1
|
Gao J, Zhuang S, Zhang W. Advances in Plant Auxin Biology: Synthesis, Metabolism, Signaling, Interaction with Other Hormones, and Roles under Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2523. [PMID: 39274009 PMCID: PMC11397301 DOI: 10.3390/plants13172523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024]
Abstract
Auxin is a key hormone that regulates plant growth and development, including plant shape and sensitivity to environmental changes. Auxin is biosynthesized and metabolized via many parallel pathways, and it is sensed and transduced by both normal and atypical pathways. The production, catabolism, and signal transduction pathways of auxin primarily govern its role in plant growth and development, and in the response to stress. Recent research has discovered that auxin not only responds to intrinsic developmental signals, but also mediates various environmental signals (e.g., drought, heavy metals, and temperature stresses) and interacts with hormones such as cytokinin, abscisic acid, gibberellin, and ethylene, all of which are involved in the regulation of plant growth and development, as well as the maintenance of homeostatic equilibrium in plant cells. In this review, we discuss the latest research on auxin types, biosynthesis and metabolism, polar transport, signaling pathways, and interactions with other hormones. We also summarize the important role of auxin in plants under abiotic stresses. These discussions provide new perspectives to understand the molecular mechanisms of auxin's functions in plant development.
Collapse
Affiliation(s)
- Jianshuang Gao
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- School of Economic Geography, Hunan University of Finance and Economics, Changsha 410205, China
| | - Shunyao Zhuang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Weiwei Zhang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
2
|
Feng D, Wang L, Ning S, Peng D, Xu H, Sun C, Sun X. Exogenous Chemicals Used to Alleviate or Salvage Plants under Flooding/Waterlogging Stress: Their Biochemical Effects and Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:65-79. [PMID: 38135656 DOI: 10.1021/acs.jafc.3c06897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Plant flooding/waterlogging stress (FWS) can be a threat to food security worldwide due to climate change. To mitigate its potential devastation, numerous exogenous chemicals (ECs) have been used to demonstrate their effectiveness on alleviating FWS for the last 20 years. This review has summarized the most recent findings on use of various ECs as either nutrients or regulatory substances on crop plants under FWS and their roles involved in improving root respiration of seedlings, optimizing nutritional status, synthesizing osmotic regulators, enhancing the activity of antioxidant enzymes, adjusting phytohormone levels, maintaining photosynthetic systems, and activating flood-tolerance related gene expressions. The effect of ESs on alleviating plants under FWS proves to be beneficial and useful but rather limited unless they are applied on appropriate crops, at the right time, and with optimized methods. Further research should be focused on use of ESs in field settings and on their potential synergetic effect for more FWS tolerance.
Collapse
Affiliation(s)
- Di Feng
- Weifang University of Science and Technology, Shouguang, Shandong 262700, China
| | - Lingyue Wang
- Weifang University of Science and Technology, Shouguang, Shandong 262700, China
| | - Songrui Ning
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
| | - Dianliang Peng
- Weifang University of Science and Technology, Shouguang, Shandong 262700, China
| | - Haicheng Xu
- Weifang University of Science and Technology, Shouguang, Shandong 262700, China
| | - Chitao Sun
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Taian271018, Shandong, China
| | - Xiaoan Sun
- Weifang University of Science and Technology, Shouguang, Shandong 262700, China
- Florida Department of Agriculture and Consumer Services, Gainesville, Florida 32608, United States
| |
Collapse
|
3
|
Hosseini M, Saidi A, Maali-Amiri R, Khosravi-Nejad F, Abbasi A. Low-temperature acclimation related with developmental regulations of polyamines and ethylene metabolism in wheat recombinant inbred lines. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108198. [PMID: 38008007 DOI: 10.1016/j.plaphy.2023.108198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/22/2023] [Accepted: 11/13/2023] [Indexed: 11/28/2023]
Abstract
Winter survival is determined by complicated developmental regulations enabling wheat to adjust their transcriptome and metabolome to develop low temperature (LT) tolerance. The aim of the study was to clarify the metabolic responses developmentally regulated in six F6 recombinant inbred lines from a cross between Pishtaz (spring parent) and Mironovskaya 808 (winter parent). Spring genotypes, including pishtaz, RILs 4006 and 4014 showed lower LT tolerance, PAs (except the spermin), GABA and proline contents and DPPH• scavenging capacity. In these genotypes, genes and enzymes involved in the pathways of PAs and GABA degradation and ethylene biosynthesis were more active than other genotypes. RILs 4012 and 4016 with short vernalization displayed higher tolerance and lower H2O2 content compared to Pishtaz. Strong vernalization requirements in winter and facultative genotypes (Mironovskaya 808 parent and RILs 4003 and 4005) results in up-regulation of the metabolites and genes involved in PAs and GABA biosynthesis pathways (particularly when vernalization fulfillment occurred) to establish high tolerance as compared to genotypes without vernalization requirement. LT tolerance in all genotypes significantly decreased after vernalization fulfillment in February. Results indicated that LT tolerance was partly validated from developmental regulation of PAs, GABA, and ethylene metabolism during venalization and LT acclimation.
Collapse
Affiliation(s)
- Mohsen Hosseini
- Department of Plant Sciences and Biotechnology, Shahid Beheshti University, G.C, Tehran, Iran
| | - Abbas Saidi
- Department of Plant Sciences and Biotechnology, Shahid Beheshti University, G.C, Tehran, Iran.
| | - Reza Maali-Amiri
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran.
| | | | - Amin Abbasi
- Department of Plant Production and Genetics, University of Maragheh, Maragheh, Iran
| |
Collapse
|
4
|
Baiyin B, Xiang Y, Hu J, Tagawa K, Son JE, Yamada S, Yang Q. Nutrient Solution Flowing Environment Affects Metabolite Synthesis Inducing Root Thigmomorphogenesis of Lettuce ( Lactuca sativa L.) in Hydroponics. Int J Mol Sci 2023; 24:16616. [PMID: 38068940 PMCID: PMC10706437 DOI: 10.3390/ijms242316616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
The principal difference between hydroponics and other substrate cultivation methods is the flowing liquid hydroponic cultivation substrate. Our previous studies have revealed that a suitable flowing environment of nutrient solution promoted root development and plant growth, while an excess flow environment was unfavorable for plants. To explain the thigmomorphogenetic response of excess flow-induced metabolic changes, six groups of lettuce (Lactuca sativa L.), including two flow conditions and three time periods, were grown. Compared with the plants without flow, the plants with flow showed decreased root fresh weight, total root length, root surface area, and root volume but increased average root diameter and root density. The roots with flow had more upregulated metabolites than those without flow, suggesting that the flow may trigger metabolic synthesis and activity. Seventy-nine common differential metabolites among six groups were screened, and enrichment analysis showed the most significant enrichment in the arginine biosynthesis pathway. Arginine was present in all the groups and exhibited greater concentrations in roots with flow than without flow. It can be speculated from the results that a high-flowing environment of nutrient solution promotes arginine synthesis, resulting in changes in root morphology. The findings provide insights on root thigmomorphogenesis affected by its growing conditions and help understand how plants respond to environmental mechanical forces.
Collapse
Affiliation(s)
- Bateer Baiyin
- Research Center for Smart Horticulture Engineering, Chengdu National Agricultural Science & Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; (B.B.); (Y.X.); (J.H.)
| | - Yue Xiang
- Research Center for Smart Horticulture Engineering, Chengdu National Agricultural Science & Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; (B.B.); (Y.X.); (J.H.)
| | - Jiangtao Hu
- Research Center for Smart Horticulture Engineering, Chengdu National Agricultural Science & Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; (B.B.); (Y.X.); (J.H.)
| | - Kotaro Tagawa
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan; (K.T.); (S.Y.)
| | - Jung Eek Son
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea;
| | - Satoshi Yamada
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan; (K.T.); (S.Y.)
| | - Qichang Yang
- Research Center for Smart Horticulture Engineering, Chengdu National Agricultural Science & Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; (B.B.); (Y.X.); (J.H.)
| |
Collapse
|
5
|
Yadav P, Ansari MW, Kaula BC, Rao YR, Meselmani MA, Siddiqui ZH, Brajendra, Kumar SB, Rani V, Sarkar A, Rakwal R, Gill SS, Tuteja N. Regulation of ethylene metabolism in tomato under salinity stress involving linkages with important physiological signaling pathways. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 334:111736. [PMID: 37211221 DOI: 10.1016/j.plantsci.2023.111736] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/16/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
The tomato is well-known for its anti-oxidative and anti-cancer properties, and with a wide range of health benefits is an important cash crop for human well-being. However, environmental stresses (especially abiotic) are having a deleterious effect on plant growth and productivity, including tomato. In this review, authors describe how salinity stress imposes risk consequences on growth and developmental processes of tomato through toxicity by ethylene (ET) and cyanide (HCN), and ionic, oxidative, and osmotic stresses. Recent research has clarified how salinity stress induced-ACS and - β-CAS expressions stimulate the accumulation of ET and HCN, wherein the action of salicylic acid (SA),compatible solutes (CSs), polyamines (PAs) and ET inhibitors (ETIs) regulate ET and HCN metabolism. Here we emphasize how ET, SA and PA cooperates with mitochondrial alternating oxidase (AOX), salt overly sensitive (SOS) pathways and the antioxidants (ANTOX) system to better understand the salinity stress resistance mechanism. The current literature evaluated in this paper provides an overview of salinity stress resistance mechanism involving synchronized routes of ET metabolism by SA and PAs, connecting regulated network of central physiological processes governing through the action of AOX, β-CAS, SOS and ANTOX pathways, which might be crucial for the development of tomato.
Collapse
Affiliation(s)
- Priya Yadav
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India
| | - Mohammad Wahid Ansari
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India.
| | - Babeeta C Kaula
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India
| | - Yalaga Rama Rao
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur 522213, Andhra Pradesh, India
| | - Moaed Al Meselmani
- School of Biosciences, Alfred Denny Building, Grantham Centre, The University of Sheffield, Firth Court, Western Bank, Sheffield, South Yorkshire, England, UK
| | | | - Brajendra
- Division of Soil Science, ICAR-IIRR, Hyderabad, Telangana, India
| | - Shashi Bhushan Kumar
- Department of Soil Science, Birsa Agricultural University, Kanke, Ranchi, Jharkhand, India
| | - Varsha Rani
- Department of Crop Physiology, Birsa Agricultural University, Kanke, Ranchi, Jharkhand, India
| | - Abhijit Sarkar
- Department of Botany, University of GourBanga, Malda 732103, West Bengal, India
| | - Randeep Rakwal
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Sarvajeet Singh Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, MD University, Rohtak 124001, India
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
6
|
Zhang J, Xie M, Yu G, Wang D, Xu Z, Liang L, Xiao J, Xie Y, Tang Y, Sun G, Sun B, Huang Z, Lai Y, Li H. CaSPDS, a Spermidine Synthase Gene from Pepper ( Capsicum annuum L.), Plays an Important Role in Response to Cold Stress. Int J Mol Sci 2023; 24:ijms24055013. [PMID: 36902443 PMCID: PMC10003509 DOI: 10.3390/ijms24055013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Spermidine synthase (SPDS) is a key enzyme in the polyamine anabolic pathway. SPDS genes help regulate plant response to environmental stresses, but their roles in pepper remain unclear. In this study, we identified and cloned a SPDS gene from pepper (Capsicum annuum L.), named CaSPDS (LOC107847831). Bioinformatics analysis indicated that CaSPDS contains two highly conserved domains: an SPDS tetramerisation domain and a spermine/SPDS domain. Quantitative reverse-transcription polymerase chain reaction results showed that CaSPDS was highly expressed in the stems, flowers, and mature fruits of pepper and was rapidly induced by cold stress. The function of CaSPDS in cold stress response was studied by silencing and overexpressing it in pepper and Arabidopsis, respectively. Cold injury was more serious and reactive oxygen species levels were greater in the CaSPDS-silenced seedlings than in the wild-type (WT) seedlings after cold treatment. Compared with the WT plants, the CaSPDS-overexpression Arabidopsis plants were more tolerant to cold stress and showed higher antioxidant enzyme activities, spermidine content, and cold-responsive gene (AtCOR15A, AtRD29A, AtCOR47, and AtKIN1) expression. These results indicate that CaSPDS plays important roles in cold stress response and is valuable in molecular breeding to enhance the cold tolerance of pepper.
Collapse
Affiliation(s)
- Jianwei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Minghui Xie
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Guofeng Yu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Dong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zeping Xu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Le Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiachang Xiao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongdong Xie
- Institute for Processing and Storage of Agricultural Products, Chengdu Academy of Agricultural and Forest Sciences, Chengdu 611130, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Guochao Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunsong Lai
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
7
|
Proteomic and Biochemical Approaches Elucidate the Role of Millimeter-Wave Irradiation in Wheat Growth under Flooding Stress. Int J Mol Sci 2022; 23:ijms231810360. [PMID: 36142271 PMCID: PMC9499361 DOI: 10.3390/ijms231810360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Flooding impairs wheat growth and considerably affects yield productivity worldwide. On the other hand, irradiation with millimeter waves enhanced the growth of chickpea and soybean under flooding stress. In the current work, millimeter-wave irradiation notably enhanced wheat growth, even under flooding stress. To explore the protective mechanisms of millimeter-wave irradiation on wheat under flooding, quantitative proteomics was performed. According to functional categorization, proteins whose abundances were changed significantly with and without irradiation under flooding stress were correlated to glycolysis, reactive-oxygen species scavenging, cell organization, and hormonal metabolism. Immunoblot analysis confirmed that fructose-bisphosphate aldolase and β tubulin accumulated in root and leaf under flooding; however, even in such condition, their accumulations were recovered to the control level in irradiated wheat. The abundance of ascorbate peroxidase increased in leaf under flooding and recovered to the control level in irradiated wheat. Because the abundance of auxin-related proteins changed with millimeter-wave irradiation, auxin was applied to wheat under flooding, resulting in the application of auxin improving its growth, even in such condition. These results suggest that millimeter-wave irradiation on wheat seeds improves the recovery of plant growth from flooding via the regulation of glycolysis, reactive-oxygen species scavenging, and cell organization. Additionally, millimeter-wave irradiation could promote tolerance against flooding through the regulation of auxin contents in wheat.
Collapse
|
8
|
Effect of Hypoxic Stress and Levels of Mn on the Physiology and Biochemistry of Phyllostachys praecox. TOXICS 2022; 10:toxics10060290. [PMID: 35736899 PMCID: PMC9229331 DOI: 10.3390/toxics10060290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023]
Abstract
Hypoxic environments have an adverse effect on the growth and development of P. praecox, and this is accompanied by the production of reducing substances such as Fe and Mn. In this study, the effect of hypoxic stress and Mn concentrations on leaf chlorophyll contents, root morphology, root activity, element absorption, antioxidant enzymes, and respiratory enzyme system of P. praecox were evaluated in a hydroponics environment. The results revealed that application of Mn2+ during hypoxic stress enhanced leaf chlorophyll contents and boosted up the indexes of the root system. The root activity of P. praecox was reduced with stresses of hypoxia. The treatment of Mn2+ initially improved and then decreased the root activity of P. praecox, and attained its maximum with application of 300 μmol/L Mn2+ compared with control. The indexes of antioxidant enzymes of P. praecox were higher than that of 8 mg/L oxygen concentrations except for variable superoxide dismutase (SOD) in the treatment of 300 μmol/L Mn2+ with hypoxia stress. The application of Mn had inhibited the absorption of mineral elements in P. praecox. The activities of pyruvate decarboxylase (PDC), alcohol dehydrogenase (ADH), and lactic dehydrogenase (LDH) were initially improved and then diminished with hypoxia stress. It is concluded that hypoxia is a key factor affecting the growth and degradation of P. praecox, while combining it with the increase of Mn concentration enhances the damage to Phyllostachys pubescens. Our research is helpful for the sustainable management and scientific fertilization management of Phyllostachys praecox.
Collapse
|