1
|
Valero-Rubira I, Vallés MP, Echávarri B, Fustero P, Costar MA, Castillo AM. New Epigenetic Modifier Inhibitors Enhance Microspore Embryogenesis in Bread Wheat. PLANTS (BASEL, SWITZERLAND) 2024; 13:772. [PMID: 38592809 PMCID: PMC10975478 DOI: 10.3390/plants13060772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/11/2024]
Abstract
The use of doubled haploid (DH) technology enables the development of new varieties of plants in less time than traditional breeding methods. In microspore embryogenesis (ME), stress treatment triggers microspores towards an embryogenic pathway, resulting in the production of DH plants. Epigenetic modifiers have been successfully used to increase ME efficiency in a number of crops. In wheat, only the histone deacetylase inhibitor trichostatin A (TSA) has been shown to be effective. In this study, inhibitors of epigenetic modifiers acting on histone methylation (chaetocin and CARM1 inhibitor) and histone phosphorylation (aurora kinase inhibitor II (AUKI-II) and hesperadin) were screened to determine their potential in ME induction in high- and mid-low-responding cultivars. The use of chaetocin and AUKI-II resulted in a higher percentage of embryogenic structures than controls in both cultivars, but only AUKI-II was superior to TSA. In order to evaluate the potential of AUKI-II in terms of increasing the number of green DH plants, short and long application strategies were tested during the mannitol stress treatment. The application of 0.8 µM AUKI-II during a long stress treatment resulted in a higher percentage of chromosome doubling compared to control DMSO in both cultivars. This concentration produced 33% more green DH plants than the control in the mid-low-responding cultivar, but did not affect the final ME efficiency in a high-responding cultivar. This study has identified new epigenetic modifiers whose use could be promising for increasing the efficiency of other systems that require cellular reprogramming.
Collapse
Affiliation(s)
| | | | | | | | | | - Ana María Castillo
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, Spanish National Research Council (EEAD-CSIC), 50059 Zaragoza, Spain; (I.V.-R.); (M.P.V.); (B.E.); (P.F.); (M.A.C.)
| |
Collapse
|
2
|
Dubas E, Krzewska M, Surówka E, Kopeć P, Springer A, Janowiak F, Weigt D, Mikołajczyk SK, Telk A, Żur I. New Prospects for Improving Microspore Embryogenesis Induction in Highly Recalcitrant Winter Wheat Lines. PLANTS (BASEL, SWITZERLAND) 2024; 13:363. [PMID: 38337896 PMCID: PMC10857491 DOI: 10.3390/plants13030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
Among various methods stimulating biological progress, double haploid (DH) technology, which utilizes the process of microspore embryogenesis (ME), is potentially the most effective. However, the process depends on complex interactions between many genetic, physiological and environmental variables, and in many cases, e.g., winter wheat, does not operate with the efficiency required for commercial use. Stress associated with low-temperature treatment, isolation and transfer to in vitro culture has been shown to disturb redox homeostasis and generate relatively high levels of reactive oxygen species (ROS), affecting microspore vitality. The aim of this study was to investigate whether controlled plant growth, specific tiller pre-treatment and culture conditions could improve the potential of microspores to cope with stress and effectively induce ME. To understand the mechanism of the stress response, hydrogen peroxide levels, total activity and the content of the most important low-molecular-weight antioxidants (glutathione and ascorbate), as well as the content of selected macro- (Mg, Ca, NA, K) and micronutrients (Mn, Zn, Fe, Cu, Mo) were determined. These analyses, combined with the cytological characteristics of the microspore suspensions, allowed us to demonstrate that an increased microspore vitality and stronger response to ME induction were associated with higher stress resistance based on more efficient ROS scavenging and nutrient management. It was shown that a modified procedure, combining a low temperature with mannitol and sodium selenate tiller pre-treatment, reduced oxidative stress and improved the effectiveness of ME in winter wheat lines.
Collapse
Affiliation(s)
- Ewa Dubas
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (E.D.); (M.K.); (E.S.); (P.K.); (A.S.); (F.J.)
| | - Monika Krzewska
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (E.D.); (M.K.); (E.S.); (P.K.); (A.S.); (F.J.)
| | - Ewa Surówka
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (E.D.); (M.K.); (E.S.); (P.K.); (A.S.); (F.J.)
| | - Przemysław Kopeć
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (E.D.); (M.K.); (E.S.); (P.K.); (A.S.); (F.J.)
| | - Agnieszka Springer
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (E.D.); (M.K.); (E.S.); (P.K.); (A.S.); (F.J.)
| | - Franciszek Janowiak
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (E.D.); (M.K.); (E.S.); (P.K.); (A.S.); (F.J.)
| | - Dorota Weigt
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, 11 Dojazd St., 60-632 Poznań, Poland; (D.W.); (S.K.M.)
| | - Sylwia Katarzyna Mikołajczyk
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, 11 Dojazd St., 60-632 Poznań, Poland; (D.W.); (S.K.M.)
| | - Anna Telk
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland;
| | - Iwona Żur
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (E.D.); (M.K.); (E.S.); (P.K.); (A.S.); (F.J.)
| |
Collapse
|
3
|
Broughton S, Castello M, Liu L, Killen J, McMullan C. Anther Culture Protocols for Barley and Wheat. Methods Mol Biol 2024; 2827:243-266. [PMID: 38985275 DOI: 10.1007/978-1-0716-3954-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Doubled haploid (DH) techniques remain valuable tools for wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) genetic improvement, and DH populations are used extensively in breeding and research endeavors. Several techniques are available for DH production in wheat and barley. Here, we describe two simple, robust anther culture methods used to produce more than 15,000 DH wheat and barley lines annually in Australia.
Collapse
Affiliation(s)
- Sue Broughton
- Department of Primary Industries and Regional Development, South Perth, WA, Australia.
| | - Marieclaire Castello
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Li Liu
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Julie Killen
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Christopher McMullan
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| |
Collapse
|
4
|
Eliby S, Bekkuzhina S, Kishchenko O, Iskakova G, Kylyshbayeva G, Jatayev S, Soole K, Langridge P, Borisjuk N, Shavrukov Y. Developments and prospects for doubled haploid wheat. Biotechnol Adv 2022; 60:108007. [PMID: 35732257 DOI: 10.1016/j.biotechadv.2022.108007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/28/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
Abstract
Doubled haploid production is a valuable biotechnology that can accelerate the breeding of new wheat varieties by several years through the one-step creation of 100% homozygous plants. The technology also plays important role in studying the genetic control of traits in wheat, in marker-assisted selection, in genomics and in genetic engineering. In this paper, recent advances in androgenesis and gynogenesis techniques, emphasizing predominantly the in vitro culture phase, as well as the emerging innovative approaches in researching and producing wheat doubled haploids are reviewed. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based genome editing, that allows targeted mutagenesis and gene targeting, is being tested extensively as a powerful and precise tool to induce doubled haploids in wheat. The review provides the reader with recent examples of gene modifications in wheat to induce haploidy.
Collapse
Affiliation(s)
- Serik Eliby
- University of Adelaide, Urrbrae, SA, Australia
| | - Sara Bekkuzhina
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Olena Kishchenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Gulnur Iskakova
- Kazakh Agrarian National University, Almaty, Kazakhstan; Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | | | - Satyvaldy Jatayev
- Faculty of Agronomy, S.Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Kathleen Soole
- College of Science and Engineering, Biological Sciences, Flinders University, SA, Australia
| | - Peter Langridge
- University of Adelaide, Urrbrae, SA, Australia; Wheat Initiative, Julius-Kühn-Institute, Berlin, Germany
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, SA, Australia.
| |
Collapse
|