1
|
Chen H, Liu X, Mao J, Qi X, Chen S, Feng J, Jin Y, Ahmad MZ, Sun M, Deng Y. Comparative transcriptomic and physiological analyses reveal the key role of abscisic acid in hydrangea macrophylla responding to Corynespora cassiicola. BMC PLANT BIOLOGY 2024; 24:1066. [PMID: 39533189 PMCID: PMC11555933 DOI: 10.1186/s12870-024-05770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Bigleaf hydrangea (Hydrangea macrophylla) is a widely cultivated ornamental plant species. Leaf spot disease, caused by Corynespora cassiicola, poses a significant threat to the ornamental quality and economic value of hydrangeas. However, the disease resistance breeding of hydrangea is limited due to the lacking of resistant varieties and genes. RESULTS This study evaluated ten hydrangea varieties for their resistance to leaf spot disease. Among them, 'White Angel' and 'Ocean Heart' were screened out as representative varieties for resistance and susceptibility, respectively, on the basis of evaluation. Physiological and biochemical indices, phytohormones, and transcriptomic changes were measured in the leaves of both varieties at 0 and 24 h post inoculation with C. cassiicola. The results showed that C. cassiicola infection significantly increased abscisic acid (ABA) contents in both varieties; however, the increase was significantly higher in the susceptible variety 'Ocean Heart' compared to the resistant variety 'White Angel' (p < 0.05). Moreover, exogenous ABA (100 µM) decreased the leaves' resistance to C. cassiicola of both varieties, underscoring its key role in reduced disease resistance. Transcriptome profiling revealed 17,087 differentially expressed genes (DEGs) responding to C. cassiicola between the two varieties. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated significant enrichment of DEGs in "Plant hormone signal transduction", particularly related to ABA signaling (HmPP2C and HmABFs). In addition, the expression of ABA biosynthesis genes (HmZEP3, HmABA2, and HmAAO3) was upregulated in both varieties. Meanwhile, the ABA catabolism gene (HmCYP707A4) exhibited significantly upregulated expression in the resistant variety 'White Angel' and downregulated expression in the susceptible variety 'Ocean Heart'. Intriguingly, the expression of HmCYP707A4 was 15-fold higher in 'White Angel' than in 'Ocean Heart'. CONCLUSION In summary, these findings highlight the crucial role of ABA in the resistance of bigleaf hydrangea to leaf spot disease and provide valuable genetic resources for breeding programs to enhance the disease resistance in hydrangeas.
Collapse
Affiliation(s)
- Huijie Chen
- Jiangsu Provincial Key Laboratory for Horticultural Crop Genetics and Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xintong Liu
- Jiangsu Provincial Key Laboratory for Horticultural Crop Genetics and Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jundan Mao
- Jiangsu Provincial Key Laboratory for Horticultural Crop Genetics and Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- School of Architecture and Engineering, Anhui University of Technology, Maanshan, 243032, China
| | - Xiangyu Qi
- Jiangsu Provincial Key Laboratory for Horticultural Crop Genetics and Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Shuangshuang Chen
- Jiangsu Provincial Key Laboratory for Horticultural Crop Genetics and Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jing Feng
- Jiangsu Provincial Key Laboratory for Horticultural Crop Genetics and Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yuyan Jin
- Jiangsu Provincial Key Laboratory for Horticultural Crop Genetics and Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Muhammad Zulfiqar Ahmad
- Jiangsu Provincial Key Laboratory for Horticultural Crop Genetics and Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ming Sun
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
| | - Yanming Deng
- Jiangsu Provincial Key Laboratory for Horticultural Crop Genetics and Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Lin M, Gao Z, Wang X, Huo H, Mao J, Gong X, Chen L, Ma S, Cao Y. Eco-friendly managements and molecular mechanisms for improving postharvest quality and extending shelf life of kiwifruit: A review. Int J Biol Macromol 2024; 257:128450. [PMID: 38035965 DOI: 10.1016/j.ijbiomac.2023.128450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/04/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Kiwifruit (Actinidia spp.) is a commercially important horticultural fruit crop worldwide. Kiwifruit contains numerous minerals, vitamins, and dietary phytochemicals, that not only responsible for the flavor but can also serve as adjuncts in the treatment of diabetes, digestive disorders, cardiovascular system, cancer and heart disease. However, fruit quality and shelf life affect consumer's acceptance and production chain. Understanding the methods of fruit storage preservation, as well as their biochemical, physiological, and molecular basis is essential. In recent years, eco-friendly (comprehensive and environmentally friendly) treatments such as hot water, ozone, chitosan, quercetin, and antifungal additive from biocontrol bacteria or yeast have been applied to improve postharvest fruit quality with longer shelf life. This review provides a comprehensive overview of the latest advancements in control measures, applications, and mechanisms related to water loss, chilling injury, and pathogen diseases in postharvest kiwifruit. Further studies should utilize genome editing techniques to enhance postharvest fruit quality and disease resistance through site-directed bio-manipulation of the kiwifruit genome.
Collapse
Affiliation(s)
- Mengfei Lin
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China; Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi, China
| | - Zhu Gao
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China; Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi, China; Jinggangshan Institute of Biotechnology, Jiangxi Academy of Sciences, Ji'an, Jiangxi, China
| | - Xiaoling Wang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China; Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi, China.
| | - Heqiang Huo
- Mid-Florida Research & Education Center, IFAS, University of Florida, Apopka, FL 32703, USA
| | - Jipeng Mao
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China; Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi, China
| | - Xuchen Gong
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China; Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi, China
| | - Lu Chen
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China; Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi, China; Jinggangshan Institute of Biotechnology, Jiangxi Academy of Sciences, Ji'an, Jiangxi, China
| | - Shiying Ma
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China; Jiangxi Kiwifruit Engineering Research Center, Nanchang, Jiangxi, China
| | - Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
3
|
Zhang Y, Niu N, Li S, Liu Y, Xue C, Wang H, Liu M, Zhao J. Virus-Induced Gene Silencing (VIGS) in Chinese Jujube. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112115. [PMID: 37299093 DOI: 10.3390/plants12112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Virus-induced gene silencing (VIGS) is a fast and efficient method for assaying gene function in plants. At present, the VIGS system mediated by Tobacco rattle virus (TRV) has been successfully practiced in some species such as cotton and tomato. However, little research of VIGS systems has been reported in woody plants, nor in Chinese jujube. In this study, the TRV-VIGS system of jujube was firstly investigated. The jujube seedlings were grown in a greenhouse with a 16 h light/8 h dark cycle at 23 °C. After the cotyledon was fully unfolded, Agrobacterium mixture containing pTRV1 and pTRV2-ZjCLA with OD600 = 1.5 was injected into cotyledon. After 15 days, the new leaves of jujube seedlings showed obvious photo-bleaching symptoms and significantly decreased expression of ZjCLA, indicating that the TRV-VIGS system had successfully functioned on jujube. Moreover, it found that two injections on jujube cotyledon could induce higher silencing efficiency than once injection. A similar silencing effect was then also verified in another gene, ZjPDS. These results indicate that the TRV-VIGS system in Chinese jujube has been successfully established and can be applied to evaluate gene function, providing a breakthrough in gene function verification methods.
Collapse
Affiliation(s)
- Yao Zhang
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
| | - Nazi Niu
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
| | - Shijia Li
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
| | - Yin Liu
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
| | - Chaoling Xue
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
| | - Huibin Wang
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071000, China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
4
|
Gouthu S, Mandelli C, Eubanks BA, Deluc LG. Transgene-free genome editing and RNAi ectopic application in fruit trees: Potential and limitations. FRONTIERS IN PLANT SCIENCE 2022; 13:979742. [PMID: 36325537 PMCID: PMC9621297 DOI: 10.3389/fpls.2022.979742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
For the past fifteen years, significant research advances in sequencing technology have led to a substantial increase in fruit tree genomic resources and databases with a massive number of OMICS datasets (transcriptomic, proteomics, metabolomics), helping to find associations between gene(s) and performance traits. Meanwhile, new technology tools have emerged for gain- and loss-of-function studies, specifically in gene silencing and developing tractable plant models for genetic transformation. Additionally, innovative and adapted transformation protocols have optimized genetic engineering in most fruit trees. The recent explosion of new gene-editing tools allows for broadening opportunities for functional studies in fruit trees. Yet, the fruit tree research community has not fully embraced these new technologies to provide large-scale genome characterizations as in cereals and other staple food crops. Instead, recent research efforts in the fruit trees appear to focus on two primary translational tools: transgene-free gene editing via Ribonucleoprotein (RNP) delivery and the ectopic application of RNA-based products in the field for crop protection. The inherent nature of the propagation system and the long juvenile phase of most fruit trees are significant justifications for the first technology. The second approach might have the public favor regarding sustainability and an eco-friendlier environment for a crop production system that could potentially replace the use of chemicals. Regardless of their potential, both technologies still depend on the foundational knowledge of gene-to-trait relationships generated from basic genetic studies. Therefore, we will discuss the status of gene silencing and DNA-based gene editing techniques for functional studies in fruit trees followed by the potential and limitations of their translational tools (RNP delivery and RNA-based products) in the context of crop production.
Collapse
Affiliation(s)
- Satyanarayana Gouthu
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Christian Mandelli
- Oregon Wine Research Institute, Oregon State University, Corvallis, OR, United States
| | - Britt A. Eubanks
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Laurent G. Deluc
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
- Oregon Wine Research Institute, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
5
|
Pogány M, Dankó T, Hegyi-Kaló J, Kámán-Tóth E, Szám DR, Hamow KÁ, Kalapos B, Kiss L, Fodor J, Gullner G, Váczy KZ, Barna B. Redox and Hormonal Changes in the Transcriptome of Grape (Vitis vinifera) Berries during Natural Noble Rot Development. PLANTS 2022; 11:plants11070864. [PMID: 35406844 PMCID: PMC9003472 DOI: 10.3390/plants11070864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 01/18/2023]
Abstract
Noble rot is a favorable form of the interaction between grape (Vitis spp.) berries and the phytopathogenic fungus Botrytis cinerea. The transcriptome pattern of grapevine cells subject to natural noble rot development in the historic Hungarian Tokaj wine region has not been previously published. Furmint, a traditional white Tokaj variety suited to develop great quality noble rot was used in the experiments. Exploring a subset of the Furmint transcriptome redox and hormonal changes distinguishing between noble rot and bunch rot was revealed. Noble rot is defined by an early spike in abscisic acid (ABA) accumulation and a pronounced remodeling of ABA-related gene expression. Transcription of glutathione S-transferase isoforms is uniquely upregulated, whereas gene expression of some sectors of the antioxidative apparatus (e.g., catalases, carotenoid biosynthesis) is downregulated. These mRNA responses are lacking in berries exposed to bunch rot. Our results help to explain molecular details behind the fine and dynamic balance between noble rot and bunch rot development.
Collapse
Affiliation(s)
- Miklós Pogány
- Centre for Agricultural Research, 2462 Martonvásár, Hungary; (T.D.); (E.K.-T.); (K.Á.H.); (B.K.); or (L.K.); (J.F.); (G.G.); (B.B.)
- Correspondence:
| | - Tamás Dankó
- Centre for Agricultural Research, 2462 Martonvásár, Hungary; (T.D.); (E.K.-T.); (K.Á.H.); (B.K.); or (L.K.); (J.F.); (G.G.); (B.B.)
| | - Júlia Hegyi-Kaló
- Food and Wine Research Institute, Eszterházy Károly Catholic University, 3300 Eger, Hungary; (J.H.-K.); (K.Z.V.)
| | - Evelin Kámán-Tóth
- Centre for Agricultural Research, 2462 Martonvásár, Hungary; (T.D.); (E.K.-T.); (K.Á.H.); (B.K.); or (L.K.); (J.F.); (G.G.); (B.B.)
| | - Dorottya Réka Szám
- Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary;
| | - Kamirán Áron Hamow
- Centre for Agricultural Research, 2462 Martonvásár, Hungary; (T.D.); (E.K.-T.); (K.Á.H.); (B.K.); or (L.K.); (J.F.); (G.G.); (B.B.)
| | - Balázs Kalapos
- Centre for Agricultural Research, 2462 Martonvásár, Hungary; (T.D.); (E.K.-T.); (K.Á.H.); (B.K.); or (L.K.); (J.F.); (G.G.); (B.B.)
| | - Levente Kiss
- Centre for Agricultural Research, 2462 Martonvásár, Hungary; (T.D.); (E.K.-T.); (K.Á.H.); (B.K.); or (L.K.); (J.F.); (G.G.); (B.B.)
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - József Fodor
- Centre for Agricultural Research, 2462 Martonvásár, Hungary; (T.D.); (E.K.-T.); (K.Á.H.); (B.K.); or (L.K.); (J.F.); (G.G.); (B.B.)
| | - Gábor Gullner
- Centre for Agricultural Research, 2462 Martonvásár, Hungary; (T.D.); (E.K.-T.); (K.Á.H.); (B.K.); or (L.K.); (J.F.); (G.G.); (B.B.)
| | - Kálmán Zoltán Váczy
- Food and Wine Research Institute, Eszterházy Károly Catholic University, 3300 Eger, Hungary; (J.H.-K.); (K.Z.V.)
| | - Balázs Barna
- Centre for Agricultural Research, 2462 Martonvásár, Hungary; (T.D.); (E.K.-T.); (K.Á.H.); (B.K.); or (L.K.); (J.F.); (G.G.); (B.B.)
| |
Collapse
|