species. In addition, we stressed the seedlings with 10% NaCl and 10% PEG-6000. The PbUGT genes exhibited differential expression under drought and salt stresses, with specific expression patterns observed under each stress condition. Our findings shed light on the transcriptional response of PbUGT factors to drought and salt stresses, thereby establishing a foundation for future investigations into the role of PbUGT transcription factors.
Collapse
Affiliation(s)
- Hengfeng Guan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanzi Zhang
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingshu Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhening Zhu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiarui Chang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Almas Bakari
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shipin Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kehui Zheng
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Alves RM, de Abreu VAC, Oliveira RP, Almeida JVDA, de Oliveira MDM, Silva SR, Paschoal AR, de Almeida SS, de Souza PAF, Ferro JA, Miranda VFO, Figueira A, Domingues DS, Varani AM. Genomic decoding of Theobroma grandiflorum (cupuassu) at chromosomal scale: evolutionary insights for horticultural innovation. Gigascience 2024; 13:giae027. [PMID: 38837946 PMCID: PMC11152179 DOI: 10.1093/gigascience/giae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/21/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Theobroma grandiflorum (Malvaceae), known as cupuassu, is a tree indigenous to the Amazon basin, valued for its large fruits and seed pulp, contributing notably to the Amazonian bioeconomy. The seed pulp is utilized in desserts and beverages, and its seed butter is used in cosmetics. Here, we present the sequenced telomere-to-telomere genome of cupuassu, disclosing its genomic structure, evolutionary features, and phylogenetic relationships within the Malvaceae family. FINDINGS The cupuassu genome spans 423 Mb, encodes 31,381 genes distributed in 10 chromosomes, and exhibits approximately 65% gene synteny with the Theobroma cacao genome, reflecting a conserved evolutionary history, albeit punctuated with unique genomic variations. The main changes are pronounced by bursts of long-terminal repeat retrotransposons at postspecies divergence, retrocopied and singleton genes, and gene families displaying distinctive patterns of expansion and contraction. Furthermore, positively selected genes are evident, particularly among retained and dispersed tandem and proximal duplicated genes associated with general fruit and seed traits and defense mechanisms, supporting the hypothesis of potential episodes of subfunctionalization and neofunctionalization following duplication, as well as impact from distinct domestication process. These genomic variations may underpin the differences observed in fruit and seed morphology, ripening, and disease resistance between cupuassu and the other Malvaceae species. CONCLUSIONS The cupuassu genome offers a foundational resource for both breeding improvement and conservation biology, yielding insights into the evolution and diversity within the genus Theobroma.
Collapse
Affiliation(s)
| | - Vinicius A C de Abreu
- Laboratório de Bioinformática e Computação de Alto Desempenho (LaBioCad), Faculdade de Computação (FACOMP), Universidade Federal do Pará, 66075-110 Belém, PA, Brazil
| | - Rafaely Pantoja Oliveira
- Departamento de Biotecnologia Agropecuária e Ambiental, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - João Victor dos Anjos Almeida
- Departamento de Biotecnologia Agropecuária e Ambiental, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - Mauro de Medeiros de Oliveira
- Departamento de Biotecnologia Agropecuária e Ambiental, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - Saura R Silva
- Departamento de Biologia, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - Alexandre R Paschoal
- Departamento de Ciência da Computação (DACOM), Grupo de e Bioinformática e Reconhecimento de Padrões (bioinfo-cp), Universidade Tecnológica Federal do Paraná (UTFPR), 80230-901 Cornélio Procópio, PR, Brazil
- Artificial Intelligence and Informatics, The Rosalind Franklin Institute, OX110QX Didcot, UK
| | - Sintia S de Almeida
- Laboratório de Bioinformática e Computação de Alto Desempenho (LaBioCad), Faculdade de Computação (FACOMP), Universidade Federal do Pará, 66075-110 Belém, PA, Brazil
| | - Pedro A F de Souza
- Laboratório de Bioinformática e Computação de Alto Desempenho (LaBioCad), Faculdade de Computação (FACOMP), Universidade Federal do Pará, 66075-110 Belém, PA, Brazil
| | - Jesus A Ferro
- Departamento de Biotecnologia Agropecuária e Ambiental, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - Vitor F O Miranda
- Departamento de Biologia, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura (CENA), Universidade de São Paulo, 13416-000 Piracicaba, SP, Brazil
| | - Douglas S Domingues
- Departamento de Genética, Universidade de São Paulo (USP), Escola Superior de Agricultura Luiz de Queiroz (ESALQ), 13418-900 Piracicaba, SP, Brazil
| | - Alessandro M Varani
- Departamento de Biotecnologia Agropecuária e Ambiental, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, 14884-900 Jaboticabal, SP, Brazil
| |
Collapse
|
9
|
Wang S, Shen S, Wang C, Wang X, Yang C, Zhou S, Zhang R, Zhou Q, Yu H, Guo H, Zheng W, Liu X, Xu J, Deng X, Xu Q, Luo J. A metabolomics study in citrus provides insight into bioactive phenylpropanoid metabolism. HORTICULTURE RESEARCH 2024; 11:uhad267. [PMID: 38304332 PMCID: PMC10831325 DOI: 10.1093/hr/uhad267] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/01/2023] [Indexed: 02/03/2024]
Abstract
Abstract
Citrus fruits are widely consumed worldwide in juices or as fresh and provide a broad range of phytonutrients that are important for human health. Here, a citrus multi-omics resource is presented: comprehensive metabolic profiling of various citrus species was performed and metabolic profiles were compared among species, with a focus on the phenylpropanoid metabolic pathway. A metabolite-based genome-wide association analysis (mGWAS) of 154 pummelo accessions was performed using factored spectrally transformed linear mixed models (FaST-LMM) and efficient mixed-model association eXpedited (EMMAX), and the genetic and biochemical basis of metabolomic variation was comprehensively analysed. A metabolite-single nucleotide polymorphism-gene (metabolite-SNP-gene) interaction network was constructed for pummelo, and many candidate loci controlling the synthesis and regulation of bioactive compounds were identified; among these loci, three BAHD malonyltransferases were involved in the malonylation of flavonoid glycosides. Further investigation revealed that an R2R3-MYB transcription factor CgMYB1 positively controls the metabolism of phenylpropanoid molecules, particularly the flavonoid derivatives. This study provides valuable data resources on the metabolic regulatory networks of bioactive components in citrus, in addition to demonstrating an efficient method for metabolic pathway dissection and providing targets for future breeding work with the aim of improving nutritional value.
Collapse
Affiliation(s)
- Shouchuang Wang
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Shuangqian Shen
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Chao Wang
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
| | - Xia Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenkun Yang
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
| | - Shen Zhou
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
| | - Ran Zhang
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
| | - Qianqian Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Huiwen Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Guo
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
| | - Weikang Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianqing Liu
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
| | - Juan Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Luo
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
- Yazhouwan National Laboratory, Sanya 572025, China
| |
Collapse
|
10
|
Gan Y, Yu B, Liu R, Shu B, Liang Y, Zhao Y, Qiu Z, Yan S, Cao B. Systematic analysis of the UDP-glucosyltransferase family: discovery of a member involved in rutin biosynthesis in Solanum melongena. FRONTIERS IN PLANT SCIENCE 2023; 14:1310080. [PMID: 38197083 PMCID: PMC10774229 DOI: 10.3389/fpls.2023.1310080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/21/2023] [Indexed: 01/11/2024]
Abstract
Eggplant (Solanum melongena) is an economically important crop and rich in various nutrients, among which rutin that has positive effects on human health is found in eggplant. Glycosylation mediated by UDP-glycosyltransferases (UGTs) is a key step in rutin biosynthesis. However, the UGT gene has not been reported in eggplant to date. Herein, 195 putative UGT genes were identified in eggplant by genome-wide analysis, and they were divided into 17 subgroups (Group A-P and Group R) according to the phylogenetic evolutionary tree. The members of Groups A, B, D, E and L were related to flavonol biosynthesis, and rutin was the typical flavonol. The expression profile showed that the transcriptional levels of SmUGT genes in Clusters 7-10 were closely related to those of rutin biosynthetic pathway genes. Notably, SmUGT89B2 was classified into Cluster 7 and Group B; its expression was consistent with rutin accumulation in different tissues and different leaf stages of eggplant. SmUGT89B2 was located in the nucleus and cell membrane. Virus-induced gene silencing (VIGS) and transient overexpression assays showed that SmUGT89B2 can promote rutin accumulation in eggplant. These findings provide new insights into the UGT genes in eggplant, indicating that SmUGT89B2 is likely to encode the final enzyme in rutin biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuangshuang Yan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Bihao Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Wu Y, Liu J, Jiao B, Wang T, Sun S, Huang B. Genome-Wide Analysis of Family-1 UDP-Glycosyltransferases in Potato ( Solanum tuberosum L.): Identification, Phylogenetic Analysis and Determination of Response to Osmotic Stress. Genes (Basel) 2023; 14:2144. [PMID: 38136966 PMCID: PMC10742590 DOI: 10.3390/genes14122144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Family-1 UDP-glycosyltransferases (UGTs) are the most common and functional glycosyltransferases in the plant world. UGT is closely related to plant growth and the response to abiotic stress. However, despite systematic research, our understanding of potato UGT genes is still unclear. In this study, we identified 174 potato UGT proteins based on their conserved plant secondary product glycosyltransferase (PSPG) motifs. Phylogenetic analyses were used to compare these proteins with Arabidopsis UGTs and other plant UGTs, and it was found that they could be clustered into 18 distinct groups. Patterns of intron gain/loss and intron phases within potato UGTs revealed highly conserved intron insertion events. The promoter cis-elements of these 174 UGT genes were systematically investigated. The promoter regions of these UGT genes are known to contain various classes of cis-acting compounds. These include elements that are light-responsive, phytohormone-responsive, and stress-responsive. Transcriptome data analysis established that 25, 10, 6, and 4 of these 174 UGT genes were specifically expressed in leaves, roots, stolons, and young tubers, respectively. The mannitol-treated transcriptomic data showed thirty-eight UGT genes were significantly upregulated. The quantitative real-time PCR results showed that the four genes were all responsive to osmotic stress under a 10% PEG6000 treatment. The results of our study provide a basis for clarifying the molecular mechanism of potato osmotic stress resistance and better understanding its function in the future.
Collapse
Affiliation(s)
- Yongchao Wu
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Jie Liu
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Baozhen Jiao
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Tingting Wang
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Sifan Sun
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Binquan Huang
- School of Agriculture, Yunnan University, Kunming 650504, China
| |
Collapse
|
12
|
Wan H, Liu Y, Wang T, Jiang P, Wen W, Nie J. Comparative transcriptome and metabolome analysis identifies a citrus ERF transcription factor CsERF003 as flavonoid activator. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 334:111762. [PMID: 37295731 DOI: 10.1016/j.plantsci.2023.111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/08/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Transcription factor (TF) modulation is a promising strategy for plant flavonoid improvement. Here, we observed evident decreases in some major flavones and flavonols and the expression of some key related genes in a 'Newhall' navel orange mutant (MT) relative to the wild type (WT). A consistently downregulated ERF TF CsERF003 in MT could increase the contents of major flavonoids and the precursor phenylalanine when transiently overexpressed in citrus fruit. Overexpression of CsERF003 in 'Micro-Tom' tomato (OE) resulted in a darker and redder fruit color than wild type 'Micro-Tom' (WTm). Two major flavonoids, naringeninchalcone and kaempferolrutinoside, were averagely induced by 7.99- and 36.83-fold in OEs, respectively, while little change was observed in other polyphenols, such as caffeic acid, ferulic acid, and gallic acid. Key genes involved in the initiation of phenylpropanoid (PAL, 4CH, and 4CL) and flavonoid (CHS and CHI) biosynthesis were up-regulated, while most genes participating in the biosynthesis of other polyphenols, such as HCT and CCR, were down-regulated in OEs. Therefore, it could be concluded that carbon flux floods into the phenylpropanoid biosynthetic pathway and is then specifically directed for flavonoid biosynthesis. CsERF003 may be a potentially promising gene for fruit quality improvement and engineering of natural flavonoid components.
Collapse
Affiliation(s)
- Haoliang Wan
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yihui Liu
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Tongtong Wang
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Peng Jiang
- Qingdao Agriculture Products Quality and Safety Center, Qingdao, 266035, China
| | - Weiwei Wen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China.
| |
Collapse
|
13
|
Yu A, Jiang X, Sun Y, Hu Q, Zhu X, Kang J, Chen L, Liu L, Hao L, Yang Q, Long R, Li M. Genome-wide identification, characterization, and expression analysis of UDP-glycosyltransferase genes associated with secondary metabolism in alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1001206. [PMID: 36254261 PMCID: PMC9568668 DOI: 10.3389/fpls.2022.1001206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Uridine diphosphate glycosyltransferases (UGTs) are enzymes that catalyze glycosylation modifications and play an essential role in regulating plant metabolism. Alfalfa (Medicago sativa L.) is the most important legume in the world due to its high yields and protein content; however, the UGT genes in alfalfa have not yet been studied. Identifying UGT genes with metabolic roles in alfalfa is essential for identifying and modifying genetic traits that are relevant to yield and quality. In this study, 90 of the 239 UGT genes identified from the alfalfa "Zhongmu No. 1" genome database were found to be related to secondary metabolism, and a series of gene family characterization analyses were conducted on each. The results demonstrated that all 90 UGT genes were unevenly distributed on eight chromosomes with few introns and that tandem duplications were the crucial driving force expanding the UGT family in alfalfa. Notably, the 90 UGT genes can be clustered into ten evolutionary groups which contain specific PSPG motifs, and genes in these ten groups have specific tissue expressions. This suggests that the UGT genes in each group could have similar glycosylation roles corresponding to analogous secondary metabolites in alfalfa. Additionally, multiple cis-acting elements found in MsUGT promoter regions, such as phytohormone and flavonoids, indicate that 90 UGT members could be induced by these features, which are also related to secondary metabolism. Therefore, our study identified 90 UGT members inten evolutionary groups that are likely related to glycosylation modifications with secondary metabolites in alfalfa. These findings help uncover pivotal regulatory mechanisms associated with secondary metabolism in plant yield and quality and contribute to genetic modification and breeding in alfalfa and other plant species.
Collapse
Affiliation(s)
- Andong Yu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Xueqian Jiang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Qiannan Hu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Xiaoxi Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmei Kang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Chen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Liu
- Bayannur Institute of Agricultural and Animal Husbandry Sciences, Inner Mongolia, China
| | - Linfeng Hao
- Bayannur Institute of Agricultural and Animal Husbandry Sciences, Inner Mongolia, China
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingna Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Dong L, Tang Z, Yang T, Hao F, Deng X. Genome-Wide Analysis of UGT Genes in Petunia and Identification of PhUGT51 Involved in the Regulation of Salt Resistance. PLANTS (BASEL, SWITZERLAND) 2022; 11:2434. [PMID: 36145837 PMCID: PMC9506063 DOI: 10.3390/plants11182434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
UDP-glycosyltransferase (UGT) plays an essential role in regulating the synthesis of hormones and secondary metabolites in plants. In this study, 129 members of the Petunia UGT family were identified and classified into 16 groups (A-P) based on phylogenetic analysis. The same subgroups have conserved motif compositions and intron/exon arrangement. In the promoters of the Petunia UGT genes, several cis-elements associated with plant hormones, growth and development, and abiotic stress have been discovered. Their expression profiles in five tissues were revealed by tissue expression based on RNA-seq data. Subcellular localization analysis showed that PhUGT51 was located in the nucleus and cell membrane. Salt stress caused an increase in the expression level of PhUGT51, but the expression level remained stable with the growth over time. In addition, the overexpression of PhUGT51 caused a significant increase in salt resistance. Our study systematically analyses the UGT gene family in Petunia for the first time and provides some valuable clues for the further functional studies of UGT genes.
Collapse
|
15
|
Chen J, Shi Y, Zhong Y, Sun Z, Niu J, Wang Y, Chen T, Chen J, Luan M. Transcriptome Analysis and HPLC Profiling of Flavonoid Biosynthesis in Citrus aurantium L. during Its Key Developmental Stages. BIOLOGY 2022; 11:biology11071078. [PMID: 36101454 PMCID: PMC9313048 DOI: 10.3390/biology11071078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022]
Abstract
Citrus aurantium L. (sour orange) is a significant Chinese medicinal and fruit crop rich in flavonoids. However, the pathways and genes involved in flavonoid biosynthesis at the key developmental stages of Citrus aurantium L. are not fully understood. This study found that the total flavonoid concentration gradually decreased as the fruit developed. Additionally, it showed that neohesperidin was the main flavonoid in the early stages of sour orange fruit development. However, as the development stage progressed, naringin content increased rapidly and emerged as the main flavonoid component. From 27 cDNA libraries, RNA sequencing yielded 16.64 billion clean bases, including 8989 differentially expressed genes. We identified 74 flavonoid related unigenes mapped to the phenylalanine, tyrosine, and phenylpropanoid biosynthesis pathways. A total of 152 UDP-glucuronosyltransferase genes (UGTs) were identified from C. aurantium L. transcriptome database, in which 22 key flavonoid-correlated UGTs were divided into five main AtGT groups: E, G, I, L, M. We observed that the ethylene responsive factors (ERF) and myeloblastosis (MYB) family mainly regulated the key genes involved in flavonoid biosynthesis. Overall, our study generated extensive and detailed transcriptome data on the development of C. aurantium L. and characterized the flavonoid biosynthesis pattern during its fruit developmental stages. These results will benefit genetic modification or selection to increase the flavonoid content in sour oranges.
Collapse
|
16
|
Yu G, Chen Q, Chen F, Liu H, Lin J, Chen R, Ren C, Wei J, Zhang Y, Yang F, Sheng Y. Glutathione Promotes Degradation and Metabolism of Residual Fungicides by Inducing UDP-Glycosyltransferase Genes in Tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:893508. [PMID: 35860529 PMCID: PMC9289782 DOI: 10.3389/fpls.2022.893508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/23/2022] [Indexed: 05/28/2023]
Abstract
Reduced glutathione (GSH) is a key antioxidant, which plays a crucial role in the detoxification of xenobiotics in plants. In the present study, glutathione could reduce chlorothalonil (CHT) residues in tomatoes by inducing the expression of the UDP-glycosyltransferase (UGT) gene. In plants, UGT is an important glycosylation catalyst, which can respond to stresses in time by activating plant hormones and defense compounds. Given the importance of plant growth and development, the genome-wipe analyses of Arabidopsis and soybean samples have been carried out, though not on the tomato, which is a vital vegetable crop. In this study, we identified 143 UGT genes in the tomato that were unevenly distributed on 12 chromosomes and divided into 16 subgroups and found that a variety of plant hormones and stress response cis-elements were discovered in the promoter region of the SlUGT genes, indicating that the UGT genes were involved in several aspects of the tomato stress response. Transcriptome analysis and results of qRT-PCR showed that most SlUGT genes could be induced by CHT, and the expression of these genes was regulated by glutathione. In addition, we found that SlUGT genes could participate in plant detoxification through interaction with transcription factors. These findings further clarify the potential function of the UGT gene family in the detoxification of exogenous substances in tomatoes and provide valuable information for the future study of functional genomics of tomatoes.
Collapse
Affiliation(s)
- Gaobo Yu
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qiusen Chen
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Fengqiong Chen
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hanlin Liu
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jiaxin Lin
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Runan Chen
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
- College of Tropical Crop, Hainan University, Haikou, China
| | - Chunyuan Ren
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jinpeng Wei
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- Ministry of Agriculture and Rural Affairs Agro-products and Processed Products Quality Supervision, Inspection and Testing Center, Daqing, China
| | - Yuxian Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Fengjun Yang
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yunyan Sheng
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
17
|
Yao Y, Gu J, Luo Y, Wang Y, Pang Y, Shen G, Guo B. Genome-wide analysis of UGT gene family identified key gene for the biosynthesis of bioactive flavonol glycosides in Epimedium pubescens Maxim. Synth Syst Biotechnol 2022; 7:1095-1107. [PMID: 35990929 PMCID: PMC9372747 DOI: 10.1016/j.synbio.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/02/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
Epimedium pubescens Maxim. is a well-known traditional Chinese medicinal herb with flavonol glycosides as the major pharmaceutically active compounds. UDP-glycosyltransferases (UGTs) are a group of enzymes responsible for the glycosylation of flavonoid glycosides. In this study, a genome-wide analysis was performed to identify UGT family genes in E. pubescens. As a result, a total of 339 putative UGT genes were identified, which represents the largest UGT gene family known thus far, implying a significant expansion of the UGT gene family in E. pubescens. All EpUGTs were unevenly distributed across six chromosomes, and they were classified into 17 major groups. The expression profiles showed that UGT genes were differentially expressed in roots, leaves, flowers, shoots and fruits. In particular, several EpUGTs were highly induced by high light intensity, which was consistent with the accumulation level of bioactive flavonoids in E. pubescens. Six UGT79 genes that were preferentially expressed in roots or leaves were successfully expressed in E. coli, and only the recombinant EpGT60 protein was found to be active toward 8-prenylkaempferol and icaritin to produce the key bioactive compounds baohuoside II and baohuoside I. The optimal temperature, pH, km and Vmax were determined for the recombinant EpGT60 protein. In addition, expression of recombinant EpGT60 in E. coli cell culture led to successful production of baohuoside II when fed 8-prenylkaempferol. Our study provides a foundation for further functional characterization of UGT genes in E. pubescens and provides key candidate genes for bioengineering bioactive flavonoids in E. pubescens.
Collapse
|
18
|
Wang J, Li J, Li Z, Liu B, Zhang L, Guo D, Huang S, Qian W, Guo L. Genomic insights into longan evolution from a chromosome-level genome assembly and population genomics of longan accessions. HORTICULTURE RESEARCH 2022; 9:uhac021. [PMID: 35184175 PMCID: PMC9071379 DOI: 10.1093/hr/uhac021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/05/2022] [Accepted: 01/24/2022] [Indexed: 05/25/2023]
Abstract
Longan (Dimocarpus longan) is a subtropical fruit best known for its nutritious fruit and regarded as a precious tonic and traditional medicine since ancient times. High-quality chromosome-scale genome assembly is valuable for functional genomic study and genetic improvement of longan. Here, we report a chromosome-level reference genome sequence for longan cultivar JDB with an assembled genome of 455.5 Mb in size anchored to fifteen chromosomes, representing a significant improvement of contiguity (contig N50 = 12.1 Mb, scaffold N50 = 29.5 Mb) over a previous draft assembly. A total of 40 420 protein-coding genes were predicted in D. longan genome. Synteny analysis suggests longan shares the widespread gamma event with core eudicots, but has no other whole genome duplications. Comparative genomics showed that D. longan genome experienced significant expansions of gene families related to phenylpropanoid biosynthesis and UDP-glucosyltransferase. Deep genome sequencing analysis of longan cultivars identified longan biogeography as a major contributing factor for genetic diversity, and revealed a clear population admixture and introgression among cultivars of different geographic origins, postulating a likely migration trajectory of longan overall confirmed by existing historical records. Finally, genome-wide association studies (GWAS) of longan cultivars identified quantitative trait loci (QTL) for six different fruit quality traits and revealed a shared QTL containing three genes for total soluble solid and seed weight. The chromosome-level reference genome assembly, annotation and population genetic resource for D. longan will facilitate the molecular studies and breeding of desirable longan cultivars in the future.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Guangzhou, China
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jianguang Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Guangzhou, China
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zaiyuan Li
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bo Liu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lili Zhang
- Weifang Institute of Technology, Weifang, China
| | - Dongliang Guo
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Guangzhou, China
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shilian Huang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Guangzhou, China
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wanqiang Qian
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Li Guo
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
- Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
19
|
Anmol RJ, Marium S, Hiew FT, Han WC, Kwan LK, Wong AKY, Khan F, Sarker MMR, Chan SY, Kifli N, Ming LC. Phytochemical and Therapeutic Potential of Citrus grandis (L.) Osbeck: A Review. J Evid Based Integr Med 2021; 26:2515690X211043741. [PMID: 34657477 PMCID: PMC8527587 DOI: 10.1177/2515690x211043741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Citrus grandis or Citrus maxima, widely
recognized as Pomelo is widely cultivated in many countries because of their
large amounts of functional, nutraceutical and biological activities. In
traditional medicine, various parts of this plant including leaf, pulp and peel
are used for generations as they are scientifically proven to have therapeutic
potentials and safe for human use. The main objective of this study was to
review the different therapeutic applications of Citrus grandis
and the phytochemicals associated with its medicinal values. In this article
different pharmacological properties like antimicrobial, antitumor, antioxidant,
anti-inflammatory, anticancer, antiepileptic, stomach tonic, cardiac stimulant,
cytotoxic, hepatoprotective, nephroprotective, and anti-diabetic activities of
the plant are highlighted. The enrichment of the fruit with flavonoids,
polyphenols, coumarins, limonoids, acridone alkaloids, essential oils and
vitamins mainly helps in exhibiting the pharmacological activities within the
body. The vitamins enriched fruit is rich in nutritional value and also has
minerals like calcium, phosphorous, sodium and potassium, which helps in
maintaining the proper health and growth of the bones as well as the electrolyte
balance of the body. To conclude, various potential therapeutic effects of
Citrus grandis have been demonstrated in recent literature.
Further studies on various parts of fruit, including pulp, peel, leaf, seed and
it essential oil could unveil additional pharmacological activities which can be
beneficial to the mankind.
Collapse
Affiliation(s)
- Rusat Jahin Anmol
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh.,Health Med Science Research Limited, Dhaka, Bangladesh
| | - Shabnam Marium
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh.,Health Med Science Research Limited, Dhaka, Bangladesh
| | - Fei Tsong Hiew
- Alpro Academy, Sri Sendayan, Negeri Sembilan, Malaysia.,Powerlife, Sri Sendayan, Negeri Sembilan, Malaysia
| | - Wan Chien Han
- Alpro Academy, Sri Sendayan, Negeri Sembilan, Malaysia.,Powerlife, Sri Sendayan, Negeri Sembilan, Malaysia
| | - Lee Kuan Kwan
- Alpro Academy, Sri Sendayan, Negeri Sembilan, Malaysia.,Powerlife, Sri Sendayan, Negeri Sembilan, Malaysia
| | - Alicia Khai Yeen Wong
- Alpro Academy, Sri Sendayan, Negeri Sembilan, Malaysia.,Powerlife, Sri Sendayan, Negeri Sembilan, Malaysia
| | - Farzana Khan
- Health Med Science Research Limited, Dhaka, Bangladesh
| | - Md Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh.,Health Med Science Research Limited, Dhaka, Bangladesh
| | - Siok Yee Chan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang, Malaysia
| | - Nurolaini Kifli
- PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Long Chiau Ming
- PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| |
Collapse
|
20
|
Genome-Wide Analysis of the UDP-Glycosyltransferase Family Reveals Its Roles in Coumarin Biosynthesis and Abiotic Stress in Melilotus albus. Int J Mol Sci 2021; 22:ijms221910826. [PMID: 34639166 PMCID: PMC8509628 DOI: 10.3390/ijms221910826] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 01/11/2023] Open
Abstract
Coumarins, natural products abundant in Melilotus albus, confer features in response to abiotic stresses, and are mainly present as glycoconjugates. UGTs (UDP-glycosyltransferases) are responsible for glycosylation modification of coumarins. However, information regarding the relationship between coumarin biosynthesis and stress-responsive UGTs remains limited. Here, a total of 189 MaUGT genes were identified from the M. albus genome, which were distributed differentially among its eight chromosomes. According to the phylogenetic relationship, MaUGTs can be classified into 13 major groups. Sixteen MaUGT genes were differentially expressed between genotypes of Ma46 (low coumarin content) and Ma49 (high coumarin content), suggesting that these genes are likely involved in coumarin biosynthesis. About 73.55% and 66.67% of the MaUGT genes were differentially expressed under ABA or abiotic stress in the shoots and roots, respectively. Furthermore, the functions of MaUGT68 and MaUGT186, which were upregulated under stress and potentially involved in coumarin glycosylation, were characterized by heterologous expression in yeast and Escherichia coli. These results extend our knowledge of the UGT gene family along with MaUGT gene functions, and provide valuable findings for future studies on developmental regulation and comprehensive data on UGT genes in M. albus.
Collapse
|
21
|
Genomic-Wide Identification and Characterization of the Uridine Diphosphate Glycosyltransferase Family in Eucommia ulmoides Oliver. PLANTS 2021; 10:plants10091934. [PMID: 34579466 PMCID: PMC8471388 DOI: 10.3390/plants10091934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023]
Abstract
Eucommia ulmoides Oliver is a woody plant with great economic and medicinal value. Its dried bark has a long history of use as a traditional medicinal material in East Asia, which led to many glycosides, such as aucubin, geniposide, hyperoside, astragalin, and pinoresinol diglucoside, being recognized as pharmacologically active ingredients. Uridine diphosphate glycosyltransferases (UGTs) catalyze a glycosyl-transferring reaction from the donor molecule uridine-5'-diphosphate-glucose (UDPG) to the substrate, which plays an important role in many biological processes, such as plant growth and development, secondary metabolism, and environmental adaptation. In order to explore the biosynthetic pathways of glycosides in E. ulmoides, 91 putative EuUGT genes were identified throughout the complete genome of E. ulmoides through function annotation and an UDPGT domain search. Phylogenetic analysis categorized them into 14 groups. We also performed GO annotations on all the EuUGTs to gain insights into their functions in E. ulmoides. In addition, transcriptomic analysis indicated that most EuUGTs showed different expression patterns across diverse organs and various growing seasons. By protein-protein interaction predication, a biosynthetic routine of flavonoids and their glycosides was also proposed. Undoubtedly, these results will help in future research into the biosynthetic pathways of glycoside compounds in E. ulmoides.
Collapse
|