1
|
Fan L, Zhang B, Ning M, Quan S, Guo C, Cui K, Chen L, Yan M, Ren X. Responses of transcriptome and metabolome in peanut leaves to dibutyl phthalate during whole growth period. FRONTIERS IN PLANT SCIENCE 2024; 15:1448971. [PMID: 39372850 PMCID: PMC11452913 DOI: 10.3389/fpls.2024.1448971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/30/2024] [Indexed: 10/08/2024]
Abstract
Introduction The application of agricultural film mulching technology has significantly contributed to increasing crop yield and income, but the pollution caused by residual film has seriously affected agricultural production and the natural environment. Agricultural film is commonly employed to enhance the yield of peanuts; its use may lead to excessive dibutyl phthalate (DBP) residues in peanut kernels. But, limited investigations have been conducted on the regulatory mechanism of peanut leaves in response to DBP exposure throughout the entire growth period. Methods To bridge this knowledge gap, we investigated the differences in transcriptome and metabolome of peanut leaves under DBP stress. Results According to visual observations, the results of morphological response showed that the growth of peanut plants was significantly inhibited from seedling to pod stage under DBP treatment. Transcriptomic analysis results showed that the genes AH19G05510 (LRR receptor-like serine threonine-protein kinase) and AH20G31870 (disease resistance), belonging to the FAR1 family and bZIP family respectively, may be key genes involved in the resistance to DBP stress throughout its growth stages. Metabolomic analysis results showed that during the initial stage of DBP stress, the key metabolites in peanut leaves response to stress were carboxylic acids and derivatives, as well as fatty acyls. As peanut growth progressed, flavonoids gradually became more prominent in the resistance to DBP stress. By integrating metabolomics and transcriptomics analysis, we have identified that purine metabolism during seedling and flowering stages, as well as the flavone and flavonol biosynthesis pathways during pod and maturity stages, played a crucial role in response to DBP stress. Discussion These findings not only provide valuable key gene and metabolic information for studying anti-plasticizer pollution throughout the entire growth period of peanuts, but also offer reference for enhancing crop resistance to plasticizer pollution through genetic modification and metabolic regulation.
Collapse
Affiliation(s)
- Lixia Fan
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Bingchun Zhang
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Mingxiao Ning
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | | | - Changying Guo
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Kai Cui
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Lu Chen
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Mengmeng Yan
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Xianfeng Ren
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| |
Collapse
|
2
|
Zhang L, Ma K, Zhao X, Li Z, Zhang X, Li W, Meng R, Lu B, Yuan X. Development of a Comprehensive Quality Evaluation System for Foxtail Millet from Different Ecological Regions. Foods 2023; 12:2545. [PMID: 37444285 DOI: 10.3390/foods12132545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Foxtail millet (Setaria italica L.) is a critical grain with high nutritional value and the potential for increased production in arid and semiarid regions. The foxtail millet value chain can be upgraded only by ensuring its comprehensive quality. Thus, samples were collected from different production areas in Shanxi province, China, and compared in terms of quality traits. We established a quality evaluation system utilizing multivariate statistical analysis. The results showed that the appearance, nutritional content, and culinary value of foxtail millet produced in different ecological regions varied substantially. Different values of amino acids (DVAACs), alkali digestion values (ADVs), and total flavone content (TFC) had the highest coefficients of variation (CVs) of 50.30%, 39.75%, and 35.39%, respectively. Based on this, a comprehensive quality evaluation system for foxtail millet was established, and the quality of foxtail millet produced in the five production areas was ranked in order from highest to lowest: Dingxiang > Zezhou > Qinxian > Xingxian > Yuci. In conclusion, the ecological conditions of Xinding Basin are favorable for ensuring the comprehensive quality of foxtail millet. .
Collapse
Affiliation(s)
- Liguang Zhang
- College of Agriculture, Shanxi Agricultural University, Taiyuan 030801, China
| | - Ke Ma
- College of Agriculture, Shanxi Agricultural University, Taiyuan 030801, China
- College of Agriculture, China Agricultural University, Beijing 100089, China
| | - Xiatong Zhao
- College of Agriculture, Shanxi Agricultural University, Taiyuan 030801, China
| | - Zhong Li
- College of Agriculture, Shanxi Agricultural University, Taiyuan 030801, China
| | - Xin Zhang
- College of Agriculture, Shanxi Agricultural University, Taiyuan 030801, China
| | - Weidong Li
- College of Agriculture, Shanxi Agricultural University, Taiyuan 030801, China
| | - Ru Meng
- College of Agriculture, Shanxi Agricultural University, Taiyuan 030801, China
| | - Boyu Lu
- College of Agriculture, Shanxi Agricultural University, Taiyuan 030801, China
| | - Xiangyang Yuan
- College of Agriculture, Shanxi Agricultural University, Taiyuan 030801, China
| |
Collapse
|
3
|
Lydia Pramitha J, Ganesan J, Francis N, Rajasekharan R, Thinakaran J. Revitalization of small millets for nutritional and food security by advanced genetics and genomics approaches. Front Genet 2023; 13:1007552. [PMID: 36699471 PMCID: PMC9870178 DOI: 10.3389/fgene.2022.1007552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
Small millets, also known as nutri-cereals, are smart foods that are expected to dominate food industries and diets to achieve nutritional security. Nutri-cereals are climate resilient and nutritious. Small millet-based foods are becoming popular in markets and are preferred for patients with celiac and diabetes. These crops once ruled as food and fodder but were pushed out of mainstream cultivation with shifts in dietary habits to staple crops during the green revolution. Nevertheless, small millets are rich in micronutrients and essential amino acids for regulatory activities. Hence, international and national organizations have recently aimed to restore these lost crops for their desirable traits. The major goal in reviving these crops is to boost the immune system of the upcoming generations to tackle emerging pandemics and disease infestations in crops. Earlier periods of civilization consumed these crops, which had a greater significance in ethnobotanical values. Along with nutrition, these crops also possess therapeutic traits and have shown vast medicinal use in tribal communities for the treatment of diseases like cancer, cardiovascular disease, and gastrointestinal issues. This review highlights the significance of small millets, their values in cultural heritage, and their prospects. Furthermore, this review dissects the nutritional and therapeutic traits of small millets for developing sustainable diets in near future.
Collapse
Affiliation(s)
- J. Lydia Pramitha
- Karunya Institute of Technology and Sciences, Coimbatore, India,*Correspondence: J. Lydia Pramitha,
| | - Jeeva Ganesan
- Tamil Nadu Agricultural University, Coimbatore, India
| | - Neethu Francis
- Karunya Institute of Technology and Sciences, Coimbatore, India
| | | | | |
Collapse
|
4
|
Hou S, Men Y, Wei M, Zhang Y, Li H, Sun Z, Han Y. Total Protein Content, Amino Acid Composition and Eating-Quality Evaluation of Foxtail Millet ( Setaria italica (L.) P. Beauv). Foods 2022; 12:foods12010031. [PMID: 36613247 PMCID: PMC9818070 DOI: 10.3390/foods12010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Foxtail millet has attracted substantial attention in recent years because of its excellent properties as a cereal crop with high nutritional value. Although the cultivation area of foxtail millet keeps growing, the fundamental research into the nutritional and eating qualities of foxtail millet germplasm collections is limited. In this study, we performed a survey of protein content, amino acid composition and eating quality among a germplasm collection of foxtail millet accessions grown in different environments. Our results revealed 21 accessions with stable protein content under different environments. The correlation analysis further revealed that the protein content of the grains was affected by environmental and genotypic interactions. The further amino acid composition analyses suggested that higher protein content accessions have a better essential amino acid index, providing more nutritional value for human beings and animal feedstock. Moreover, the flavor-related amino acid content and other eating-quality trait analyses were also performed. The subordinative analysis suggested that B331 could be the best accession with high protein content and superior eating quality. Taken together, this study provides essential nutritional and eating-quality data on our germplasm collection of foxtail millets, and provides a core genetic resource from which to breed elite foxtail millet varieties in the future.
Collapse
Affiliation(s)
- Siyu Hou
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Jinzhong 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Taiyuan 030031, China
| | - Yihan Men
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Min Wei
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yijuan Zhang
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Jinzhong 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Taiyuan 030031, China
| | - Hongying Li
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Jinzhong 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Taiyuan 030031, China
| | - Zhaoxia Sun
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Jinzhong 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Taiyuan 030031, China
- Correspondence: ; Tel.: +86-18636071356
| | - Yuanhuai Han
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Jinzhong 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Taiyuan 030031, China
| |
Collapse
|
5
|
Hou S, Zhang Y, Zhao B, Man X, Ma G, Men Y, Du W, Yang Y, Li H, Han Y, Zhao Y, Sun Z. Heterologous Expression of SiFBP, a Folate-Binding Protein from Foxtail Millet, Confers Increased Folate Content and Altered Amino Acid Profiles with Nutritional Potential to Arabidopsis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6272-6284. [PMID: 35575700 DOI: 10.1021/acs.jafc.2c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The mechanism underlying folate degradation in foxtail millet grains remains unclear. Here, we identified SiFBP (Setaria italica folate-binding protein) from foxtail millet. A phylogenetic tree revealed that FBPs have close genetic relationships among cereal crop species. Docking analysis and heterologous expression of SiFBP in yeast showed that it could bind folic acid (FA). The SiFBP localized to the plasma membrane in tobacco mesophyll cells by transient expression. In Arabidopsis, it was expressed specifically in the roots and germinating seeds. Overexpressing SiFBP in yeast and Arabidopsis significantly increased folate contents. Untargeted metabolome analysis revealed differentially accumulated metabolites between the transgenic lines (TLs) and wild type (WT); these metabolites were mainly enriched in the amino acid metabolism pathway. The relative contents of lysine and leucine, threonine, and l-methionine were significantly higher in the TLs than in WT. Genes related to the folate and lysine synthesis pathways were upregulated in the TLs. Thus, SiFBP can be used for biofortification of folate and important amino acids in crops via genetic engineering.
Collapse
Affiliation(s)
- Siyu Hou
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Taiyuan, Shanxi 030031, China
| | - Yijuan Zhang
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Taiyuan, Shanxi 030031, China
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, China
| | - Xiaxia Man
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Guifang Ma
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yihan Men
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Wei Du
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yang Yang
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Taiyuan, Shanxi 030031, China
| | - Hongying Li
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Taiyuan, Shanxi 030031, China
| | - Yuanhuai Han
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Taiyuan, Shanxi 030031, China
| | - Yaofei Zhao
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Taiyuan, Shanxi 030031, China
| | - Zhaoxia Sun
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Taiyuan, Shanxi 030031, China
| |
Collapse
|