1
|
Zhang L, Chen Y, Leng Q, Lin X, Lu J, Xu Y, Li H, Xu S, Huang S, López Hernán A, Wang Y, Yin J, Niu J. A High-Resolution Linkage Map Construction and QTL Analysis for Morphological Traits in Anthurium ( Anthurium andraeanum Linden). PLANTS (BASEL, SWITZERLAND) 2023; 12:4185. [PMID: 38140512 PMCID: PMC10747322 DOI: 10.3390/plants12244185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Anthurium andraeanum Linden is a prominent ornamental plant belonging to the family Araceae and is cultivated worldwide. The morphology characteristics are crucial because they significantly impact ornamental values, commercial properties, and the efficiency of space utilization in production. However, only a few related investigations have been conducted in anthurium to date. In this study, an F1 genetic segregation population containing 160 progenies was generated through hybridization between potted and cut anthurium varieties. Fifteen morphological traits were assessed and revealed substantial levels of genetic variation and widespread positive correlation. Based on specific length amplified fragment (SLAF) sequencing technology, 8171 single nucleotide polymorphism (SNP) markers were developed, and the high-density linkage map of 2202.27 cM in length distributed on 15 linkage groups was constructed successfully, with an average distance of 0.30 cM. Using the inclusive composite interval mapping (ICIM) method, 59 QTLs related to 15 key morphological traits were successfully identified, which explained phenotypic variance (PVE) ranging from 6.21% to 17.74%. Thirty-three of those associated with 13 traits were designated as major QTLs with PVE > 10%. These findings offer valuable insights into the genetic basis of quantitative traits and are beneficial for molecular marker-assisted selection (MAS) in anthurium breeding.
Collapse
Affiliation(s)
- Linbi Zhang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China (Y.X.); (H.L.); (Y.W.)
| | - Yanyan Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China (Y.X.); (H.L.); (Y.W.)
- Institute of Crops Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qingyun Leng
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China (Y.X.); (H.L.); (Y.W.)
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Danzhou 571737, China
| | - Xinge Lin
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China (Y.X.); (H.L.); (Y.W.)
| | - Jinping Lu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China (Y.X.); (H.L.); (Y.W.)
| | - Yueting Xu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China (Y.X.); (H.L.); (Y.W.)
| | - Haiyan Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China (Y.X.); (H.L.); (Y.W.)
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Danzhou 571737, China
| | - Shisong Xu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China (Y.X.); (H.L.); (Y.W.)
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Danzhou 571737, China
| | - Shaohua Huang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China (Y.X.); (H.L.); (Y.W.)
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Danzhou 571737, China
| | - Ariel López Hernán
- Multidisciplinary Workshop on Vascular Plants, Border Ecology Laboratory, University of Flores, Sede Comahue (UFLO), Rio Negro 8328, Argentina;
- Botanical Garden of Plottier City, Neuquen 8316, Argentina
| | - Yaru Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China (Y.X.); (H.L.); (Y.W.)
| | - Junmei Yin
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China (Y.X.); (H.L.); (Y.W.)
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Danzhou 571737, China
| | - Junhai Niu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China (Y.X.); (H.L.); (Y.W.)
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Danzhou 571737, China
| |
Collapse
|
2
|
Razzaq MK, Hina A, Abbasi A, Karikari B, Ashraf HJ, Mohiuddin M, Maqsood S, Maqsood A, Haq IU, Xing G, Raza G, Bhat JA. Molecular and genetic insights into secondary metabolic regulation underlying insect-pest resistance in legumes. Funct Integr Genomics 2023; 23:217. [PMID: 37392308 DOI: 10.1007/s10142-023-01141-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023]
Abstract
Insect pests pose a major threat to agricultural production, resulting in significant economic losses for countries. A high infestation of insects in any given area can severely reduce crop yield and quality. This review examines the existing resources for managing insect pests and highlights alternative eco-friendly techniques to enhance insect pest resistance in legumes. Recently, the application of plant secondary metabolites has gained popularity in controlling insect attacks. Plant secondary metabolites encompass a wide range of compounds such as alkaloids, flavonoids, and terpenoids, which are often synthesized through intricate biosynthetic pathways. Classical methods of metabolic engineering involve manipulating key enzymes and regulatory genes to enhance or redirect the production of secondary metabolites in plants. Additionally, the role of genetic approaches, such as quantitative trait loci mapping, genome-wide association (GWAS) mapping, and metabolome-based GWAS in insect pest management is discussed, also, the role of precision breeding, such as genome editing technologies and RNA interference for identifying pest resistance and manipulating the genome to develop insect-resistant cultivars are explored, highlighting the positive contribution of plant secondary metabolites engineering-based resistance against insect pests. It is suggested that by understanding the genes responsible for beneficial metabolite compositions, future research might hold immense potential to shed more light on the molecular regulation of secondary metabolite biosynthesis, leading to advancements in insect-resistant traits in crop plants. In the future, the utilization of metabolic engineering and biotechnological methods may serve as an alternative means of producing biologically active, economically valuable, and medically significant compounds found in plant secondary metabolites, thereby addressing the challenge of limited availability.
Collapse
Affiliation(s)
- Muhammad Khuram Razzaq
- Soybean Research Institute & MARA National Centre for Soybean Improvement & MARA Key Laboratory of Biology and Genetic Improvement of Soybean & National Key Laboratory for Crop Genetics and Germplasm Enhancement & Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Aiman Hina
- Ministry of Agriculture (MOA) National Centre for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Asim Abbasi
- Department of Environmental Sciences, Kohsar University Murree, Murree, 47150, Pakistan
| | - Benjamin Karikari
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Hafiza Javaria Ashraf
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muhammad Mohiuddin
- Environmental Management Consultants (EMC) Private Limited, Islamabad, 44000, Pakistan
| | - Sumaira Maqsood
- Department of Environmental Sciences, Kohsar University Murree, Murree, 47150, Pakistan
| | - Aqsa Maqsood
- Department of Zoology, University of Central Punjab, Bahawalpur, 63100, Pakistan
| | - Inzamam Ul Haq
- College of Plant Protection, Gansu Agricultural University, Lanzhou, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Guangnan Xing
- Soybean Research Institute & MARA National Centre for Soybean Improvement & MARA Key Laboratory of Biology and Genetic Improvement of Soybean & National Key Laboratory for Crop Genetics and Germplasm Enhancement & Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ghulam Raza
- National Institute for Biotechnology and Genetic Engineering Faisalabad, Faisalabad, Pakistan
| | - Javaid Akhter Bhat
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
3
|
Yu D, Huang R, Yu S, Liang Q, Wang Y, Dang H, Zhang Y. Construction of the first high-density genetic linkage map and QTL mapping of flavonoid and leaf-size related traits in Epimedium. BMC PLANT BIOLOGY 2023; 23:278. [PMID: 37231361 PMCID: PMC10210407 DOI: 10.1186/s12870-023-04257-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/28/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Leaves are the main medicinal organ in Epimedium herbs, and leaf flavonoid content is an important criterion of Epimedium herbs. However, the underlying genes that regulate leaf size and flavonoid content are unclear, which limits the use of breeding for Epimedium development. This study focuses on QTL mapping of flavonoid and leaf-size related traits in Epimedium. RESULTS We constructed the first high-density genetic map (HDGM) using 109 F1 hybrids of Epimedium leptorrhizum and Epimedium sagittatum over three years (2019-2021). Using 5,271 single nucleotide polymorphism (SNP) markers, an HDGM with an overall distance of 2,366.07 cM and a mean gap of 0.612 cM was generated by utilizing genotyping by sequencing (GBS) technology. Every year for three years, 46 stable quantitative trait loci (QTLs) for leaf size and flavonoid contents were discovered, including 31 stable loci for Epimedin C (EC), one stable locus for total flavone content (TFC), 12 stable loci for leaf length (LL), and two stable loci for leaf area (LA). For flavonoid content and leaf size, the phenotypic variance explained for these loci varied between 4.00 and 16.80% and 14.95 and 17.34%, respectively. CONCLUSIONS Forty-six stable QTLs for leaf size and flavonoid content traits were repeatedly detected over three years. The HDGM and stable QTLs are laying the basis for breeding and gene investigation in Epimedium and will contribute to accelerating the identification of desirable genotypes for Epimedium breeding.
Collapse
Affiliation(s)
- Dongyue Yu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Ruoqi Huang
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P. R. China
| | - Shuxia Yu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P. R. China
| | - Qiong Liang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P. R. China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China
| | - Haishan Dang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P.R. China.
| | - Yanjun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P. R. China.
| |
Collapse
|