1
|
Mierziak J, Wojtasik W. Epigenetic weapons of plants against fungal pathogens. BMC PLANT BIOLOGY 2024; 24:175. [PMID: 38443788 PMCID: PMC10916060 DOI: 10.1186/s12870-024-04829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024]
Abstract
In the natural environment, plants face constant exposure to biotic stress caused by fungal attacks. The plant's response to various biotic stresses relies heavily on its ability to rapidly adjust the transcriptome. External signals are transmitted to the nucleus, leading to activation of transcription factors that subsequently enhance the expression of specific defense-related genes. Epigenetic mechanisms, including histone modifications and DNA methylation, which are closely linked to chromatin states, regulate gene expression associated with defense against biotic stress. Additionally, chromatin remodelers and non-coding RNA play a significant role in plant defense against stressors. These molecular modifications enable plants to exhibit enhanced resistance and productivity under diverse environmental conditions. Epigenetic mechanisms also contribute to stress-induced environmental epigenetic memory and priming in plants, enabling them to recall past molecular experiences and utilize this stored information for adaptation to new conditions. In the arms race between fungi and plants, a significant aspect is the cross-kingdom RNAi mechanism, whereby sRNAs can traverse organismal boundaries. Fungi utilize sRNA as an effector molecule to silence plant resistance genes, while plants transport sRNA, primarily through extracellular vesicles, to pathogens in order to suppress virulence-related genes. In this review, we summarize contemporary knowledge on epigenetic mechanisms of plant defense against attack by pathogenic fungi. The role of epigenetic mechanisms during plant-fungus symbiotic interactions is also considered.
Collapse
Affiliation(s)
- Justyna Mierziak
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63, Wroclaw, 51-148, Poland
| | - Wioleta Wojtasik
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63, Wroclaw, 51-148, Poland.
| |
Collapse
|
2
|
Samynathan R, Venkidasamy B, Shanmugam A, Ramalingam S, Thiruvengadam M. Functional role of microRNA in the regulation of biotic and abiotic stress in agronomic plants. Front Genet 2023; 14:1272446. [PMID: 37886688 PMCID: PMC10597799 DOI: 10.3389/fgene.2023.1272446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
The increasing demand for food is the result of an increasing population. It is crucial to enhance crop yield for sustainable production. Recently, microRNAs (miRNAs) have gained importance because of their involvement in crop productivity by regulating gene transcription in numerous biological processes, such as growth, development and abiotic and biotic stresses. miRNAs are small, non-coding RNA involved in numerous other biological functions in a plant that range from genomic integrity, metabolism, growth, and development to environmental stress response, which collectively influence the agronomic traits of the crop species. Additionally, miRNA families associated with various agronomic properties are conserved across diverse plant species. The miRNA adaptive responses enhance the plants to survive environmental stresses, such as drought, salinity, cold, and heat conditions, as well as biotic stresses, such as pathogens and insect pests. Thus, understanding the detailed mechanism of the potential response of miRNAs during stress response is necessary to promote the agronomic traits of crops. In this review, we updated the details of the functional aspects of miRNAs as potential regulators of various stress-related responses in agronomic plants.
Collapse
Affiliation(s)
- Ramkumar Samynathan
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Ashokraj Shanmugam
- Plant Physiology and Biotechnology Division, UPASI Tea Research Foundation, Coimbatore, Tamil Nadu, India
| | - Sathishkumar Ramalingam
- Plant Genetic Engineering Lab, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Guan Y, Wei Z, Zhou L, Wang K, Zhang M, Song P, Hu P, Hu H, Li C. Tae-miR397 Negatively Regulates Wheat Resistance to Blumeria graminis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3096. [PMID: 37687344 PMCID: PMC10489981 DOI: 10.3390/plants12173096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
MicroRNA (miRNA) plays a crucial role in the interactions between plants and pathogens, and identifying disease-related miRNAs could help us understand the mechanisms underlying plant disease pathogenesis and breed resistant varieties. However, the role of miRNA in wheat defense responses remains largely unexplored. The miR397 family is highly conserved in plants and involved in plant development and defense response. Therefore, the purpose of this study was to investigate the function of tae-miR397 in wheat resistance to powdery mildew. The expression pattern analysis revealed that tae-miR397 expression was higher in young leaves than in other tissues and was significantly decreased in wheat Bainong207 leaves after Blumeria graminis (Bgt) infection and chitin treatment. Additionally, the expression of tae-miR397 was significantly down-regulated by salicylic acid and induced under jasmonate treatment. The overexpression of tae-miR397 in common wheat Bainong207 enhanced the wheat's susceptibility to powdery mildew in the seedling and adult stages. The rate of Bgt spore germination and mycelial growth in transgenic wheat plants overexpressing tae-miR397 was faster than in the untransformed wild-type plants. The target gene of tae-miR397 was predicted to be a wound-induced protein (Tae-WIP), and the function was investigated. We demonstrated that silencing of Tae-WIP via barley-stripe-mosaic-virus-induced gene silencing enhanced wheat's susceptibility to powdery mildew. qRT-PCR indicated that tae-miR397 regulated wheat immunity by controlling pathogenesis-related gene expressions. Moreover, the transgenic plants overexpressing tae-miR397 exhibited more tillers than the wild-type plants. This work suggests that tae-miR397 is a negative regulator of resistance against powdery mildew and has great potential for breeding disease-resistant cultivars.
Collapse
Affiliation(s)
- Yuanyuan Guan
- School of Life Sciences, Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.G.); (Z.W.); (L.Z.); (K.W.)
| | - Zhiyuan Wei
- School of Life Sciences, Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.G.); (Z.W.); (L.Z.); (K.W.)
| | - Luyi Zhou
- School of Life Sciences, Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.G.); (Z.W.); (L.Z.); (K.W.)
| | - Kaige Wang
- School of Life Sciences, Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.G.); (Z.W.); (L.Z.); (K.W.)
| | - Meng Zhang
- School of Agriculture, Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China; (M.Z.); (P.S.); (P.H.)
| | - Puwen Song
- School of Agriculture, Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China; (M.Z.); (P.S.); (P.H.)
| | - Ping Hu
- School of Agriculture, Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China; (M.Z.); (P.S.); (P.H.)
| | - Haiyan Hu
- School of Agriculture, Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China; (M.Z.); (P.S.); (P.H.)
| | - Chengwei Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
4
|
Guan Y, Wei Z, Song P, Zhou L, Hu H, Hu P, Li C. MicroRNA Expression Profiles in Response to Phytophthora infestans and Oidium neolycopersici and Functional Identification of sly-miR397 in Tomato. PHYTOPATHOLOGY 2023; 113:497-507. [PMID: 36346372 DOI: 10.1094/phyto-04-22-0117-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Late blight and powdery mildew are two widespread tomato diseases caused by Phytophthora infestans and Oidium neolycopersici, respectively, which reduce the quantity and quality of tomato. MicroRNAs (miRNAs) play critical roles in tomato resistance to various pathogens. Investigating the function of miRNAs is of great significance in controlling tomato diseases. To identify potential miRNAs involved in the interaction of tomato with P. infestans or O. neolycopersici, we analyzed the expression profiles of small RNAs in tomato leaves infected with these two pathogens using RNA-seq technology. A total of 330 and 288 miRNAs exhibited differences in expression levels after exposure to P. infestans and O. neolycopersici, respectively. One hundred and forty-six commonly differentially expressed (DE) miRNAs responsive to P. infestans and O. neolycopersici infestation were detected, including 10 commonly known conserved DE miRNAs and 136 novel miRNAs. Among these known DE miRNAs, sly-miR397 was strongly downregulated in response to P. infestans or O. neolycopersici infection. Silencing of sly-miR397 resulted in enhanced tolerance to the pathogens, whereas overexpression of sly-miR397 showed increased susceptibility. Furthermore, changes in sly-miR397 expression could also affect expression levels of pathogenesis-related genes and reactive oxygen species-scavenging genes, leading to altered necrotic cells and H2O2 levels. In addition, the number of lateral branches significantly changed in transgenic plants. Taken together, our results provide potential miRNA resources for further research of miRNA-disease associations and indicates that sly-miR397 acts as a negative regulator of disease resistance and influences lateral branch development in tomato.
Collapse
Affiliation(s)
- Yuanyuan Guan
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Zhiyuan Wei
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Puwen Song
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Luyi Zhou
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Haiyan Hu
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Ping Hu
- College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Chengwei Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
5
|
Maksimov IV, Shein MY, Burkhanova GF. RNA Interference in Plant Protection from Fungal and Oomycete Infection. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
6
|
Shi J, Jiang Q, Zhang S, Dai X, Wang F, Ma Y. MIR390 Is Involved in Regulating Anthracnose Resistance in Apple. PLANTS (BASEL, SWITZERLAND) 2022; 11:3299. [PMID: 36501336 PMCID: PMC9736487 DOI: 10.3390/plants11233299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
As an important cash crop in China, apple has a good flavor and is rich in nutrients. Fungal attacks have become a major obstacle in apple cultivation. Colletotrichum gloeosporioides is one of the most devastating fungal pathogens in apple. Thus, discovering resistance genes in response to C. gloeosporioides may aid in designing safer control strategies and facilitate the development of apple resistance breeding. A previous study reported that 'Hanfu' autotetraploid apple displayed higher C. gloeosporioides resistance than 'Hanfu' apple, and the expression level of mdm-MIR390b was significantly upregulated in autotetraploid plants compared to that in 'Hanfu' plants, as demonstrated by digital gene expression (DGE) analysis. It is still unclear, however, whether mdm-MIR390b regulates apple anthracnose resistance. Apple MIR390b was transformed into apple 'GL-3' plants to identify the functions of mdm-MIR390b in anthracnose resistance. C. gloeosporioides treatment analysis indicated that the overexpression of mdm-MIR390b reduced fungal damage to apple leaves and fruit. Physiology analysis showed that mdm-MIR390b increased C. gloeosporioides resistance by improving superoxide dismutase (SOD) and peroxidase (POD) activity to alleviate the damage caused by O2- and H2O2. Our results demonstrate that mdm-MIR390b can improve apple plants' anthracnose resistance.
Collapse
Affiliation(s)
- Jiajun Shi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Qiu Jiang
- Liaoning Institute of Pomology, Xiongyue 115009, China
| | - Shuyuan Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xinyu Dai
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Feng Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yue Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
7
|
Liao L, Xie B, Guan P, Jiang N, Cui J. New insight into the molecular mechanism of miR482/2118 during plant resistance to pathogens. FRONTIERS IN PLANT SCIENCE 2022; 13:1026762. [PMID: 36388487 PMCID: PMC9650292 DOI: 10.3389/fpls.2022.1026762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
MicroRNAs (miRNAs), a group of small noncoding RNAs (approximately 20-24 nucleotides), act as essential regulators affecting endogenous gene expression in plants. MiR482/2118 is a unique miRNA superfamily in plants and represses NUCLEOTIDE BINDING SITE-LEUCINE-RICH REPEAT (NBS-LRR) genes to function in plant resistance to pathogens. In addition, over the past several years, it has been found that miR482/2118 not only targets NBS-LRRs but also acts on other molecular mechanisms to affect plant resistance. miR482/2118-5ps, phased small interfering RNAs (phasiRNAs) and long noncoding RNAs (lncRNAs) play important roles in plant disease resistance. This review summarizes the current knowledge of the interactions and links between miR482/2118 and its new interacting molecules, miR482/2118-5p, phasiRNAs and lncRNAs, in plant disease resistance. Here, we aim to provide a comprehensive view describing the new molecular mechanism associated with miR482/2118 in the plant immune system.
Collapse
Affiliation(s)
- Lijuan Liao
- College of Life Science, Hunan Normal University, Changsha, China
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, Changsha, China
| | - Biao Xie
- College of Life Science, Hunan Normal University, Changsha, China
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Changsha, China
| | - Peipei Guan
- College of Life Science, Hunan Normal University, Changsha, China
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, Changsha, China
| | - Ning Jiang
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jun Cui
- College of Life Science, Hunan Normal University, Changsha, China
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, Changsha, China
| |
Collapse
|
8
|
Lu Y, Zhang J, Han Z, Han Z, Li S, Zhang J, Ma H, Han Y. Screening of differentially expressed microRNAs and target genes in two potato varieties under nitrogen stress. BMC PLANT BIOLOGY 2022; 22:478. [PMID: 36207676 PMCID: PMC9547441 DOI: 10.1186/s12870-022-03866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND A reasonable supply of nitrogen (N) fertilizer is essential for obtaining high-quality, high-level, and stable potato yields, and an improvement in the N utilization efficiency can effectively reduce N fertilizer use. It is important to use accurate, straightforward, and efficient transgenic breeding techniques for the identification of genes that can improve nitrogen use efficiency, thus enabling us to achieve the ultimate goal of breeding N-efficient potato varieties. In recent years, some of the mechanisms of miRNAs have been elucidated via the analysis of the correlation between the expression levels of potato miRNA target genes and regulated genes under conditions of stress, but the role of miRNAs in the inhibition/expression of key genes regulating N metabolism under N stress is still unclear. Our study aimed to identify the role played by specific enzymes and miRNAs in the responses of plants to N stress. RESULTS The roots and leaves of the N-efficient potato variety, Yanshu4 ("Y"), and N-inefficient potato variety, Atlantic ("D"), were collected at the seedling and budding stages after they were exposed to different N fertilizer treatments. The miRNAs expressed differentially under the two types of N stress and their corresponding target genes were first predicted using miRNA and degradome analysis. Then, quantitative polymerase chain reaction (qRT-PCR) was performed to verify the expression of differential miRNAs that were closely related to N metabolism. Finally, the shearing relationship between stu-miR396-5p and its target gene StNiR was determined by analyzing luciferase activity levels. The results showed that NiR activity increased significantly with an increase in the applied N levels from the seedling stage to the budding stage, and NiR responded significantly to different N treatments. miRNA sequencing enabled us to predict 48 families with conserved miRNAs that were mainly involved in N metabolism, carbon metabolism, and amino acid biosynthesis. The differences in the expression of the following miRNAs were identified via screening (high expression levels and P < 0.05): stu-miR396-5p, stu-miR408b-3p_R-1, stu-miR3627-3p, stu-miR482a-3p, stu-miR8036-3p, stu-miR482a-5p, stu-miR827-5p, stu-miR156a_L-1, stu-miR827-3p, stu-miR172b-5p, stu-miR6022-p3_7, stu-miR398a-5p, and stu-miR166c-5p_L-3. Degradome analysis showed that most miRNAs had many-to-many relationships with target genes. The main target genes involved in N metabolism were NiR, NiR1, NRT2.5, and NRT2.7. qRT-PCR analysis showed that there were significant differences in the expression levels of stu-miR396-5p, stu-miR8036-3p, and stu-miR482a-3p in the leaves and roots of the Yanshu4 and Atlantic varieties at the seedling and budding stages under conditions that involved no N and excessive N application; the expression of these miRNAs was induced in response to N stress. The correlation between the differential expression of stu-miR396-5p and its corresponding target gene NiR was further verified by determining the luciferase activity level and was found to be strongly negative. CONCLUSION The activity of NiR was significantly positively correlated with N application from the seedling to the budding stage. Differential miRNAs and target genes showed a many-to-many relationship with each other. The expression of stu-miR396-5p, stu-miR482a-3p, and stu-miR8036-3p in the roots and leaves of the Yanshu4 and Atlantic varieties at the seedling and budding stages was notably different under two types of N stress. Under two types of N stress, stu-miR396-5p was down-regulated in Yanshu4 in the seedling-stage and shoot-stage roots, and up-regulated in seedling-stage roots and shoot-stage leaves; stu-miR482a-3p was up-regulated in the seedling and shoot stages. The expression of stu-miR8036-3p was up-regulated in the leaves and roots at the seedling and budding stages, and down-regulated in roots under both types of N stress. The gene expressing the key enzyme involved in N metabolism, StNiR, and the stu-miR396-5p luciferase assay reporter gene had a strong regulatory relationship with each other. This study provides candidate miRNAs related to nitrogen metabolism and highlights that differential miRNAs play a key role in nitrogen stress in potato, providing insights for future research on miRNAs and their target genes in nitrogen metabolic pathways and breeding nitrogen-efficient potatoes.
Collapse
Affiliation(s)
- Yue Lu
- College of Horticulture Research, Jilin Agricultural University, Changchun City, 130118, People's Republic of China
| | - Jingying Zhang
- College of Horticulture Research, Jilin Agricultural University, Changchun City, 130118, People's Republic of China
- College of Resources and Environment, Jilin Agricultural University, Changchun City, 130118, P.R. China
| | - Zhijun Han
- College of Horticulture Research, Jilin Agricultural University, Changchun City, 130118, People's Republic of China
| | - Zhongcai Han
- Jilin Provincial Research Institute of Vegetables and Flowers, Changchun City, 130052, People's Republic of China
| | - Shuang Li
- Teaching and Research Base Management Office, Jilin Agricultural University, Changchun City, 130118, People's Republic of China
| | - Jiayue Zhang
- College of Horticulture Research, Jilin Agricultural University, Changchun City, 130118, People's Republic of China
| | - Haoran Ma
- College of Horticulture Research, Jilin Agricultural University, Changchun City, 130118, People's Republic of China
| | - Yuzhu Han
- College of Horticulture Research, Jilin Agricultural University, Changchun City, 130118, People's Republic of China.
| |
Collapse
|
9
|
Fei H, Yi SF, Zhang HM, Cheng Y, Zhang YQ, Yu X, Qian SC, Huang MM, Yang S. Transcriptome and 16S rRNA analysis revealed the response of largemouth bass (Micropterus salmoides) to Rhabdovirus infection. Front Immunol 2022; 13:973422. [PMID: 36275642 PMCID: PMC9585208 DOI: 10.3389/fimmu.2022.973422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
To better understand the response of largemouth bass (Micropterus salmoides) to Micropterus salmoides rhabdovirus (MSRV) infection, we investigated the intestinal bacterial flora and transcriptome profile of fish at 72 hours post-infection (hpi). Total of 1574 differentially expressed genes (DEGs) were identified in largemouth bass spleen following MSRV infection, including 573 upregulated and 1001 downregulated genes. KEGG and GO enrichment analysis revealed that upregulated genes were enriched in certain antiviral related signaling pathway, including NOD-like receptor (NLR), RIG-I like receptors (RLR) and regulation of the interferon (IFN)-γ-mediated signaling pathway, whereas some immune-related DEGs enriched in focal adhesion (FA) and ECM-receptor interaction(ECM-RI) were downregulated, as well as genes associated with metabolic processes, such as peroxisome proliferator-activated receptors (PPAR), adipocytokine signaling pathway, Glycerolipid and Retinol metabolism. Furthermore, the principal component analysis (PCA) and phylogenetic analysis revealed that MSRV infection significantly affected the microbiota of largemouth bass intestine; the LEfSe analysis showed that relative abundances of Streptococcus were significantly increased, while the content of Akkermansia, Enterococcus and Lactobacillus were remarkably decreased in the fish intestine following MSRV infection. Additionally, a high correlation was determined between the expressions of interferon-related upregulated genes and the relative abundance of Streptococcus by redundancy analysis (RDA). These results collectively illustrated that intestinal microbiota composition might be associated with the immune-related gene expression in largemouth bass in response to MSRV infection.
Collapse
Affiliation(s)
- Hui Fei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shun fa Yi
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hui min Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yan Cheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ya qi Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiang Yu
- Department of Industrilaztion, Zhejiang Development & Planning Institute, Hangzhou, China
| | - Shi chao Qian
- Department of Fish disease, Huzhou Baijiayu Biotech Co., Ltd., Huzhou, China
| | - Meng meng Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Shun Yang,
| |
Collapse
|
10
|
Fei H, Cheng Y, Zhang H, Yu X, Yi S, Huang M, Yang S. Effect of Autolyzed Yarrowia lipolytica on the Growth Performance, Antioxidant Capacity, Intestinal Histology, Microbiota, and Transcriptome Profile of Juvenile Largemouth Bass (Micropterus salmoides). Int J Mol Sci 2022; 23:ijms231810780. [PMID: 36142687 PMCID: PMC9503160 DOI: 10.3390/ijms231810780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
The improper components of formulated feed can cause the intestinal dysbiosis of juvenile largemouth bass and further affect fish health. A 28 day feeding trial was conducted to investigate the effect of partially replacing fish meal (FM) with autolyzed Yarrowia lipolytica (YL) on juvenile largemouth bass (Micropterus salmoides). We considered four diets—control, YL25, YL50, and YL75—in which 0%, 25%, 50%, and 75% of the FM content, respectively, was replaced with YL. According to results, the weight gain rate (WGR) and specific growth rate (SGR) of the fish with the YL25 and YL50 diets were significantly higher than the WGR and SGR with the control diet, while the YL75 diet significantly reduced fish growth and antioxidant enzymes activities, and shortened the villus height in the intestinal mucosa. The 16S rRNA analysis of the intestinal microbiota showed that the relative abundance of Mycoplasma was significantly increased with the YL25 and YL50 diets, while the Enterobacteriacea content was increased with the YL75 diet. Moreover, our transcriptome analysis revealed that certain differentially expressed genes (DEGs) that are associated with growth, metabolism, and immunity were modulated by YL inclusion treatment. Dietary YL25 and YL50 significantly reduced the mRNA level of ERBB receptor feedback inhibitor 1 (errfi1) and dual-specificity phosphatases (dusp), while the expression of the suppressor of cytokine signaling 1 (socs1), the transporter associated with antigen processing 2 subunit type a (tap2a), and the major histocompatibility complex class I-related gene (MHC-I-l) were sharply increased with YL75 treatment. We determined that the optimum dose of dietary YL required for maximum growth without any adverse influence on intestinal health was 189.82 g/kg (with 31.63% of the fishmeal replaced by YL), while an excessive substitution of YL for fishmeal led to suppressed growth and antioxidant capacity, as well as intestinal damage for juvenile largemouth bass.
Collapse
Affiliation(s)
- Hui Fei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yan Cheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Huimin Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiang Yu
- Zhejiang Development &Planning Institute, Hangzhou 310012, China
| | - Shunfa Yi
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mengmeng Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Correspondence: ; Tel.: +86-0571-8684-3199
| |
Collapse
|