1
|
Wang H, Cai X, Umer MJ, Xu Y, Hou Y, Zheng J, Liu F, Wang K, Chen M, Ma S, Yu J, Zhou Z. Genetic Analysis of Cotton Fiber Traits in Gossypium Hybrid Lines. PHYSIOLOGIA PLANTARUM 2024; 176:e14442. [PMID: 39030776 DOI: 10.1111/ppl.14442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/25/2024] [Indexed: 07/22/2024]
Abstract
Cotton plays a crucial role in the progress of the textile industry and the betterment of human life by providing natural fibers. In our study, we explored the genetic determinants of cotton architecture and fiber yield and quality by crossbreeding Gossypium hirsutum and Gossypium barbadense, creating a recombinant inbred line (RIL) population. Utilizing SNP markers, we constructed an extensive genetic map encompassing 7,730 markers over 2,784.2 cM. We appraised two architectural and seven fiber traits within six environments, identifying 58 QTLs, of which 49 demonstrated stability across these environments. These encompassed QTLs for traits such as lint percentage (LP), boll weight (BW), fiber strength (STRENGTH), seed index (SI), and micronaire (MIC), primarily located on chromosomes chr-A07, chr-D06, and chr-D07. Notably, chr-D07 houses a QTL region affecting SI, corroborated by multiple studies. Within this region, the genes BZIP043 and SEP2 were identified as pivotal, with SEP2 particularly showing augmented expression in developing ovules. These discoveries contribute significantly to marker-assisted selection, potentially elevating both the yield and quality of cotton fiber production. These findings provide valuable insights into marker-assisted breeding strategies, offering crucial information to enhance fiber yield and quality in cotton production.
Collapse
Affiliation(s)
- Heng Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China/ National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, China
- Henan International Joint Laboratory of Cotton Biology, Anyang, Henan, China
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
- Henan International Joint Laboratory of Cotton Biology, Anyang, Henan, China
| | - Jie Zheng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China/ National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, China
- Henan International Joint Laboratory of Cotton Biology, Anyang, Henan, China
| | - Fang Liu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China/ National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Cotton Biology, Anyang, Henan, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
| | - Mengshan Chen
- Chinese Academy of Agricultural Science, Beijing, China
| | | | - Jingzhong Yu
- Standing Committee of the People's Congress of Jiangsu Province, Nanjing, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
| |
Collapse
|
2
|
Tang L, Liu C, Li X, Wang H, Zhang S, Cai X, Zhang J. An aldehyde dehydrogenase gene, GhALDH7B4_A06, positively regulates fiber strength in upland cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1377682. [PMID: 38736450 PMCID: PMC11082362 DOI: 10.3389/fpls.2024.1377682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
High fiber strength (FS) premium cotton has significant market demand. Consequently, enhancing FS is a major objective in breeding quality cotton. However, there is a notable lack of known functionally applicable genes that can be targeted for breeding. To address this issue, our study used specific length-amplified fragment sequencing combined with bulk segregant analysis to study FS trait in an F2 population. Subsequently, we integrated these results with previous quantitative trait locus mapping results regarding fiber quality, which used simple sequence repeat markers in F2, F2:3, and recombinant inbred line populations. We identified a stable quantitative trait locus qFSA06 associated with FS located on chromosome A06 (90.74-90.83 Mb). Within this interval, we cloned a gene, GhALDH7B4_A06, which harbored a critical mutation site in coding sequences that is distinct in the two parents of the tested cotton line. In the paternal parent Ji228, the gene is normal and referred to as GhALDH7B4_A06O; however, there is a nonsense mutation in the maternal parent Ji567 that results in premature termination of protein translation, and this gene is designated as truncated GhALDH7B4_A06S. Validation using recombinant inbred lines and gene expression analysis revealed that this mutation site is correlated with cotton FS. Virus-induced gene silencing of GhALDH7B4 in cotton caused significant decreases in FS and fiber micronaire. Conversely, GhALDH7B4_A06O overexpression in Arabidopsis boosted cell wall component contents in the stem. The findings of our study provide a candidate gene for improving cotton fiber quality through molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianhong Zhang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
Zhou M, Li Y, Cheng Z, Zheng X, Cai C, Wang H, Lu K, Zhu C, Ding Y. Important Factors Controlling Gibberellin Homeostasis in Plant Height Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15895-15907. [PMID: 37862148 DOI: 10.1021/acs.jafc.3c03560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Plant height is an important agronomic trait that is closely associated with crop yield and quality. Gibberellins (GAs), a class of highly efficient plant growth regulators, play key roles in regulating plant height. Increasing reports indicate that transcriptional regulation is a major point of regulation of the GA pathways. Although substantial knowledge has been gained regarding GA biosynthetic and signaling pathways, important factors contributing to the regulatory mechanisms homeostatically controlling GA levels remain to be elucidated. Here, we provide an overview of current knowledge regarding the regulatory network involving transcription factors, noncoding RNAs, and histone modifications involved in GA pathways. We also discuss the mechanisms of interaction between GAs and other hormones in plant height development. Finally, future directions for applying knowledge of the GA hormone in crop breeding are described.
Collapse
Affiliation(s)
- Mei Zhou
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yakun Li
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhuowei Cheng
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xinyu Zheng
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Chong Cai
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Huizhen Wang
- Huangshan Institute of Product Quality Inspection, Huangshan 242700, China
| | - Kaixing Lu
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo 315000, China
| | - Cheng Zhu
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yanfei Ding
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
4
|
Zhang L, Ma C, Wang L, Su X, Huang J, Cheng H, Guo H. Repression of GhTUBB1 Reduces Plant Height in Gossypium hirsutum. Int J Mol Sci 2023; 24:15424. [PMID: 37895102 PMCID: PMC10607470 DOI: 10.3390/ijms242015424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The original 'Green Revolution' genes are associated with gibberellin deficiency. However, in some species, mutations in these genes cause pleiotropic phenotypes, preventing their application in dwarf breeding. The development of novel genotypes with reduced plant height will resolve this problem. In a previous study, we obtained two dwarf lines, L28 and L30, by introducing the Ammopiptanthus mongolicus (Maxim. ex Kom.) Cheng f. C-repeat-binding factor 1 (AmCBF1) into the upland cotton variety R15. We found that Gossypium hirsutum Tubulin beta-1 (GhTUBB1) was downregulated in L28 and L30, which suggested that this gene may have contributed to the dwarf phenotype of L28 and L30. Here, we tested this hypothesis by silencing GhTUBB1 expression in R15 and found that decreased expression resulted in a dwarf phenotype. Interestingly, we found that repressing AmCBF1 expression in L28 and L30 partly recovered the expression of GhTUBB1. Thus, AmCBF1 expression presented a negative relationship with GhTUBB1 expression in L28 and L30. Moreover, yeast one-hybrid and dual-luciferase assays suggest that AmCBF1 negatively regulates GhTUBB1 expression by directly binding to C-repeat/dehydration-responsive (CRT/DRE) elements in the GhTUBB1 promoter, potentially explaining the dwarf phenotypes of L28 and L30. This study elucidates the regulation of GhTUBB1 expression by AmCBF1 and suggests that GhTUBB1 may be a new target gene for breeding dwarf and compact cultivars.
Collapse
Affiliation(s)
- Lihua Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (C.M.); (L.W.); (X.S.)
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Caixia Ma
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (C.M.); (L.W.); (X.S.)
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Lihua Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (C.M.); (L.W.); (X.S.)
| | - Xiaofeng Su
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (C.M.); (L.W.); (X.S.)
| | - Jinling Huang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Hongmei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (C.M.); (L.W.); (X.S.)
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Huiming Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (C.M.); (L.W.); (X.S.)
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
5
|
Kim JM, Lyu JI, Kim DG, Hung NN, Seo JS, Ahn JW, Lim YJ, Eom SH, Ha BK, Kwon SJ. Genome wide association study to detect genetic regions related to isoflavone content in a mutant soybean population derived from radiation breeding. FRONTIERS IN PLANT SCIENCE 2022; 13:968466. [PMID: 36061785 PMCID: PMC9433930 DOI: 10.3389/fpls.2022.968466] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Isoflavones are major secondary metabolites that are exclusively produced by legumes, including soybean. Soy isoflavones play important roles in human health as well as in the plant defense system. The isoflavone content is influenced by minor-effect quantitative trait loci, which interact with polygenetic and environmental factors. It has been difficult to clarify the regulation of isoflavone biosynthesis because of its complex heritability and the influence of external factors. Here, using a genotype-by-sequencing-based genome-wide association mapping study, 189 mutant soybean genotypes (the mutant diversity pool, MDP) were genotyped on the basis of 25,646 high-quality single nucleotide polymorphisms (SNPs) with minor allele frequency of >0.01 except for missing data. All the accessions were phenotyped by determining the contents of 12 isoflavones in the soybean seeds in two consecutive years (2020 and 2021). Then, quantitative trait nucleotides (QTNs) related to isoflavone contents were identified and validated using multi-locus GWAS models. A total of 112 and 46 QTNs related to isoflavone contents were detected by multiple MLM-based models in 2020 and 2021, respectively. Of these, 12 and 5 QTNs were related to more than two types of isoflavones in 2020 and 2021, respectively. Forty-four QTNs were detected within the 441-Kb physical interval surrounding Gm05:38940662. Of them, four QTNs (Gm05:38936166, Gm05:38936167, Gm05:38940662, and Gm05:38940717) were located at Glyma.05g206900 and Glyma.05g207000, which encode glutathione S-transferase THETA 1 (GmGSTT1), as determined from previous quantitative trait loci annotations and the literature. We detected substantial differences in the transcript levels of GmGSTT1 and two other core genes (IFS1 and IFS2) in the isoflavone biosynthetic pathway between the original cultivar and its mutant. The results of this study provide new information about the factors affecting isoflavone contents in soybean seeds and will be useful for breeding soybean lines with high and stable concentrations of isoflavones.
Collapse
Affiliation(s)
- Jung Min Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
- Division of Plant Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Jae Il Lyu
- Department of Horticulture, College of Industrial Sciences, Kongju National University, Yesan, South Korea
| | - Dong-Gun Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Nguyen Ngoc Hung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
- Division of Plant Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Ji Su Seo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
- Division of Plant Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Joon-Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - You Jin Lim
- Department of Horticultural Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University, Yongin, South Korea
| | - Seok Hyun Eom
- Department of Horticultural Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University, Yongin, South Korea
| | - Bo-Keun Ha
- Division of Plant Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Soon-Jae Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| |
Collapse
|
6
|
Chen Q, Liu B, Ai L, Yan L, Lin J, Shi X, Zhao H, Wei Y, Feng Y, Liu C, Yang C, Zhang M. QTL and candidate genes for heterophylly in soybean based on two populations of recombinant inbred lines. FRONTIERS IN PLANT SCIENCE 2022; 13:961619. [PMID: 36051289 PMCID: PMC9427049 DOI: 10.3389/fpls.2022.961619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Heterophylly, the existence of different leaf shapes and sizes on the same plant, has been observed in many flowering plant species. Yet, the genetic characteristics and genetic basis of heterophylly in soybean remain unknown. Here, two populations of recombinant inbred lines (RILs) with distinctly different leaf shapes were used to identify loci controlling heterophylly in two environments. The ratio of apical leaf shape (LSUP) to basal leaf shape (LSDOWN) at the reproductive growth stage (RLS) was used as a parameter for classifying heterophylly. A total of eight QTL were detected for RLS between the two populations and four of them were stably identified in both environments. Among them, qRLS20 had the largest effect in the JS population, with a maximum LOD value of 46.9 explaining up to 47.2% of phenotypic variance. This locus was located in the same genomic region as the basal leaf shape QTL qLSDOWN20 on chromosome 20. The locus qRLS19 had the largest effect in the JJ population, with a maximum LOD value of 15.2 explaining up to 27.0% of phenotypic variance. This locus was located in the same genomic region as the apical leaf shape QTL qLSUP19 on chromosome 19. Four candidate genes for heterophylly were identified based on sequence differences among the three parents of the two mapping populations, RT-qPCR analysis, and gene functional annotation analysis. The QTL and candidate genes detected in this study lay a foundation for further understanding the genetic mechanism of heterophylly and are invaluable in marker-assisted breeding.
Collapse
Affiliation(s)
- Qiang Chen
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Bingqiang Liu
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Lijuan Ai
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Long Yan
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Jing Lin
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Xiaolei Shi
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Hongtao Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Yu Wei
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Yan Feng
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Chunji Liu
- CSIRO Agriculture and Food, St Lucia, QLD, Australia
| | - Chunyan Yang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Mengchen Zhang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| |
Collapse
|
7
|
Chao L, Pan Z, Wang J, Wu Y, Shui G, Aini N, Tang B, Guo C, Han P, Shao P, Tian X, Chang X, An Q, Ma C, You C, Zhu L, Nie X. Genetic Mapping and Analysis of a Compact Plant Architecture and Precocious Mutant in Upland Cotton. PLANTS (BASEL, SWITZERLAND) 2022; 11:1483. [PMID: 35684255 PMCID: PMC9182648 DOI: 10.3390/plants11111483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
With the promotion and popularization of machine cotton-picking, more and more attention has been paid to the selection of early-maturity varieties with compact plant architecture. The type of fruit branch is one of the most important factors affecting plant architecture and early maturity of cotton. Heredity analysis of the cotton fruit branch is beneficial to the breeding of machine-picked cotton. Phenotype analysis showed that the types of fruit branches in cotton are controlled by a single recessive gene. Using an F2 population crossed with Huaxin102 (normal branch) and 04N-11 (nulliplex branch), BSA (Bulked Segregant Analysis) resequencing analysis and GhNB gene cloning in 04N-11, and allelic testing, showed that fruit branch type was controlled by the GhNB gene, located on chromosome D07. Ghnb5, a new recessive genotype of GhNB, was found in 04N-11. Through candidate gene association analysis, SNP 20_15811516_SNV was found to be associated with plant architecture and early maturity in the Xinjiang natural population. The GhNB gene, which is related to early maturity and the plant architecture of cotton, is a branch-type gene of cotton. The 20_15811516_SNV marker, obtained from the Xinjiang natural population, was used for the assisted breeding of machine-picked cotton varieties.
Collapse
Affiliation(s)
- Lei Chao
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China; (L.C.); (Z.P.); (G.S.); (N.A.); (C.G.); (P.H.); (P.S.); (X.T.); (X.C.); (Q.A.); (C.M.)
| | - Zhenyuan Pan
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China; (L.C.); (Z.P.); (G.S.); (N.A.); (C.G.); (P.H.); (P.S.); (X.T.); (X.C.); (Q.A.); (C.M.)
| | - Jing Wang
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yuanlong Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Guangling Shui
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China; (L.C.); (Z.P.); (G.S.); (N.A.); (C.G.); (P.H.); (P.S.); (X.T.); (X.C.); (Q.A.); (C.M.)
| | - Nurimanguli Aini
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China; (L.C.); (Z.P.); (G.S.); (N.A.); (C.G.); (P.H.); (P.S.); (X.T.); (X.C.); (Q.A.); (C.M.)
| | - Binghui Tang
- Cotton Research Institute of the Shihezi Academy of Agriculture Science, Shihezi 832011, China;
| | - Chunping Guo
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China; (L.C.); (Z.P.); (G.S.); (N.A.); (C.G.); (P.H.); (P.S.); (X.T.); (X.C.); (Q.A.); (C.M.)
| | - Peng Han
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China; (L.C.); (Z.P.); (G.S.); (N.A.); (C.G.); (P.H.); (P.S.); (X.T.); (X.C.); (Q.A.); (C.M.)
| | - Panxia Shao
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China; (L.C.); (Z.P.); (G.S.); (N.A.); (C.G.); (P.H.); (P.S.); (X.T.); (X.C.); (Q.A.); (C.M.)
| | - Xiaomin Tian
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China; (L.C.); (Z.P.); (G.S.); (N.A.); (C.G.); (P.H.); (P.S.); (X.T.); (X.C.); (Q.A.); (C.M.)
| | - Xinyi Chang
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China; (L.C.); (Z.P.); (G.S.); (N.A.); (C.G.); (P.H.); (P.S.); (X.T.); (X.C.); (Q.A.); (C.M.)
| | - Qiushuang An
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China; (L.C.); (Z.P.); (G.S.); (N.A.); (C.G.); (P.H.); (P.S.); (X.T.); (X.C.); (Q.A.); (C.M.)
| | - Chunmei Ma
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China; (L.C.); (Z.P.); (G.S.); (N.A.); (C.G.); (P.H.); (P.S.); (X.T.); (X.C.); (Q.A.); (C.M.)
| | - Chunyuan You
- National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China;
- Cotton Research Institute of the Shihezi Academy of Agriculture Science, Shihezi 832011, China;
| | - Longfu Zhu
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China; (L.C.); (Z.P.); (G.S.); (N.A.); (C.G.); (P.H.); (P.S.); (X.T.); (X.C.); (Q.A.); (C.M.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China; (L.C.); (Z.P.); (G.S.); (N.A.); (C.G.); (P.H.); (P.S.); (X.T.); (X.C.); (Q.A.); (C.M.)
| |
Collapse
|