1
|
He W, Xie R, Guo D, Chai J, Wang H, Wang Y, Chen Q, Zhang J, Wu Z, Li M, Lin Y, Zhang Y, Luo Y, Zhang Y, Tang H, Wang X. The starch excess and key genes underlying citrus leaf chlorosis by rootstock-scion incompatibility. Int J Biol Macromol 2024:137111. [PMID: 39486718 DOI: 10.1016/j.ijbiomac.2024.137111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Leaf chlorosis caused by rootstock-scion incompatibility in citrus orchard badly affects fruit yield and quality. Starch excess and its key genes underlying citrus leaf chlorosis in incompatible graft remained unknown. Here, using created model incompatible/ compatible rootstock-scion combinations, we investigated starch content and distribution in 116 various chlorotic leaves of incompatible graft, and characterized the relationship between leaf chlorosis and starch accumulation. Further, we identified starch metabolism-related gene families by genome-wide analysis of pomelo genome, and performed comparative transcriptomic analysis on leaves. A total of nine key differentially expressed genes of starch metabolism were validated. Among them, seven starch synthesis-related genes were significantly upregulated, and two starch degradation-related genes, CgBAM4 and CgBAM6, were significantly downregulated. Meanwhile, the relative expression of synthesis-related genes was positively correlated with starch accumulation and leaf chlorosis. Using transient overexpression and VIGS experiments in pomelo, we confirmed the function of CgGBSS2, which was the only amylose synthesis-related key gene with the most significantly upregulated expression level. We proposed a working model to illustrate the regulatory network of starch excess accumulation involving in citrus leaf chlorosis of incompatible graft in the end. This study provides insights into the molecular mechanism underlying leaf chlorosis process in rootstock-scion incompatibility.
Collapse
Affiliation(s)
- Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China
| | - Rui Xie
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Daoxiang Guo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Jiufeng Chai
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Hao Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China
| | - Jing Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Zhiwei Wu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China.
| |
Collapse
|
2
|
Cui Y, Song J, Tang L, Xu X, Peng X, Fan H, Wang J. Genetic Analysis and Fine Mapping of a New Rice Mutant, Leaf Tip Senescence 2. Int J Mol Sci 2024; 25:7082. [PMID: 39000188 PMCID: PMC11241029 DOI: 10.3390/ijms25137082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Premature leaf senescence significantly reduces rice yields. Despite identifying numerous factors influencing these processes, the intricate genetic regulatory networks governing leaf senescence demand further exploration. We report the characterization of a stably inherited, ethyl methanesulfonate(EMS)-induced rice mutant with wilted leaf tips from seedling till harvesting, designated lts2. This mutant exhibits dwarfism and early senescence at the leaf tips and margins from the seedling stage when compared to the wild type. Furthermore, lts2 displays a substantial decline in both photosynthetic activity and chlorophyll content. Transmission electron microscopy revealed the presence of numerous osmiophilic granules in chloroplast cells near the senescent leaf tips, indicative of advanced cellular senescence. There was also a significant accumulation of H2O2, alongside the up-regulation of senescence-associated genes within the leaf tissues. Genetic mapping situated lts2 between SSR markers Q1 and L12, covering a physical distance of approximately 212 kb in chr.1. No similar genes controlling a premature senescence leaf phenotype have been identified in the region, and subsequent DNA and bulk segregant analysis (BSA) sequencing analyses only identified a single nucleotide substitution (C-T) in the exon of LOC_Os01g35860. These findings position the lts2 mutant as a valuable genetic model for elucidating chlorophyll metabolism and for further functional analysis of the gene in rice.
Collapse
Affiliation(s)
- Yongtao Cui
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian Song
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liqun Tang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaozheng Xu
- College of Landscape and Architecture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xinlu Peng
- College of Landscape and Architecture, Zhejiang A&F University, Hangzhou 311300, China
| | - Honghuan Fan
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianjun Wang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
3
|
Asad MAU, Yan Z, Zhou L, Guan X, Cheng F. How abiotic stresses trigger sugar signaling to modulate leaf senescence? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108650. [PMID: 38653095 DOI: 10.1016/j.plaphy.2024.108650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Plants have evolved the adaptive capacity to mitigate the negative effect of external adversities at chemical, molecular, cellular, and physiological levels. This capacity is conferred by triggering the coordinated action of internal regulatory factors, in which sugars play an essential role in the regulating chloroplast degradation and leaf senescence under various stresses. In this review, we summarize the recent findings on the senescent-associated changes in carbohydrate metabolism and its relation to chlorophyl degradation, oxidative damage, photosynthesis inhibition, programmed cell death (PCD), and sink-source relation as affected by abiotic stresses. The action of sugar signaling in regulating the initiation and progression of leaf senescence under abiotic stresses involves interactions with various plant hormones, reactive oxygen species (ROS) burst, and protein kinases. This discussion aims to elucidate the complex regulatory network and molecular mechanisms that underline sugar-induced leaf senescence in response to various abiotic stresses. The imperative role of sugar signaling in regulating plant stress responses potentially enables the production of crop plants with modified sugar metabolism. This, in turn, may facilitate the engineering of plants with improved stress responses, optimal life span and higher yield achievement.
Collapse
Affiliation(s)
- Muhmmad Asad Ullah Asad
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhang Yan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lujian Zhou
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xianyue Guan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fangmin Cheng
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Collaborative Innovation Centre for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing, China.
| |
Collapse
|
4
|
Botticella E, Testone G, Buffagni V, Palombieri S, Taddei AR, Lafiandra D, Lucini L, Giannino D, Sestili F. Mutations in starch biosynthesis genes affect chloroplast development in wheat pericarp. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108354. [PMID: 38219425 DOI: 10.1016/j.plaphy.2024.108354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Starch bioengineering in cereals has produced a plethora of genotypes with new nutritional and technological functionalities. Modulation of amylose content from 0 to 100% was inversely correlated with starch digestibility and promoted a lower glycemic index in food products. In wheat, starch mutants have been reported to exhibit various side effects, mainly related to the seed phenotype. However, little is known about the impact of altered amylose content and starch structure on plant metabolism. Here, three bread wheat starch mutant lines with extreme phenotypes in starch branching and amylose content were used to study plant responses to starch structural changes. Omics profiling of gene expression and metabolic patterns supported changes, confirmed by ultrastructural analysis in the chloroplast of the immature seeds. In detail, the identification of differentially expressed genes belonging to functional categories related to photosynthesis, chloroplast and thylakoid (e.g. CURT1), the alteration in the accumulation of photosynthesis-related compounds, and the chloroplast alterations (aberrant shape, grana stacking alteration, and increased number of plastoglobules) suggested that the modification of starch structure greatly affects starch turnover in the chloroplast, triggering oxidative stress (ROS accumulation) and premature tissue senescence. In conclusion, this study highlighted a correlation between starch structure and chloroplast functionality in the wheat kernel.
Collapse
Affiliation(s)
- Ermelinda Botticella
- Department of Agriculture and Forest Science, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy; Institute of Sciences of Food Production (ISPA), National Research Council (CNR), via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Giulio Testone
- Institute for Biological Systems, National Research Council (CNR), Via Salaria, km 29.300, Monterotondo, 00015, Rome, Italy.
| | - Valentina Buffagni
- Department of Agriculture and Forest Science, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy; Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - Samuela Palombieri
- Department of Agriculture and Forest Science, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Anna Rita Taddei
- Center of Large Equipments, Section of Electron Microscopy, University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Domenico Lafiandra
- Department of Agriculture and Forest Science, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - Donato Giannino
- Institute for Biological Systems, National Research Council (CNR), Via Salaria, km 29.300, Monterotondo, 00015, Rome, Italy
| | - Francesco Sestili
- Department of Agriculture and Forest Science, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy.
| |
Collapse
|
5
|
Xie Z, Zhang Q, Xia C, Dong C, Li D, Liu X, Kong X, Zhang L. Identification of the early leaf senescence gene ELS3 in bread wheat (Triticum aestivum L.). PLANTA 2023; 259:5. [PMID: 37994951 DOI: 10.1007/s00425-023-04278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023]
Abstract
MAIN CONCLUSION Characterization of the early leaf senescence mutant els3 and identification of its causal gene ELS3, which encodes an LRR-RLK protein in wheat. Leaf senescence is an important agronomic trait that affects both crop yield and quality. However, few senescence-related genes in wheat have been cloned and functionally analyzed. Here, we report the characterization of the early leaf senescence mutant els3 and fine mapping of its causal gene ELS3 in wheat. Compared with wild-type Yanzhan4110 (YZ4110), the els3 mutant had a decreased chlorophyll content and a degraded chloroplast structure after the flowering stage. Further biochemical assays in flag leaves showed that the superoxide anion and hydrogen peroxide contents increased, while the activities of antioxidant enzymes, including catalase, superoxide dismutase and glutathione reductase, decreased gradually after the flowering stage in the els3 mutant. To clone the causal gene underlying the phenotype of leaf senescence, a genetic map was constructed using 10,133 individuals of F2:3 populations, and ELS3 was located in a 2.52 Mb region on chromosome 2DL containing 16 putative genes. Subsequent sequence analysis and gene annotation identified only one SNP (C to T) in the first exon of TraesCS2D02G332700, resulting in an amino acid substitution (Pro329Ser), and TraesCS2D02G332700 was preliminarily considered as the candidate gene of ELS3. ELS3 encodes a leucine-rich repeat receptor-like kinase (LRR-RLK) protein that is localized on the cell membrane. We also found that the transient expression of mutant TraesCS2D02G332700 can induce leaf senescence in N. benthamiana. Taken together, TraesCS2D02G332700 is likely to be the candidate gene of ELS3 and may have a function in regulating leaf senescence.
Collapse
Affiliation(s)
- Zhencheng Xie
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Chuan Xia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunhao Dong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Danping Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xu Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiuying Kong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Lichao Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|