1
|
Zhang H, Xiong X, Guo K, Zheng M, Cao T, Yang Y, Song J, Cen J, Zhang J, Jiang Y, Feng S, Tian L, Li X. A rapid aureochrome opto-switch enables diatom acclimation to dynamic light. Nat Commun 2024; 15:5578. [PMID: 38956103 PMCID: PMC11219949 DOI: 10.1038/s41467-024-49991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Diatoms often outnumber other eukaryotic algae in the oceans, especially in coastal environments characterized by frequent fluctuations in light intensity. The identities and operational mechanisms of regulatory factors governing diatom acclimation to high light stress remain largely elusive. Here, we identified the AUREO1c protein from the coastal diatom Phaeodactylum tricornutum as a crucial regulator of non-photochemical quenching (NPQ), a photoprotective mechanism that dissipates excess energy as heat. AUREO1c detects light stress using a light-oxygen-voltage (LOV) domain and directly activates the expression of target genes, including LI818 genes that encode NPQ effector proteins, via its bZIP DNA-binding domain. In comparison to a kinase-mediated pathway reported in the freshwater green alga Chlamydomonas reinhardtii, the AUREO1c pathway exhibits a faster response and enables accumulation of LI818 transcript and protein levels to comparable degrees between continuous high-light and fluctuating-light treatments. We propose that the AUREO1c-LI818 pathway contributes to the resilience of diatoms under dynamic light conditions.
Collapse
Affiliation(s)
- Huan Zhang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xiaofeng Xiong
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Kangning Guo
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Mengyuan Zheng
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Tianjun Cao
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuqing Yang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jiaojiao Song
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jie Cen
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jiahuan Zhang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yanyou Jiang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Shan Feng
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Center for Research Equipment and Facilities, Westlake University, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Lijin Tian
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Xiaobo Li
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
2
|
Volpe C, Nymark M, Andersen T, Winge P, Lavaud J, Vadstein O. Skeletonema marinoi ecotypes show specific habitat-related responses to fluctuating light supporting high potential for growth under photobioreactor light regime. THE NEW PHYTOLOGIST 2024; 243:145-161. [PMID: 38736026 DOI: 10.1111/nph.19788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
Diatoms are a diverse group of phytoplankton usually dominating areas characterized by rapidly shifting light conditions. Because of their high growth rates and interesting biochemical profile, their biomass is considered for various commercial applications. This study aimed at identifying strains with superior growth in a photobioreactor (PBR) by screening the natural intraspecific diversity of ecotypes isolated from different habitats. We investigated the effect of PBR light fluctuating on a millisecond scale (FL, simulating the light in a PBR) on 19 ecotypes of the diatom Skeletonema marinoi isolated from the North Sea-Baltic Sea area. We compare growth, pigment ratios, phylogeny, photo-physiological variables and photoacclimation strategies between all strains and perform qPCR and absorption spectra analysis on a subset of strains. Our results show that the ecotypes responded differently to FL, and have contrasting photo-physiological and photoprotective strategies. The strains from Kattegat performed better in FL, and shared common photoacclimation and photoprotection strategies that are the results of adaptation to the specific light climate of the Kattegat area. The strains that performed better with FL conditions had a high light (HL)-acclimated phenotype coupled with unique nonphotochemical quenching features. Based on their characteristics, three strains were identified as good candidates for growth in PBRs.
Collapse
Affiliation(s)
- Charlotte Volpe
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, N-7465, Trondheim, Norway
| | - Marianne Nymark
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, N-7465, Trondheim, Norway
- Department of Biology, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Tom Andersen
- Department of Biosciences, Section for Aquatic Biology and Toxicology (AQUA), University of Oslo, N-0316, Oslo, Norway
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Johann Lavaud
- LEMAR-Laboratory of Marine Environmental Sciences, UMR6539 CNRS, Univ Brest, Ifremer, IRD, Institut Européen de la Mer, Technopôle Brest-Iroise, rue Dumont d'Urville, Plouzané, 29280, France
| | - Olav Vadstein
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| |
Collapse
|
3
|
Helbling EW, Banaszak AT, Valiñas MS, Vizzo JI, Villafañe VE, Cabrerizo MJ. Browning, nutrient inputs, and fast vertical mixing from simulated extreme rainfall and wind stress alter estuarine phytoplankton productivity. THE NEW PHYTOLOGIST 2023; 238:1876-1888. [PMID: 36908076 DOI: 10.1111/nph.18874] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/25/2023] [Indexed: 05/04/2023]
Abstract
Browning and nutrient inputs from extreme rainfall, together with increased vertical mixing due to strong winds, are more frequent in coastal ecosystems; however, their interactive effects on phytoplankton are poorly understood. We conducted experiments to quantify how browning, together with different mixing speeds (fluctuating radiation), and a nutrient pulse alter primary productivity and photosynthetic efficiency in estuarine phytoplankton communities. Phytoplankton communities (grazers excluded) were exposed simultaneously to these drivers, and key photosynthetic targets were quantified: oxygen production, electron transport rates (ETRs), and carbon fixation immediately following collection and after a 2-d acclimation/adaptation period. Increasing mixing speeds in a turbid water column (e.g. browning) significantly decreased ETRs and carbon fixation in the short term. Acclimation/adaptation to this condition for 2 d resulted in an increase in nanoplanktonic diatoms and a community that was photosynthetically more efficient; however, this did not revert the decreasing trend in carbon fixation with increased mixing speed. The observed interactive effects (resulting from extreme rainfall and strong winds) may have profound implications in the trophodynamics of highly productive system such as the Southwest Atlantic Ocean due to changes in the size structure of the community and reduced productivity.
Collapse
Affiliation(s)
- E Walter Helbling
- Estación de Fotobiología Playa Unión, 9103, Chubut, Rawson, Casilla de Correos 15, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Anastazia T Banaszak
- Integrative Reef Conservation Research Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Prol. Av. Niños Héroes S/N, Puerto Morelos, CP 77580, Mexico
| | - Macarena S Valiñas
- Estación de Fotobiología Playa Unión, 9103, Chubut, Rawson, Casilla de Correos 15, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan I Vizzo
- Estación de Fotobiología Playa Unión, 9103, Chubut, Rawson, Casilla de Correos 15, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Virginia E Villafañe
- Estación de Fotobiología Playa Unión, 9103, Chubut, Rawson, Casilla de Correos 15, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marco J Cabrerizo
- Departamento de Ecología y Biología Animal, Facultad de Ciencias del Mar, Universidad de Vigo, Campus Lagoas Marcosende, s/n, Vigo, 36310, Spain
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Illa de Toralla s/n, Vigo, 36331, Spain
- Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, Granada, 18071, Spain
| |
Collapse
|
4
|
Zhou L, Gao S, Yang W, Wu S, Huan L, Xie X, Wang X, Lin S, Wang G. Transcriptomic and metabolic signatures of diatom plasticity to light fluctuations. PLANT PHYSIOLOGY 2022; 190:2295-2314. [PMID: 36149329 PMCID: PMC9706478 DOI: 10.1093/plphys/kiac455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/09/2022] [Indexed: 06/01/2023]
Abstract
Unlike in terrestrial and freshwater ecosystems, light fields in oceans fluctuate due to both horizontal current and vertical mixing. Diatoms thrive and dominate the phytoplankton community in these fluctuating light fields. However, the molecular mechanisms that regulate diatom acclimation and adaptation to light fluctuations are poorly understood. Here, we performed transcriptome sequencing, metabolome profiling, and 13C-tracer labeling on the model diatom Phaeodactylum tricornutum. The diatom acclimated to constant light conditions was transferred to six different light conditions, including constant light (CL5d), short-term (1 h) high light (sHL1h), and short-term (1 h) and long-term (5 days) mild or severe light fluctuation conditions (mFL1h, sFL1h, mFL5d, and sFL5d) that mimicked land and ocean light levels. We identified 2,673 transcripts (25% of the total expressed genes) expressed differentially under different fluctuating light regimes. We also identified 497 transcription factors, 228 not reported previously, which exhibited higher expression under light fluctuations, including 7 with a light-sensitive PAS domain (Per-period circadian protein, Arnt-aryl hydrocarbon receptor nuclear translocator protein, Sim-single-minded protein) and 10 predicted to regulate genes related to light-harvesting complex proteins. Our data showed that prolonged preconditioning in severe light fluctuation enhanced photosynthesis in P. tricornutum under this condition, as evidenced by increased oxygen evolution accompanied by the upregulation of Rubisco and light-harvesting proteins. Furthermore, severe light fluctuation diverted the metabolic flux of assimilated carbon preferentially toward fatty acid storage over sugar and protein. Our results suggest that P. tricornutum use a series of complex and different responsive schemes in photosynthesis and carbon metabolism to optimize their growth under mild and severe light fluctuations. These insights underscore the importance of using more intense conditions when investigating the resilience of phytoplankton to light fluctuations.
Collapse
Affiliation(s)
- Lu Zhou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan Gao
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenting Yang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Songcui Wu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Huan
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiujun Xie
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xulei Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
5
|
Oliveira CYB, Abreu JL, Santos EP, Matos ÂP, Tribuzi G, Oliveira CDL, Veras BO, Bezerra RS, Müller MN, Gálvez AO. Light induces peridinin and docosahexaenoic acid accumulation in the dinoflagellate Durusdinium glynnii. Appl Microbiol Biotechnol 2022; 106:6263-6276. [PMID: 35972515 DOI: 10.1007/s00253-022-12131-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
Peridinin is a light-harvesting carotenoid present in phototrophic dinoflagellates and has great potential for new drug applications and cosmetics development. Herein, the effects of irradiance mediated by light-emitting diodes on growth performance, carotenoid and fatty acid profiles, and antioxidant activity of the endosymbiotic dinoflagellate Durusdinium glynnii were investigated. The results demonstrate that D. glynnii is particularly well adapted to low-light conditions; however, it can be high-light-tolerant. In contrast to other light-harvesting carotenoids, the peridinin accumulation in D. glynnii occurred during high-light exposure. The peridinin to chlorophyll-a ratio varied as a function of irradiance, while the peridinin to total carotenoids ratio remained stable. Under optimal irradiance for growth, there was a peak in docosahexaenoic acid (DHA) bioaccumulation. This study contributes to the understanding of the photoprotective role of peridinin in endosymbiont dinoflagellates and highlights the antioxidant activity of peridinin-rich extracts. KEY POINTS: • Peridinin has a protective role against chlorophyll photo-oxidation • High light conditions induce cellular peridinin accumulation • D. glynnii accumulates high amounts of DHA under optimal light supply.
Collapse
Affiliation(s)
- Carlos Yure B Oliveira
- Department of Fishing and Aquaculture, Federal Rural University of Pernambuco, St. Dom Manuel de Medeiros, Dois Irmãos, Recife, 52171-900, Brazil.
| | - Jéssika L Abreu
- Department of Fishing and Aquaculture, Federal Rural University of Pernambuco, St. Dom Manuel de Medeiros, Dois Irmãos, Recife, 52171-900, Brazil
| | - Elizabeth P Santos
- Department of Fishing and Aquaculture, Federal Rural University of Pernambuco, St. Dom Manuel de Medeiros, Dois Irmãos, Recife, 52171-900, Brazil
| | - Ângelo P Matos
- Center of Agricultural Sciences, Federal University of Santa Catarina, Florianópolis, 88034-001, Brazil
| | - Giustino Tribuzi
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, 88034-801, Brazil
| | - Cicero Diogo L Oliveira
- Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Bruno O Veras
- Department of Biochemistry, Federal University of Pernambuco, Recife, 50740-550, Brazil
| | - Railson S Bezerra
- Department of Biochemistry, Federal University of Pernambuco, Recife, 50740-550, Brazil
| | - Marius N Müller
- Department of Oceanography, Federal University of Pernambuco, Recife, 50740-550, Brazil
| | - Alfredo O Gálvez
- Department of Fishing and Aquaculture, Federal Rural University of Pernambuco, St. Dom Manuel de Medeiros, Dois Irmãos, Recife, 52171-900, Brazil
| |
Collapse
|
6
|
Walter J, Kromdijk J. Here comes the sun: How optimization of photosynthetic light reactions can boost crop yields. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:564-591. [PMID: 34962073 PMCID: PMC9302994 DOI: 10.1111/jipb.13206] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/22/2021] [Indexed: 05/22/2023]
Abstract
Photosynthesis started to evolve some 3.5 billion years ago CO2 is the substrate for photosynthesis and in the past 200-250 years, atmospheric levels have approximately doubled due to human industrial activities. However, this time span is not sufficient for adaptation mechanisms of photosynthesis to be evolutionarily manifested. Steep increases in human population, shortage of arable land and food, and climate change call for actions, now. Thanks to substantial research efforts and advances in the last century, basic knowledge of photosynthetic and primary metabolic processes can now be translated into strategies to optimize photosynthesis to its full potential in order to improve crop yields and food supply for the future. Many different approaches have been proposed in recent years, some of which have already proven successful in different crop species. Here, we summarize recent advances on modifications of the complex network of photosynthetic light reactions. These are the starting point of all biomass production and supply the energy equivalents necessary for downstream processes as well as the oxygen we breathe.
Collapse
Affiliation(s)
- Julia Walter
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
| | - Johannes Kromdijk
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
- Carl R Woese Institute for Genomic BiologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinois61801USA
| |
Collapse
|
7
|
Abstract
Biomass and lipid production by the marine centric diatom Thalassiosira pseudonana were characterized in media based on palm oil mill effluent (POME) as a source of key nutrients. The optimal medium comprised 20% by volume POME, 80 µM Na2SiO3, and 35 g NaCl L−1 in water at pH ~7.7. In 15-day batch cultures (16:8 h/h light–dark cycle; 200 µmol photons m−2 s−1, 26 ± 1 °C) bubbled continuously with air mixed with CO2 (2.5% by vol), the peak concentration of dry biomass was 869 ± 14 mg L−1 corresponding to a productivity of ~58 mg L−1 day−1. The neutral lipid content of the biomass was 46.2 ± 1.1% by dry weight. The main components of the esterified lipids were palmitoleic acid methyl ester (31.6% w/w) and myristic acid methyl ester (16.8% w/w). The final biomass concentration and the lipid content were affected by the light–dark cycle. Continuous (24 h light) illumination at the above-specified irradiance reduced biomass productivity to ~54 mg L−1 day−1 and lipid content to 38.1%.
Collapse
|
8
|
Duarte Ferreira G, Romano F, Medić N, Pitta P, Hansen PJ, Flynn KJ, Mitra A, Calbet A. Mixoplankton interferences in dilution grazing experiments. Sci Rep 2021; 11:23849. [PMID: 34903787 PMCID: PMC8668877 DOI: 10.1038/s41598-021-03176-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/29/2021] [Indexed: 11/09/2022] Open
Abstract
It remains unclear as to how mixoplankton (coupled phototrophy and phagotrophy in one cell) affects the estimation of grazing rates obtained from the widely used dilution grazing technique. To address this issue, we prepared laboratory-controlled dilution experiments with known mixtures of phyto-, protozoo-, and mixoplankton, operated under different light regimes and species combinations. Our results evidenced that chlorophyll is an inadequate proxy for phytoplankton when mixoplankton are present. Conversely, species-specific cellular counts could assist (although not fully solve) in the integration of mixoplanktonic activity in a dilution experiment. Moreover, cell counts can expose prey selectivity patterns and intraguild interactions among grazers. Our results also demonstrated that whole community approaches mimic reality better than single-species laboratory experiments. We also confirmed that light is required for protozoo- and mixoplankton to correctly express their feeding activity, and that overall diurnal grazing is higher than nocturnal. Thus, we recommend that a detailed examination of initial and final plankton communities should become routine in dilution experiments, and that incubations should preferably be started at the beginning of both day and night periods. Finally, we hypothesize that in silico approaches may help disentangle the contribution of mixoplankton to the community grazing of a given system.
Collapse
Affiliation(s)
- Guilherme Duarte Ferreira
- Institut de Ciències del Mar, CSIC, Pg. Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain. .,Marine Biological Section, University of Copenhagen, 3000, Helsingør, Denmark.
| | - Filomena Romano
- Marine Biological Section, University of Copenhagen, 3000, Helsingør, Denmark.,Institute of Oceanography, Hellenic Centre for Marine Research, PO Box 2214, 71003, Heraklion, Greece
| | - Nikola Medić
- Marine Biological Section, University of Copenhagen, 3000, Helsingør, Denmark
| | - Paraskevi Pitta
- Institute of Oceanography, Hellenic Centre for Marine Research, PO Box 2214, 71003, Heraklion, Greece
| | - Per Juel Hansen
- Marine Biological Section, University of Copenhagen, 3000, Helsingør, Denmark
| | - Kevin J Flynn
- Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK
| | - Aditee Mitra
- School of Earth and Environmental Sciences, Cardiff University, Park Place, Cardiff, CF10 3AT, UK
| | - Albert Calbet
- Institut de Ciències del Mar, CSIC, Pg. Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| |
Collapse
|
9
|
Zhou L, Wu S, Gu W, Wang L, Wang J, Gao S, Wang G. Correction to: Photosynthesis acclimation under severely fluctuating light conditions allows faster growth of diatoms compared with dinoflagellates. BMC PLANT BIOLOGY 2021; 21:205. [PMID: 33931036 PMCID: PMC8086347 DOI: 10.1186/s12870-021-02984-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Lu Zhou
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Songcui Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Wenhui Gu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Lijun Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Shan Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Guangce Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|