1
|
Xue L, Zhang Y, Wei F, Shi G, Tian B, Yuan Y, Jiang W, Zhao M, Hu L, Xie Z, Gu H. Recent Progress on Plant Apomixis for Genetic Improvement. Int J Mol Sci 2024; 25:11378. [PMID: 39518931 PMCID: PMC11545481 DOI: 10.3390/ijms252111378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Apomixis is a reproductive process that produces clonal seeds while bypassing meiosis (or apomeiosis) without undergoing fertilization (or pseudo-fertilization). The progenies are genetically cloned from their parents, retaining the parental genotype, and have great potential for the preservation of genes of interest and the fixing of heterosis. The hallmark components of apomixis include the formation of female gametes without meiosis, the development of fertilization-independent embryos, and the formation of functional endosperm. Understanding and utilizing the molecular mechanism of apomixis has far-reaching implications for plant genetic breeding and agricultural development. Therefore, this study focuses on the classification, influencing factors, genetic regulation, and molecular mechanism of apomixis, as well as progress in the research and application of apomixis-related genes in plant breeding. This work will elucidate the molecular mechanisms of apomixis and its application for plant genetic improvement.
Collapse
Affiliation(s)
- Lihua Xue
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.X.); (Y.Z.); (F.W.); (G.S.); (B.T.); (W.J.); (M.Z.); (L.H.)
| | - Yingying Zhang
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.X.); (Y.Z.); (F.W.); (G.S.); (B.T.); (W.J.); (M.Z.); (L.H.)
| | - Fang Wei
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.X.); (Y.Z.); (F.W.); (G.S.); (B.T.); (W.J.); (M.Z.); (L.H.)
| | - Gongyao Shi
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.X.); (Y.Z.); (F.W.); (G.S.); (B.T.); (W.J.); (M.Z.); (L.H.)
| | - Baoming Tian
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.X.); (Y.Z.); (F.W.); (G.S.); (B.T.); (W.J.); (M.Z.); (L.H.)
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou 450002, China;
| | - Wenjing Jiang
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.X.); (Y.Z.); (F.W.); (G.S.); (B.T.); (W.J.); (M.Z.); (L.H.)
| | - Meiqi Zhao
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.X.); (Y.Z.); (F.W.); (G.S.); (B.T.); (W.J.); (M.Z.); (L.H.)
| | - Lijiao Hu
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.X.); (Y.Z.); (F.W.); (G.S.); (B.T.); (W.J.); (M.Z.); (L.H.)
| | - Zhengqing Xie
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (L.X.); (Y.Z.); (F.W.); (G.S.); (B.T.); (W.J.); (M.Z.); (L.H.)
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Huihui Gu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Zhao S, Huang L, Zhang Q, Zhou Y, Yang M, Shi H, Li Y, Yang J, Li C, Ge X, Gong W, Wang J, Zou Q, Tao L, Kang Z, Li Z, Xiao C, Hu Q, Fu S. Paternal chromosome elimination of inducer triggers induction of double haploids in Brassica napus. FRONTIERS IN PLANT SCIENCE 2023; 14:1256338. [PMID: 37965016 PMCID: PMC10642322 DOI: 10.3389/fpls.2023.1256338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023]
Abstract
A synthetic octoploid rapeseed, Y3380, induces maternal doubled haploids when used as a pollen donor to pollinate plant. However, the mechanism underlying doubled haploid formation remains elusive. We speculated that double haploid induction occurs as the inducer line's chromosomes pass to the maternal egg cell, and the zygote is formed through fertilization. In the process of zygotic mitosis, the paternal chromosome is specifically eliminated. Part of the paternal gene might have infiltrated the maternal genome through homologous exchange during the elimination process. Then, the zygote haploid genome doubles (early haploid doubling, EH phenomenon), and the doubled zygote continues to develop into a complete embryo, finally forming doubled haploid offspring. To test our hypothesis, in the current study, the octoploid Y3380 line was back bred with the 4122-cp4-EPSPS exogenous gene used as a marker into hexaploid Y3380-cp4-EPSPS as paternal material to pollinate three different maternal materials. The fertilization process of crossing between the inducer line and the maternal parent was observed 48 h after pollination, and the fertilization rate reached 97.92% and 98.72%. After 12 d of pollination, the presence of cp4-EPSPS in the embryo was detected by in situ PCR, and at 13-23 d after pollination, the probability of F1 embryos containing cp4-EPSPS gene was up to 97.27%, but then declined gradually to 0% at 23-33 d. At the same time, the expression of cp4-EPSPS was observed by immunofluorescence in the 3rd to 29th day embryo. As the embryos developed, cp4-EPSPS marker genes were constantly lost, accompanied by embryonic death. After 30 d, the presence of cp4-EPSPS was not detected in surviving embryos. Meanwhile, SNP detection of induced offspring confirmed the existence of double haploids, further indicating that the induction process was caused by the loss of specificity of the paternal chromosome. The tetraploid-induced offspring showed infiltration of the induced line gene loci, with heterozygosity and homozygosity. Results indicated that the induced line chromosomes were eliminated during embryonic development, and the maternal haploid chromosomes were synchronously doubled in the embryo. These findings support our hypothesis and lay a theoretical foundation for further localization or cloning of functional genes involved in double haploid induction in rapeseed.
Collapse
Affiliation(s)
- Shihui Zhao
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
- Agricultural College, Sichuan Agricultural University, Chengdu, China
| | - Liangjun Huang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
- Agricultural College, Sichuan Agricultural University, Chengdu, China
| | - Qing Zhang
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Ying Zhou
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
- Agricultural College, Sichuan Agricultural University, Chengdu, China
| | - Meicui Yang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
- Agricultural College, Sichuan Agricultural University, Chengdu, China
| | - Haoran Shi
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Yun Li
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Jin Yang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Chao Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China
| | - Xianhong Ge
- College of Plant Science and Technology of Huazhong Agricultural University, Wuhan, China
| | - Wanzhuo Gong
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Jisheng Wang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Qiong Zou
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Lanrong Tao
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Zeming Kang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Zhuang Li
- Agricultural College, Sichuan Agricultural University, Chengdu, China
| | - Chaowen Xiao
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Qiong Hu
- Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China
| | - Shaohong Fu
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China
| |
Collapse
|
3
|
Starosta E, Szwarc J, Niemann J, Szewczyk K, Weigt D. Brassica napus Haploid and Double Haploid Production and Its Latest Applications. Curr Issues Mol Biol 2023; 45:4431-4450. [PMID: 37232751 DOI: 10.3390/cimb45050282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Rapeseed is one of the most important oil crops in the world. Increasing demand for oil and limited agronomic capabilities of present-day rapeseed result in the need for rapid development of new, superior cultivars. Double haploid (DH) technology is a fast and convenient approach in plant breeding as well as genetic research. Brassica napus is considered a model species for DH production based on microspore embryogenesis; however, the molecular mechanisms underlying microspore reprogramming are still vague. It is known that morphological changes are accompanied by gene and protein expression patterns, alongside carbohydrate and lipid metabolism. Novel, more efficient methods for DH rapeseed production have been reported. This review covers new findings and advances in Brassica napus DH production as well as the latest reports related to agronomically important traits in molecular studies employing the double haploid rapeseed lines.
Collapse
Affiliation(s)
- Ewa Starosta
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Justyna Szwarc
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Janetta Niemann
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Katarzyna Szewczyk
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Dorota Weigt
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| |
Collapse
|
4
|
Zhang W, Shi H, Zhou Y, Liang X, Luo X, Xiao C, Li Y, Xu P, Wang J, Gong W, Zou Q, Tao L, Kang Z, Tang R, Li Z, Yang J, Fu S. Rapid and Synchronous Breeding of Cytoplasmic Male Sterile and Maintainer Line Through Mitochondrial DNA Rearrangement Using Doubled Haploid Inducer in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:871006. [PMID: 35557722 PMCID: PMC9087798 DOI: 10.3389/fpls.2022.871006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/28/2022] [Indexed: 05/31/2023]
Abstract
When homozygously fertile plants were induced using doubled haploid (DH) induction lines Y3380 and Y3560, the morphology of the induced F1 generation was basically consistent with the female parent, but the fertility was separated, showing characteristics similar to cytoplasmic male sterile (CMS) and maintainer lines. In this study, the morphology, fertility, ploidy, and cytoplasm genotype of the induced progeny were identified, and the results showed that the sterile progeny was polima cytoplasm sterile (pol CMS) and the fertile progeny was nap cytoplasm. The molecular marker and test-cross experimental results showed that the fertile progeny did not carry the restorer gene of pol CMS and the genetic distance between the female parent and the offspring was 0.002. This suggested that those inductions which produced sterile and fertile progeny were coordinated to CMS and maintainer lines. Through the co-linearity analysis of the mitochondrial DNA (mtDNA), it was found that the rearrangement of mtDNA by DH induction was the key factor that caused the transformation of fertility (nap) into sterility (pol). Also, when heterozygous females were induced with DH induction lines, the induction F2 generation also showed the segregation of fertile and sterile lines, and the genetic distance between sterile and fertile lines was approximately 0.075. Therefore, the induction line can induce different types of female parents, and the breeding of the sterile line and the maintainer line can be achieved through the rapid synchronization of sister crosses and self-crosses. The induction of DH inducer in B. napus can provide a new model for the innovation of germplasm resources and open up a new way for its application.
Collapse
Affiliation(s)
- Wei Zhang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
- Agricultural College, Sichuan Agricultural University, Chengdu, China
| | - Haoran Shi
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Ying Zhou
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
- Agricultural College, Sichuan Agricultural University, Chengdu, China
| | - Xingyu Liang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuan Luo
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chaowen Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yun Li
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Peizhou Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jisheng Wang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Wanzhuo Gong
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Qiong Zou
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Lanrong Tao
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Zeming Kang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Rong Tang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Zhuang Li
- Agricultural College, Sichuan Agricultural University, Chengdu, China
| | - Jin Yang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| | - Shaohong Fu
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
- Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu, China
| |
Collapse
|
5
|
Zhou Y, Yang M, Zhao S, Shi H, Li Y, Gong W, Yang J, Wang J, Zou Q, Tao L, Kang Z, Tang R, Guo S, Fu S. Rapid Creation of Interspecific Hybrid Progeny to Broaden Genetic Distance through Double Haploid (DH) Inducer in Brassica napus. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050695. [PMID: 35270165 PMCID: PMC8912716 DOI: 10.3390/plants11050695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 05/31/2023]
Abstract
Interspecific hybridization of rapeseed is an important way to innovate breeding resources. This research used Brassica napus and Brassica rapa for artificial synthesis interspecific hybridization of F1. The F1 self-fruiting rate was particularly low. By comparing the fertilization rate and seed setting rate of nine crosses and selfing combinations of interspecific hybrid progeny F1 and control B. napus, the results proved that the genetic stability of egg cells was greater than that of sperm cells, so the F1 could get seed by artificial pollination with other normal pollen. Based on these results, interspecific maternal inbred offspring (induced F1) from egg cells was obtained by emasculation and pollination with the pollen of DH inducer Y3380. It was found through morphological analysis, flow cytometry identification, and meiotic observation of induced F1, the plants had most normal fertile tetraploid and the meiosis was normal. The FISH results showed that the induced F1 were B. napus (2n = 4x = 38, AACC), 20 A and 19 C chromosomes. The results of SNP chip detection and genetic cluster analysis found that the genetic variation between interspecies could be preserved or broadened in the induced F1. The use of DH inducer created special breeding resources for interspecific hybridization and distant hybridization of rapeseed while shortening time, improving efficiency, and providing a new insight into innovate breeding resources.
Collapse
Affiliation(s)
- Ying Zhou
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu 611130, China; (Y.Z.); (M.Y.); (S.Z.); (H.S.); (Y.L.); (W.G.); (J.Y.); (J.W.); (Q.Z.); (L.T.); (Z.K.); (R.T.)
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Meicui Yang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu 611130, China; (Y.Z.); (M.Y.); (S.Z.); (H.S.); (Y.L.); (W.G.); (J.Y.); (J.W.); (Q.Z.); (L.T.); (Z.K.); (R.T.)
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Shihui Zhao
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu 611130, China; (Y.Z.); (M.Y.); (S.Z.); (H.S.); (Y.L.); (W.G.); (J.Y.); (J.W.); (Q.Z.); (L.T.); (Z.K.); (R.T.)
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoran Shi
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu 611130, China; (Y.Z.); (M.Y.); (S.Z.); (H.S.); (Y.L.); (W.G.); (J.Y.); (J.W.); (Q.Z.); (L.T.); (Z.K.); (R.T.)
| | - Yun Li
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu 611130, China; (Y.Z.); (M.Y.); (S.Z.); (H.S.); (Y.L.); (W.G.); (J.Y.); (J.W.); (Q.Z.); (L.T.); (Z.K.); (R.T.)
| | - Wanzhuo Gong
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu 611130, China; (Y.Z.); (M.Y.); (S.Z.); (H.S.); (Y.L.); (W.G.); (J.Y.); (J.W.); (Q.Z.); (L.T.); (Z.K.); (R.T.)
| | - Jin Yang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu 611130, China; (Y.Z.); (M.Y.); (S.Z.); (H.S.); (Y.L.); (W.G.); (J.Y.); (J.W.); (Q.Z.); (L.T.); (Z.K.); (R.T.)
| | - Jisheng Wang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu 611130, China; (Y.Z.); (M.Y.); (S.Z.); (H.S.); (Y.L.); (W.G.); (J.Y.); (J.W.); (Q.Z.); (L.T.); (Z.K.); (R.T.)
| | - Qiong Zou
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu 611130, China; (Y.Z.); (M.Y.); (S.Z.); (H.S.); (Y.L.); (W.G.); (J.Y.); (J.W.); (Q.Z.); (L.T.); (Z.K.); (R.T.)
| | - Lanrong Tao
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu 611130, China; (Y.Z.); (M.Y.); (S.Z.); (H.S.); (Y.L.); (W.G.); (J.Y.); (J.W.); (Q.Z.); (L.T.); (Z.K.); (R.T.)
| | - Zeming Kang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu 611130, China; (Y.Z.); (M.Y.); (S.Z.); (H.S.); (Y.L.); (W.G.); (J.Y.); (J.W.); (Q.Z.); (L.T.); (Z.K.); (R.T.)
| | - Rong Tang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu 611130, China; (Y.Z.); (M.Y.); (S.Z.); (H.S.); (Y.L.); (W.G.); (J.Y.); (J.W.); (Q.Z.); (L.T.); (Z.K.); (R.T.)
| | - Shixing Guo
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaohong Fu
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, National Rapeseed Genetic Improvement Center, Chengdu 611130, China; (Y.Z.); (M.Y.); (S.Z.); (H.S.); (Y.L.); (W.G.); (J.Y.); (J.W.); (Q.Z.); (L.T.); (Z.K.); (R.T.)
| |
Collapse
|