1
|
Oliver SL, Yobi A, Flint-Garcia S, Angelovici R. Reducing Acrylamide Formation Potential by Targeting Free Asparagine Accumulation in Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6089-6095. [PMID: 38483189 DOI: 10.1021/acs.jafc.3c09547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Acrylamide is a probable carcinogen in humans and is formed when reducing sugars react with free asparagine (Asn) during thermal processing of food. Although breeding for low reducing sugars worked well in potatoes, it is less successful in cereals. However, reducing free Asn in cereals has great potential for reducing acrylamide formation, despite the role that Asn plays in nitrogen transport and amino acid biosynthesis. In this perspective, we summarize the efforts aimed at reducing free Asn in cereal grains and discuss the potentials and challenges associated with targeting this essential amino acid, especially in a seed-specific manner.
Collapse
Affiliation(s)
- Sarah L Oliver
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, United States
| | - Abou Yobi
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, United States
| | - Sherry Flint-Garcia
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, United States
- United States Department of Agriculture, Agricultural Research Service, Columbia, Missouri 65211, United States
| | - Ruthie Angelovici
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
2
|
Kaur N, Brock N, Raffan S, Halford NG. Low asparagine wheat: Europe's first field trial of genome edited wheat amid rapidly changing regulations on acrylamide in food and genome editing of crops. BREEDING SCIENCE 2024; 74:37-46. [PMID: 39246437 PMCID: PMC11375425 DOI: 10.1270/jsbbs.23058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/15/2024] [Indexed: 09/10/2024]
Abstract
We review the undertaking of a field trial of low asparagine wheat lines in which the asparagine synthetase gene, TaASN2, has been knocked out using CRISPR/Cas9. The field trial was undertaken in 2021-2022 and represented the first field release of genome edited wheat in Europe. The year of the field trial and the period since have seen rapid changes in the regulations covering both the field release and commercialisation of genome edited crops in the UK. These historic developments are reviewed in detail. Free asparagine is the precursor for acrylamide formation during high-temperature cooking and processing of grains, tubers, storage roots, beans and other crop products. Consequently, work on reducing the free asparagine concentration of wheat and other cereal grains, as well as the tubers, beans and storage roots of other crops, is driven by the need for food businesses to comply with current and potential future regulations on acrylamide content of foods. The topic illustrates how strategic and applied crop research is driven by regulations and also needs a supportive regulatory environment in which to thrive.
Collapse
Affiliation(s)
- Navneet Kaur
- Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | - Natasha Brock
- Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | - Sarah Raffan
- The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037-1002, United States of America
| | | |
Collapse
|
3
|
Lavoignat M, Cassan C, Pétriacq P, Gibon Y, Heumez E, Duque C, Momont P, Rincent R, Blancon J, Ravel C, Le Gouis J. Different wheat loci are associated to heritable free asparagine content in grain grown under different water and nitrogen availability. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:46. [PMID: 38332254 DOI: 10.1007/s00122-024-04551-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/07/2024] [Indexed: 02/10/2024]
Abstract
KEY MESSAGE Different wheat QTLs were associated to the free asparagine content of grain grown in four different conditions. Environmental effects are a key factor when selecting for low acrylamide-forming potential. The amount of free asparagine in grain of a wheat genotype determines its potential to form harmful acrylamide in derivative food products. Here, we explored the variation in the free asparagine, aspartate, glutamine and glutamate contents of 485 accessions reflecting wheat worldwide diversity to define the genetic architecture governing the accumulation of these amino acids in grain. Accessions were grown under high and low nitrogen availability and in water-deficient and well-watered conditions, and plant and grain phenotypes were measured. Free amino acid contents of grain varied from 0.01 to 1.02 mg g-1 among genotypes in a highly heritable way that did not correlate strongly with grain yield, protein content, specific weight, thousand-kernel weight or heading date. Mean free asparagine content was 4% higher under high nitrogen and 3% higher in water-deficient conditions. After genotyping the accessions, single-locus and multi-locus genome-wide association study models were used to identify several QTLs for free asparagine content located on nine chromosomes. Each QTL was associated with a single amino acid and growing environment, and none of the QTLs colocalised with genes known to be involved in the corresponding amino acid metabolism. This suggests that free asparagine content is controlled by several loci with minor effects interacting with the environment. We conclude that breeding for reduced asparagine content is feasible, but should be firmly based on multi-environment field trials. KEY MESSAGE Different wheat QTLs were associated to the free asparagine content of grain grown in four different conditions. Environmental effects are a key factor when selecting for low acrylamide-forming potential.
Collapse
Affiliation(s)
- Mélanie Lavoignat
- Université Clermont Auvergne, INRAE, UMR1095 GDEC, 63000, Clermont-Ferrand, France
- AgroParisTech, 75005, Paris, France
| | - Cédric Cassan
- Université Bordeaux, INRAE, UMR 1332 BFP, 33883, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Pierre Pétriacq
- Université Bordeaux, INRAE, UMR 1332 BFP, 33883, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Yves Gibon
- Université Bordeaux, INRAE, UMR 1332 BFP, 33883, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | | | | | | | - Renaud Rincent
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190, Gif-sur-Yvette, France
| | - Justin Blancon
- Université Clermont Auvergne, INRAE, UMR1095 GDEC, 63000, Clermont-Ferrand, France
| | - Catherine Ravel
- Université Clermont Auvergne, INRAE, UMR1095 GDEC, 63000, Clermont-Ferrand, France
| | - Jacques Le Gouis
- Université Clermont Auvergne, INRAE, UMR1095 GDEC, 63000, Clermont-Ferrand, France.
| |
Collapse
|
4
|
Kaur N, Halford NG. Reducing the Risk of Acrylamide and Other Processing Contaminant Formation in Wheat Products. Foods 2023; 12:3264. [PMID: 37685197 PMCID: PMC10486470 DOI: 10.3390/foods12173264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Wheat is a staple crop, consumed worldwide as a major source of starch and protein. Global intake of wheat has increased in recent years, and overall, wheat is considered to be a healthy food, particularly when products are made from whole grains. However, wheat is almost invariably processed before it is consumed, usually via baking and/or toasting, and this can lead to the formation of toxic processing contaminants, including acrylamide, 5-hydroxymethylfurfural (HMF) and polycyclic aromatic hydrocarbons (PAHs). Acrylamide is principally formed from free (soluble, non-protein) asparagine and reducing sugars (glucose, fructose and maltose) within the Maillard reaction and is classified as a Group 2A carcinogen (probably carcinogenic to humans). It also has neurotoxic and developmental effects at high doses. HMF is also generated within the Maillard reaction but can also be formed via the dehydration of fructose or caramelisation. It is frequently found in bread, biscuits, cookies, and cakes. Its molecular structure points to genotoxicity and carcinogenic risks. PAHs are a large class of chemical compounds, many of which are genotoxic, mutagenic, teratogenic and carcinogenic. They are mostly formed during frying, baking and grilling due to incomplete combustion of organic matter. Production of these processing contaminants can be reduced with changes in recipe and processing parameters, along with effective quality control measures. However, in the case of acrylamide and HMF, their formation is also highly dependent on the concentrations of precursors in the grain. Here, we review the synthesis of these contaminants, factors impacting their production and the mitigation measures that can be taken to reduce their formation in wheat products, focusing on the role of genetics and agronomy. We also review the risk management measures adopted by food safety authorities around the world.
Collapse
|
5
|
Tafuri A, Zuccaro M, Ravaglia S, Pirona R, Masci S, Sestili F, Lafiandra D, Ceriotti A, Baldoni E. Exploring Variability of Free Asparagine Content in the Grain of Bread Wheat ( Triticum aestivum L.) Varieties Cultivated in Italy to Reduce Acrylamide-Forming Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:1349. [PMID: 36987037 PMCID: PMC10054617 DOI: 10.3390/plants12061349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Acrylamide, a suspected human carcinogen, is generated during food processing at high temperatures in the Maillard reaction, which involves reducing sugars and free asparagine. In wheat derivatives, free asparagine represents a key factor in acrylamide formation. Free asparagine levels in the grain of different wheat genotypes has been investigated in recent studies, but little is known about elite varieties that are cultivated in Italy. Here, we analysed the accumulation of free asparagine in a total of 54 bread wheat cultivars that are relevant for the Italian market. Six field trials in three Italian locations over two years were considered. Wholemeal flours obtained from harvested seeds were analysed using an enzymatic method. Free asparagine content ranged from 0.99 to 2.82 mmol/kg dry matter in the first year, and from 0.55 to 2.84 mmol/kg dry matter in the second year. Considering the 18 genotypes that were present in all the field trials, we evaluated possible environment and genetic influences for this trait. Some cultivars seemed to be highly affected by environment, whereas others showed a relative stability in free asparagine content across years and locations. Finally, we identified two varieties showing the highest free asparagine levels in our analysis, representing potential useful materials for genotype x environment interaction studies. Two other varieties, which were characterized by low amounts of free asparagine in the considered samples, may be useful for the food industry and for future breeding programs aimed to reduce acrylamide-forming potential in bread wheat.
Collapse
Affiliation(s)
- Andrea Tafuri
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), via E. Bassini 15, 20133 Milano, Italy; (A.T.); (M.Z.); (R.P.); (A.C.)
- SIS Società Italiana Sementi, Via Mirandola 5, 40068 San Lazzaro di Savena, Italy;
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy; (S.M.); (F.S.); (D.L.)
| | - Melania Zuccaro
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), via E. Bassini 15, 20133 Milano, Italy; (A.T.); (M.Z.); (R.P.); (A.C.)
| | - Stefano Ravaglia
- SIS Società Italiana Sementi, Via Mirandola 5, 40068 San Lazzaro di Savena, Italy;
| | - Raul Pirona
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), via E. Bassini 15, 20133 Milano, Italy; (A.T.); (M.Z.); (R.P.); (A.C.)
| | - Stefania Masci
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy; (S.M.); (F.S.); (D.L.)
| | - Francesco Sestili
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy; (S.M.); (F.S.); (D.L.)
| | - Domenico Lafiandra
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy; (S.M.); (F.S.); (D.L.)
| | - Aldo Ceriotti
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), via E. Bassini 15, 20133 Milano, Italy; (A.T.); (M.Z.); (R.P.); (A.C.)
| | - Elena Baldoni
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), via E. Bassini 15, 20133 Milano, Italy; (A.T.); (M.Z.); (R.P.); (A.C.)
| |
Collapse
|
6
|
Raffan S, Oddy J, Mead A, Barker G, Curtis T, Usher S, Burt C, Halford NG. Field assessment of genome-edited, low asparagine wheat: Europe's first CRISPR wheat field trial. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1097-1099. [PMID: 36759345 DOI: 10.1111/pbi.14026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 05/25/2023]
Affiliation(s)
| | | | | | - Gary Barker
- Functional Genomics, School of Biological Sciences, University of Bristol, Bristol, UK
| | | | | | | | | |
Collapse
|
7
|
Oddy J, Addy J, Mead A, Hall C, Mackay C, Ashfield T, McDiarmid F, Curtis TY, Raffan S, Wilkinson M, Elmore JS, Cryer N, de Almeida IM, Halford NG. Reducing Dietary Acrylamide Exposure from Wheat Products through Crop Management and Imaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3403-3413. [PMID: 36745538 PMCID: PMC9951245 DOI: 10.1021/acs.jafc.2c07208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/14/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
The nutritional safety of wheat-based food products is compromised by the presence of the processing contaminant acrylamide. Reduction of the key acrylamide precursor, free (soluble, non-protein) asparagine, in wheat grain can be achieved through crop management strategies, but such strategies have not been fully developed. We ran two field trials with 12 soft (biscuit) wheat varieties and different nitrogen, sulfur, potassium, and phosphorus fertilizer combinations. Our results indicated that a nitrogen-to-sulfur ratio of 10:1 kg/ha was sufficient to prevent large increases in free asparagine, whereas withholding potassium or phosphorus alone did not cause increases in free asparagine when sulfur was applied. Multispectral measurements of plants in the field were able to predict the free asparagine content of grain with an accuracy of 71%, while a combination of multispectral, fluorescence, and morphological measurements of seeds could distinguish high free asparagine grain from low free asparagine grain with an accuracy of 86%. The acrylamide content of biscuits correlated strongly with free asparagine content and with color measurements, indicating that agronomic strategies to decrease free asparagine would be effective and that quality control checks based on product color could eliminate high acrylamide biscuit products.
Collapse
Affiliation(s)
- Joseph Oddy
- Rothamsted
Research, Harpenden, Hertfordshire AL5 2JQ, United
Kingdom
| | - John Addy
- Rothamsted
Research, Harpenden, Hertfordshire AL5 2JQ, United
Kingdom
| | - Andrew Mead
- Rothamsted
Research, Harpenden, Hertfordshire AL5 2JQ, United
Kingdom
| | - Chris Hall
- Rothamsted
Research, Harpenden, Hertfordshire AL5 2JQ, United
Kingdom
| | - Chris Mackay
- Rothamsted
Research, Harpenden, Hertfordshire AL5 2JQ, United
Kingdom
| | - Tom Ashfield
- Rothamsted
Research, Harpenden, Hertfordshire AL5 2JQ, United
Kingdom
- Crop
Health and Protection (CHAP), Rothamsted, Harpenden AL5 2JQ, United
Kingdom
| | - Faye McDiarmid
- Crop
Health and Protection (CHAP), Rothamsted, Harpenden AL5 2JQ, United
Kingdom
| | - Tanya Y. Curtis
- Curtis
Analytics Limited, Discovery
Park, Sandwich CT13 9FE, United Kingdom
| | - Sarah Raffan
- Rothamsted
Research, Harpenden, Hertfordshire AL5 2JQ, United
Kingdom
| | - Mark Wilkinson
- Rothamsted
Research, Harpenden, Hertfordshire AL5 2JQ, United
Kingdom
| | - J. Stephen Elmore
- Department
of Food and Nutritional Sciences, University
of Reading, Reading RG6 6DZ, U.K.
| | - Nicholas Cryer
- Mondele̅z
UK R&D Ltd, Bournville
Lane, Bournville, Birmingham, B30 2LU, U.K.
| | | | - Nigel G. Halford
- Rothamsted
Research, Harpenden, Hertfordshire AL5 2JQ, United
Kingdom
| |
Collapse
|
8
|
Qin Y, Xie XQ, Khan Q, Wei JL, Sun AN, Su YM, Guo DJ, Li YR, Xing YX. Endophytic nitrogen-fixing bacteria DX120E inoculation altered the carbon and nitrogen metabolism in sugarcane. Front Microbiol 2022; 13:1000033. [PMID: 36419423 PMCID: PMC9678049 DOI: 10.3389/fmicb.2022.1000033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/19/2022] [Indexed: 12/23/2024] Open
Abstract
Endophytic nitrogen-fixing bacteria are versatile and widely distributed in plants. Numerous strains of endophytic nitrogen-fixing bacteria are used as biofertilizers to minimize the utilization of chemical fertilizers, improve nutrient use efficiency, increase crop productivity, and reduce environmental pollution. However, the mechanism underlying the interaction between nitrogen-fixing bacteria and plants is still unclear. So, the present study was planned to assess the effects of endophytic nitrogen-fixing bacteria on sugarcane by analyzing the changes in physiological and biochemical activities. In the current study, Klebsiella variicola DX120E, an endophytic nitrogen-fixing bacterium, was inoculated on sugarcane varieties B8 and ROC22 to evaluate the effects on nitrogen and carbon metabolism-related enzymatic activity and biomass. Results showed that DX120E inoculation improved the enzymatic activities related to gluconeogenesis and nitrogen metabolism increased the sugarcane plant's height, cane juice Brix, biomass, chlorophyll, and soluble sugar content in sugarcane. Metabolomics analysis revealed that the metabolome modules were highly enriched in carbon and nitrogen metabolic pathways of strain-affected sugarcane than uninoculated control. The identified carbohydrates were associated with the glycolysis or gluconeogenesis and tricarboxylic acid (TCA) cycle in plants. Metabolomic profiling in the present investigation showed that carbohydrate metabolism is coordinated with nitrogen metabolism to provide carbon skeletons and energy to amino acid synthesis, and amino acid degradation results in several metabolites used by the citric acid cycle as an energy source. Moreover, differentially expressed metabolites of non-proteinogenic amino acids have a further complementary role to the action of endophytic nitrogen-fixing bacteria. Meanwhile, a significant difference in metabolites and metabolic pathways present in stems and leaves of B8 and ROC22 varieties was found. This study discovered the potential benefits of DX120E in sugarcane and suggested candidate regulatory elements to enhance interactions between nitrogen-fixing microbes and sugarcane.
Collapse
Affiliation(s)
- Ying Qin
- College of Agriculture, Guangxi University, Nanning, China
| | - Xian-Qiu Xie
- College of Agriculture, Guangxi University, Nanning, China
| | - Qaisar Khan
- College of Agriculture, Guangxi University, Nanning, China
| | - Jiang-Lu Wei
- College of Agriculture, Guangxi University, Nanning, China
| | - An-Ni Sun
- College of Agriculture, Guangxi University, Nanning, China
| | - Yi-Mei Su
- College of Agriculture, Guangxi University, Nanning, China
| | - Dao-Jun Guo
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Yang-Rui Li
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Sugarcane Research Center of Chinese Academy of Agricultural Sciences, Nanning, China
| | - Yong-Xiu Xing
- College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
9
|
Han M, Xu X, Li X, Xu M, Hu M, Xiong Y, Feng J, Wu H, Zhu H, Su T. New Insight into Aspartate Metabolic Pathways in Populus: Linking the Root Responsive Isoenzymes with Amino Acid Biosynthesis during Incompatible Interactions of Fusarium solani. Int J Mol Sci 2022; 23:ijms23126368. [PMID: 35742809 PMCID: PMC9224274 DOI: 10.3390/ijms23126368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 01/10/2023] Open
Abstract
Integrating amino acid metabolic pathways into plant defense and immune systems provides the building block for stress acclimation and host-pathogen interactions. Recent progress in L-aspartate (Asp) and its deployed metabolic pathways highlighted profound roles in plant growth and defense modulation. Nevertheless, much remains unknown concerning the multiple isoenzyme families involved in Asp metabolic pathways in Populus trichocarpa, a model tree species. Here, we present comprehensive features of 11 critical isoenzyme families, representing biological significance in plant development and stress adaptation. The in silico prediction of the molecular and genetic patterns, including phylogenies, genomic structures, and chromosomal distribution, identify 44 putative isoenzymes in the Populus genome. Inspection of the tissue-specific expression demonstrated that approximately 26 isogenes were expressed, predominantly in roots. Based on the transcriptomic atlas in time-course experiments, the dynamic changes of the genes transcript were explored in Populus roots challenged with soil-borne pathogenic Fusarium solani (Fs). Quantitative expression evaluation prompted 12 isoenzyme genes (PtGS2/6, PtGOGAT2/3, PtAspAT2/5/10, PtAS2, PtAspg2, PtAlaAT1, PtAK1, and PtAlaAT4) to show significant induction responding to the Fs infection. Using high-performance liquid chromatography (HPLC) and non-target metabolomics assay, the concurrent perturbation on levels of Asp-related metabolites led to findings of free amino acids and derivatives (e.g., Glutamate, Asp, Asparagine, Alanine, Proline, and α-/γ-aminobutyric acid), showing marked differences. The multi-omics integration of the responsive isoenzymes and differential amino acids examined facilitates Asp as a cross-talk mediator involved in metabolite biosynthesis and defense regulation. Our research provides theoretical clues for the in-depth unveiling of the defense mechanisms underlying the synergistic effect of fine-tuned Asp pathway enzymes and the linked metabolite flux in Populus.
Collapse
Affiliation(s)
- Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
| | - Xianglei Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Xue Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Mingyue Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
| | - Mei Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yuan Xiong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Junhu Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
| | - Hao Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Hui Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-1589-598-3381
| |
Collapse
|
10
|
Halford NG, Raffan S, Oddy J. Progress towards the production of potatoes and cereals with low acrylamide-forming potential. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Oddy J, Raffan S, Wilkinson MD, Elmore JS, Halford NG. Understanding the Relationships between Free Asparagine in Grain and Other Traits to Breed Low-Asparagine Wheat. PLANTS (BASEL, SWITZERLAND) 2022; 11:669. [PMID: 35270139 PMCID: PMC8912546 DOI: 10.3390/plants11050669] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Since the discovery of acrylamide in food, and the identification of free asparagine as the key determinant of acrylamide concentration in wheat products, our understanding of how grain asparagine content is regulated has improved greatly. However, the targeted reduction in grain asparagine content has not been widely implemented in breeding programmes so far. Here we summarise how free asparagine concentration relates to other quality and agronomic traits and show that these relationships are unlikely to pose major issues for the breeding of low-asparagine wheat. We also outline the strategies that are possible for the breeding of low-asparagine wheat, using both natural and induced variation.
Collapse
Affiliation(s)
- Joseph Oddy
- Plant Sciences Department, Rothamsted Research, Harpenden AL5 2JQ, UK; (J.O.); (S.R.); (M.D.W.)
| | - Sarah Raffan
- Plant Sciences Department, Rothamsted Research, Harpenden AL5 2JQ, UK; (J.O.); (S.R.); (M.D.W.)
| | - Mark D. Wilkinson
- Plant Sciences Department, Rothamsted Research, Harpenden AL5 2JQ, UK; (J.O.); (S.R.); (M.D.W.)
| | - J. Stephen Elmore
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, P.O. Box 226, Reading RG6 6AP, UK;
| | - Nigel G. Halford
- Plant Sciences Department, Rothamsted Research, Harpenden AL5 2JQ, UK; (J.O.); (S.R.); (M.D.W.)
| |
Collapse
|