1
|
Xiong X, Li X, Zhang S, Hu Z, Liu T, Qiu Z, Cao J, Huang L, Yan C. Identification and fine mapping of Brmmd1 gene controlling recessive genic male sterility in Brassica rapa L. Gene 2024; 924:148558. [PMID: 38740353 DOI: 10.1016/j.gene.2024.148558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Recessive genic male sterility (RGMS) provides an effective approach for the commercial exploitation of heterosis, especially in Brassica crops. Although some artificial RGMS mutants have been reported in B. rapa, no causal genes derived from these natural mutants have been identified so far. In this study, a spontaneous RGMS mutant Bcajh97-01A derived from the 'Aijiaohuang' line traced back to the 1980 s was identified. Genetic analysis revealed that the RGMS trait was controlled by a single locus in the Bcajh97-01A/B system. Bulk segregant analysis (BSA) in combination with linkage analysis was employed to delimit the causal gene to an approximate 129 kb interval on chromosome A02. The integrated information of transcriptional levels and the predicted genes in the target region indicated that the Brmmd1 (BraA02g017420) encoding a PHD-containing nuclear protein was the most likely candidate gene. A 374 bp miniature inverted-repeat transposable element (MITE) was inserted into the first exon to prematurely stop the Brmmd1 gene translation, thus blocking the normal expression of this gene at the tetrad stage in the Bcajh97-01A. Additionally, a co-segregating structure variation (SV) marker was developed to rapidly screen the RGMS progenies from Bcajh97-01A/B system. Our findings reveal that BraA02g017420 is the causal gene responsible for the RGMS trait. This study lays a foundation for marker-assisted selection and further molecular mechanism exploration of pollen development in B. rapa.
Collapse
Affiliation(s)
- Xingpeng Xiong
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, People's Republic of China
| | - Xiaoyao Li
- Key Laboratory of Vegetable Ecological Cultivation On Highland, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan 430063, People's Republic of China
| | - Shuting Zhang
- Key Laboratory of Vegetable Ecological Cultivation On Highland, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan 430063, People's Republic of China
| | - Zhen Hu
- Key Laboratory of Vegetable Ecological Cultivation On Highland, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan 430063, People's Republic of China
| | - Tingting Liu
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou 311251, People's Republic of China
| | - Zhengming Qiu
- Key Laboratory of Vegetable Ecological Cultivation On Highland, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan 430063, People's Republic of China
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Li Huang
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Chenghuan Yan
- Key Laboratory of Vegetable Ecological Cultivation On Highland, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan 430063, People's Republic of China.
| |
Collapse
|
2
|
Zhang S, Yuan G, Peng Z, Li X, Huang Y, Yin C, Cui L, Xiao G, Jiao Z, Wang L, Deng X, Qiu Z, Yan C. Chemical composition analysis and transcriptomics reveal the R2R3-MYB genes and phenol oxidases regulating the melanin formation in black radish. Int J Biol Macromol 2024; 271:132627. [PMID: 38797290 DOI: 10.1016/j.ijbiomac.2024.132627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Melanins are dark-brown to black-colored biomacromolecules which have been thoroughly studied in animals and microorganisms. However, the biochemical and molecular basis of plant melanins are poorly understood. We first characterized melanin from the black radish (Raphanus sativus var. niger) 'HLB' through spectroscopic techniques. p-Coumaric acid was identified as the main precursor of radish melanin. Moreover, a joint analysis of transcriptome and coexpression network was performed for the two radish accessions with black and white cortexes, 'HLB' and '55'. A set of R2R3-type RsMYBs and enzyme-coding genes exhibited a coexpression pattern, and were strongly correlated with melanin formation in radish. Transient overexpression of two phenol oxidases RsLAC7 (laccase 7) or RsPOD22-1 (peroxidase 22-1) resulted in a deeper brown color around the infiltration sites and a significant increase in the total phenol content. Furthermore, co-injection of the transcriptional activator RsMYB48/RsMYB97 with RsLAC7 and/or RsPOD22-1, markedly increased the yield of black extracts. Spectroscopic analyses revealed that these extracts are similar to the melanin found in 'HLB'. Our findings advance the understanding of structural information and the transcriptional regulatory mechanism underlying melanin formation in radish.
Collapse
Affiliation(s)
- Shuting Zhang
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Wuhan, Hubei 430063, China.
| | - Guoli Yuan
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Zhaoxin Peng
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Wuhan, Hubei 430063, China.
| | - Xiaoyao Li
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Yan Huang
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China.
| | - Chaomin Yin
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Lei Cui
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Wuhan, Hubei 430063, China.
| | - Guilin Xiao
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Wuhan, Hubei 430063, China.
| | - Zhenbiao Jiao
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Wuhan, Hubei 430063, China.
| | - Liping Wang
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Xiaohui Deng
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Wuhan, Hubei 430063, China.
| | - Zhengming Qiu
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Wuhan, Hubei 430063, China.
| | - Chenghuan Yan
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430063, China; Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Wuhan, Hubei 430063, China.
| |
Collapse
|
3
|
Zhang K, Feng X, Liu Y, Yang Y, Hao X, Li D, Wang X, Wang L. Integrative transcriptome and whole-genome bisulfite sequencing analyses of a temperature-sensitive albino tea plant cultivar. PHYSIOLOGIA PLANTARUM 2023; 175:e14064. [PMID: 38148243 DOI: 10.1111/ppl.14064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 12/28/2023]
Abstract
Green tea made from albino buds and leaves has a strong umami taste and aroma. The cultivar 'Zhonghuang 2' (ZH2, Camellia sinensis) is a natural mutant with young shoots that are yellow in spring and green or yellow-green in summer. However, the mechanism of leaf color change remains unclear. Here, we found that young shoots of ZH2 were yellow at low temperature (LT) and green at high temperature (HT), indicating that ZH2 is a temperature-sensitive cultivar. Transmission electron microscopy analysis showed that the grana in the chloroplasts of young shoots grown at LT were poorly stacked, which caused a lack of photoreactions and chlorophyll. RNA-seq results showed 1279 genes differentially expressed in the young shoots grown at LT compared with those at HT, including genes related to cytochrome synthesis, chloroplast development, photosynthesis, and DNA methylation. A whole-genome bisulfite sequencing assay revealed that the dynamics of DNA methylation levels in the CG, CHG, and CHH contexts decreased under LT, and the change was most obvious in the CHH context. Furthermore, 72 genes showed significant changes in both expression and DNA methylation levels, and most of them were related to cytochrome synthesis, chloroplast development, photosynthesis, transcription factors, and signaling pathways. These results demonstrate that DNA methylation is involved in the LT-regulated albino processes of ZH2. Changes in DNA methylation levels were associated with changes in gene expression levels, affecting the structure and function of chloroplasts, which may have a phenotypic impact on shoot and leaf color.
Collapse
Affiliation(s)
- Kexin Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China/National Center for Tea Improvement/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xia Feng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China/National Center for Tea Improvement/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Ying Liu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China/National Center for Tea Improvement/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yajun Yang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China/National Center for Tea Improvement/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xinyuan Hao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China/National Center for Tea Improvement/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Dongliang Li
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Xinchao Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China/National Center for Tea Improvement/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Lu Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China/National Center for Tea Improvement/Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, Hainan, China
| |
Collapse
|
4
|
Ye S, Yang J, Huang Y, Liu J, Ma X, Zhao L, Ma C, Tu J, Shen J, Fu T, Wen J. Bulk segregant analysis-sequencing and RNA-Seq analyses reveal candidate genes associated with albino phenotype in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:994616. [PMID: 36119587 PMCID: PMC9478516 DOI: 10.3389/fpls.2022.994616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Inheritable albino mutants are excellent models for exploring the mechanism of chloroplast biogenesis and development. However, only a few non-lethal albino mutations have been reported to date in Brassica species. Here, we describe a resynthesized Brassica napus mutant, whose leaf, stem, and silique tissues showed an inheritable albino phenotype under field conditions after the bud stage but green phenotype in the greenhouse during the whole growing season, indicating that the albino phenotype depends on environmental conditions. Compared with the green leaves of the field-grown wild-type (GL) and greenhouse-grown mutant (WGL) plants, white leaves of the field-grown mutant (WL) showed significantly lower chlorophyll contents and structural defects in chloroplasts. Genetic analysis revealed that the albino phenotype of WL is recessive and is controlled by multiple genes. Bulk segregant analysis-sequencing (BSA-Seq) indicated that the candidate regions responsible for the albino phenotype spanned a total physical distance of approximately 49.68 Mb on chromosomes A03, A07, A08, C03, C04, C06, and C07. To gain insights into the molecular mechanisms that control chloroplast development in B. napus, we performed transcriptome (RNA-Seq) analysis of GL, WGL, and WL samples. GO and KEGG enrichment analyses suggested that differentially expressed genes (DEGs) associated with leaf color were significantly enriched in photosynthesis, ribosome biogenesis and chlorophyll metabolism. Further analysis indicated that DEGs involved in chloroplast development and chlorophyll metabolism were likely the main factors responsible for the albino phenotype in B. napus. A total of 59 DEGs were screened in the candidate regions, and four DEGs (BnaC03G0522600NO, BnaC07G0481600NO, BnaC07G0497800NO, and BnaA08G0016300NO) were identified as the most likely candidates responsible for the albino phenotype. Altogether, this study provides clues for elucidating the molecular mechanisms underlying chloroplast development in B. napus.
Collapse
|
5
|
Andrade-Marcial M, Pacheco-Arjona R, Góngora-Castillo E, De-la-Peña C. Chloroplastic pentatricopeptide repeat proteins (PPR) in albino plantlets of Agave angustifolia Haw. reveal unexpected behavior. BMC PLANT BIOLOGY 2022; 22:352. [PMID: 35850575 PMCID: PMC9295523 DOI: 10.1186/s12870-022-03742-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pentatricopeptide repeat (PPR) proteins play an essential role in the post-transcriptional regulation of genes in plastid genomes. Although important advances have been made in understanding the functions of these genes, there is little information available on chloroplastic PPR genes in non-model plants and less in plants without chloroplasts. In the present study, a comprehensive and multifactorial bioinformatic strategy was applied to search for putative PPR genes in the foliar and meristematic tissues of green and albino plantlets of the non-model plant Agave angustifolia Haw. RESULTS A total of 1581 PPR transcripts were identified, of which 282 were chloroplastic. Leaf tissue in the albino plantlets showed the highest levels of expression of chloroplastic PPRs. The search for hypothetical targets of 12 PPR sequences in the chloroplast genes of A. angustifolia revealed their action on transcripts related to ribosomes and translation, photosystems, ATP synthase, plastid-encoded RNA polymerase and RuBisCO. CONCLUSIONS Our results suggest that the expression of PPR genes depends on the state of cell differentiation and plastid development. In the case of the albino leaf tissue, which lacks functional chloroplasts, it is possible that anterograde and retrograde signaling networks are severely compromised, leading to a compensatory anterograde response characterized by an increase in the expression of PPR genes.
Collapse
Affiliation(s)
- M Andrade-Marcial
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - R Pacheco-Arjona
- Facultad de Medicina Veterinaria y Zootecnia, Consejo Nacional de Ciencia y Tecnología- Universidad Autónoma de Yucatán, Mérida, Mexico
| | - E Góngora-Castillo
- Consejo Nacional de Ciencia y Tecnología-Unidad De Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - C De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| |
Collapse
|
6
|
Zhang Y, Feng X, Liu Y, Zhou F, Zhu P. A single-base insertion in BoDFR1 results in loss of anthocyanins in green-leaved ornamental kale. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1855-1865. [PMID: 35364697 DOI: 10.1007/s00122-022-04079-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
A CRISPR/Cas9-based knockout assay verified that BoDFR1 drives anthocyanin accumulation in ornamental kale and that BoDFR2, an ortholog of BoDFR1, is redundant. Anthocyanins are widely distributed in nature and give plants their brilliant colors. Leaf color is an important trait for ornamental kale. In this study, we measured anthocyanin contents and performed transcriptome deep sequencing (RNA-seq) of leaves from pink and green ornamental kale. We observed substantial differences in the expression levels of the two DIHYDROFLAVONOL 4-REDUCTASE-encoding genes BoDFR1 (Bo9g058630) and its ortholog BoDFR2 (Bo2g116380) between green-leaved and pink-leaved kale by RNA-seq and RT-qPCR. We cloned and sequenced BoDFR1 and BoDFR2 from both types of kale. We identified a 1-bp insertion in BoDFR1 and a 2-bp insertion in BoDFR2 in green-leaved kale compared to the sequences obtained from pink-leaved kale, both mapping to the second exon of their corresponding gene and leading to premature termination of translation. To confirm the genetic basis of the absence of anthocyanins in green kale, we used CRISPR/Cas9 genome editing to separately knock out BoDFR1 or BoDFR2 in the pink-leaved ornamental kale inbred line P23. We detected very low accumulation of anthocyanins in the resulting mutants Bodfr1-1 and Bodfr1-2, while Bodfr2-1 and Bodfr2-2 had anthocyanin levels comparable to those of the wild-type. We conclude that the insertion in BoDFR1, rather than that in BoDFR2, underlies the lack of anthocyanins in green-leaved ornamental kale. This work provides insight into the function of DFR and will contribute to germplasm improvement of ornamental plants.
Collapse
Affiliation(s)
- Yuting Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China
| | - Xin Feng
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China
| | - Yang Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China
| | - Fuhui Zhou
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China
| | - Pengfang Zhu
- College of Forestry, Shenyang Agricultural University, Shenyang, China.
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China.
| |
Collapse
|
7
|
Gan C, Yan C, Pang W, Cui L, Fu P, Yu X, Qiu Z, Zhu M, Piao Z, Deng X. Identification of Novel Locus RsCr6 Related to Clubroot Resistance in Radish ( Raphanus sativus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:866211. [PMID: 35665145 PMCID: PMC9161170 DOI: 10.3389/fpls.2022.866211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Clubroot is a devastating disease that causes substantial yield loss worldwide. However, the inheritance and molecular mechanisms of clubroot resistance during pathogen infection in radish remain largely unclear. In this study, we investigated the inheritance of clubroot resistance in the F2 population derived from crossing clubroot-resistant (CR) and clubroot-susceptible inbred lines "GLX" and "XNQ," respectively. Genetic analysis revealed that a single dominant gene controlled the clubroot resistance of "GLX" with a Mendelian ratio of resistance and susceptibility of nearly 3:1. Bulked segregant analysis combined with whole-genome resequencing (BSA-seq) was performed to detect the target region of RsCr6 on chromosome Rs8. Linkage analysis revealed that the RsCr6 locus was located between two markers, HB321 and HB331, with an interval of approximately 92 kb. Based on the outcomes of transcriptome analysis, in the RsCr6 locus, the R120263140 and R120263070 genes with a possible relation to clubroot resistance were considered candidate genes. In addition, three core breeding materials containing the two reported quantitative trait loci (QTLs) and our novel locus RsCr6 targeting clubroot resistance were obtained using marker-assisted selection (MAS) technology. This study reveals a novel locus responsible for clubroot resistance in radishes. Further analysis of new genes may reveal the molecular mechanisms underlying the clubroot resistance of plants and provide a theoretical basis for radish resistance breeding.
Collapse
Affiliation(s)
- Caixia Gan
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chenghuan Yan
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wenxing Pang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Lei Cui
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Pengyu Fu
- College of Chemistry and Life Science, Chifeng University, Chifeng, China
| | - Xiaoqing Yu
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zhengming Qiu
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Meiyu Zhu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhongyun Piao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiaohui Deng
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
8
|
Zhou F, Liu Y, Feng X, Zhang Y, Zhu P. Transcriptome Analysis of Green and White Leaf Ornamental Kale Reveals Coloration-Related Genes and Pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:769121. [PMID: 35574148 PMCID: PMC9094084 DOI: 10.3389/fpls.2022.769121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
Leaf color is a crucial agronomic trait in ornamental kale. However, the molecular mechanism regulating leaf pigmentation patterns in green and white ornamental kale is not completely understood. To address this, we performed transcriptome and pigment content analyses of green and white kale leaf tissues. A total of 5,404 and 3,605 different expressed genes (DEGs) were identified in the green vs. white leaf and the green margin vs. white center samples. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analysis showed that 24 and 15 common DEGs in two pairwise comparisons were involved in chlorophyll metabolism and carotenoid biosynthesis, respectively. Seventeen genes related to chlorophyll biosynthesis were significantly upregulated in green leaf tissue, especially chlH and por. Of the 15 carotenoid biosynthesis genes, all except CYP707A and BG1 were lower expressed in white leaf tissue. Green leaf tissue exhibited higher levels of chlorophyll and carotenoids than white leaf tissue. In addition, the DEGs involved in photosystem and chlorophyll-binding proteins had higher expression in green leaf tissue. The PSBQ, LHCB1.3, LHCB2.4, and HSP70 may be key genes of photosynthesis and chloroplast formation. These results demonstrated that green and white coloration in ornamental kale leaves was caused by the combined effects of chlorophyll and carotenoid biosynthesis, chloroplast development, as well as photosynthesis. These findings enhance our understanding of the molecular mechanisms underlying leaf color development in ornamental kale.
Collapse
Affiliation(s)
- Fuhui Zhou
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China
| | - Yang Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China
| | - Xin Feng
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China
| | - Yuting Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China
| | - Pengfang Zhu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China
| |
Collapse
|