1
|
Landicho DM, Montañez RJM, Camagna M, Neang S, Bulasag AS, Magdaraog PM, Sato I, Takemoto D, Maejima K, Pinili MS, Chiba S. Status of Cassava Witches' Broom Disease in the Philippines and Identification of Potential Pathogens by Metagenomic Analysis. BIOLOGY 2024; 13:522. [PMID: 39056715 PMCID: PMC11273669 DOI: 10.3390/biology13070522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Cassava witches' broom disease (CWBD) is one of the most devastating diseases of cassava (Manihot esculenta Crantz), and it threatens global production of the crop. In 2017, a phytoplasma, Candidatus Phytoplasma luffae (Ca. P. luffae), was reported in the Philippines, and it has been considered as the causal agent, despite unknown etiology and transmission of CWBD. In this study, the nationwide occurrence of CWBD was assessed, and detection of CWBD's pathogen was attempted using polymerase chain reaction (PCR) and next-generation sequencing (NGS) techniques. The results showed that CWBD has spread and become severe, exhibiting symptoms such as small leaf proliferation, shortened internodes, and vascular necrosis. PCR analysis revealed a low phytoplasma detection rate, possibly due to low titer, uneven distribution, or absence in the CWBD-symptomatic cassava. In addition, NGS techniques confirm the PCR results, revealing the absence or extremely low phytoplasma read counts, but a surprisingly high abundance of fastidious and xylem-limited fungus, Ceratobasidium sp. in CWBD-symptomatic plants. These findings cast doubt over the involvement of phytoplasma in CWBD and instead highlight the potential association of Ceratobasidium sp., strongly supporting the recent findings in mainland Southeast Asia. Further investigations are needed to verify the etiology of CWBD and identify infection mechanisms of Ceratobasidium sp. to develop effective diagnostic and control methods for disease management.
Collapse
Affiliation(s)
- Darwin Magsino Landicho
- Central Laboratory, National Plant Quarantine Services Division, Bureau of Plant Industry, Manila 1004, Philippines
- Nagoya University Asian Satellite Campuses Institute, Philippine Campus, University of the Philippines Los Baños, Laguna 4031, Philippines
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan (S.N.); (A.S.B.); (I.S.); (D.T.)
| | | | - Maurizio Camagna
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan (S.N.); (A.S.B.); (I.S.); (D.T.)
| | - Sokty Neang
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan (S.N.); (A.S.B.); (I.S.); (D.T.)
| | - Abriel Salaria Bulasag
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan (S.N.); (A.S.B.); (I.S.); (D.T.)
- College of Arts and Sciences, University of the Philippines Los Baños, Laguna 4031, Philippines
| | - Peter Magan Magdaraog
- Crop Pest Management Division, Bureau of Plant Industry, Manila 1004, Philippines;
- Biology Department, College of Science, De La Salle University, Manila 0922, Philippines
| | - Ikuo Sato
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan (S.N.); (A.S.B.); (I.S.); (D.T.)
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan (S.N.); (A.S.B.); (I.S.); (D.T.)
| | - Kensaku Maejima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
| | - Marita Sanfuego Pinili
- National Crop Protection Center, College of Agriculture and Food Science, University of the Philippines Los Baños, Laguna 4031, Philippines;
| | - Sotaro Chiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan (S.N.); (A.S.B.); (I.S.); (D.T.)
| |
Collapse
|
2
|
Lohmaneeratana K, Leetanasaksakul K, Thamchaipenet A. Transcriptomic Profiling of Sugarcane White Leaf (SCWL) Canes during Maturation Phase. PLANTS (BASEL, SWITZERLAND) 2024; 13:1551. [PMID: 38891358 PMCID: PMC11174868 DOI: 10.3390/plants13111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Sugarcane white leaf (SCWL) disease, caused by Candidatus Phytoplasma sacchari, results in the most damage to sugarcane plantations. Some SCWL canes can grow unnoticed through the maturation phase, subsequently resulting in an overall low sugar yield, or they can be used accidentally as seed canes. In this work, 12-month-old SCWL and asymptomatic canes growing in the same field were investigated. An abundance of phytoplasma in SCWL canes affected growth and sugar content as well as alterations of transcriptomic profiles corresponding to several pathways that responded to the infection. Suppression of photosynthesis, porphyrin and chlorophyll metabolism, coupled with an increase in the expression of chlorophyllase, contributed to the reduction in chlorophyll levels and photosynthesis. Blockage of sucrose transport plausibly occurred due to the expression of sugar transporters in leaves but suppression in stalks, resulting in low sugar content in canes. Increased expression of genes associated with MAPK cascades, plant hormone signaling transduction, callose plug formation, the phenylpropanoid pathway, and calcium cascades positively promoted defense mechanisms against phytoplasma colonization by an accumulation of lignin and calcium in response to plant immunity. Significant downregulation of CPK plausibly results in a reduction in antioxidant enzymes and likely facilitates pathogen invasion, while expression of sesquiterpene biosynthesis possibly attracts the insect vectors for transmission, thereby enabling the spread of phytoplasma. Moreover, downregulation of flavonoid biosynthesis potentially intensifies the symptoms of SCWL upon challenge by phytoplasma. These SCWL sugarcane transcriptomic profiles describe the first comprehensive sugarcane-phytoplasma interaction during the harvesting stage. Understanding molecular mechanisms will allow for sustainable management and the prevention of SCWL disease-a crucial benefit to the sugar industry.
Collapse
Affiliation(s)
- Karan Lohmaneeratana
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Kantinan Leetanasaksakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand;
| | - Arinthip Thamchaipenet
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
3
|
Lu Z, Hou X, Ke Z, Zhang Y, Yang Z, Zhou W. A newly identified glycosyltransferase AsRCOM provides resistance to purple curl leaf disease in agave. BMC Genomics 2023; 24:669. [PMID: 37936069 PMCID: PMC10629022 DOI: 10.1186/s12864-023-09700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/26/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Purple curl leaf disease brings a significant threat to the development of agave industry, the underlying mechanism of disease-resistant Agave sisalana. hybrid 11648 (A. H11648R) is still unknown. RESULTS To excavate the crucial disease-resistant genes against purple curl leaf disease, we performed an RNA-seq analysis for A.H11648R and A.H11648 during different stages of purple curl leaf disease. The DEGs (differentially expressed genes) were mainly enriched in linolenic acid metabolism, starch and sucrose mechanism, phenylpropanoid biosynthesis, hypersensitive response (HR) and systemic acquired resistance. Further analysis suggested that eight candidate genes (4'OMT2, ACLY, NCS1, GTE10, SMO2, FLS2, SQE1 and RCOM) identified by WGCNA (weighted gene co-expression network analysis) may mediate the resistance to agave purple curl disease by participating the biosynthesis of benzylisoquinoline alkaloids, steroid, sterols and flavonoids, and the regulation of plant innate immunity and systemic acquired resistance. After qPCR verification, we found that AsRCOM, coding a glycosyltransferase and relevant to the regulation of plant innate immunity and systemic acquired resistance, may be the most critical disease-resistant gene. Finally, the overexpression of AsRCOM gene in agave could significantly enhance the resistance to purple curl disease with abundant reactive oxygen species (ROS) accumulations. CONCLUSIONS Integrative RNA-seq analysis found that HR may be an important pathway affecting the resistance to purple curl leaf disease in agave, and identified glycosyltransferase AsRCOM as the crucial gene that could significantly enhance the resistance to purple curl leaf disease in agave, with obvious ROS accumulations.
Collapse
Affiliation(s)
- Zhiwei Lu
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, South Subtropical Crops Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524091, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Institute of Crop Science, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Ministry of Agriculture, Beijing, 100081, China
| | - Xiaowan Hou
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524091, China
| | - Zhi Ke
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, South Subtropical Crops Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524091, China
| | - Yanmei Zhang
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, South Subtropical Crops Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524091, China
| | - ZiPing Yang
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, South Subtropical Crops Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524091, China
| | - Wenzhao Zhou
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, South Subtropical Crops Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524091, China.
| |
Collapse
|
4
|
Su R, Ou Q, Wang H, Dai X, Chen Y, Luo Y, Yao H, Ouyang D, Li Z, Wang Z. Organic-inorganic composite modifiers enhance restoration potential of Nerium oleander L. to lead-zinc tailing: application of phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:56569-56579. [PMID: 36920611 DOI: 10.1007/s11356-023-26359-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Lead-zinc tailings are complex heavy metal solid wastes produced in the mining process. In this study, two kinds of organic-inorganic mixed improvers mushroom residue + calcium carbonate (M + C) and peat soil + calcium carbonate (N + C) were selected. Then, the effect of two improvers and a woody plant, Nerium oleander L., on the combined remediation of lead-zinc tailings was compared, respectively. The results showed that two combined improvers can slightly improve the pH of tailing, significantly increase the activity of phosphatase and catalase, effectively reduce the contents of DTPA-extractable Pb and Zn, and significantly improve the structure of tailing. However, the improvement effect of M + C was better than that of N + C on tailings' physical and chemical properties. Two improvers can reduce the enrichment and the stress degree of Pb and Zn on the N. oleander and increase the accumulation of Pb and Zn while promoting the growth of the N. oleander. The content of Pb and Zn showed the trend of root > stem > leaf under the two improvers, and the content of Zn was basically higher than that of Pb. To sum up, the combination of two modifiers and N. oleander has a good effect on the remediation of lead-zinc tailings, and the remediation effect of M + C was better than N + C.
Collapse
Affiliation(s)
- Rongkui Su
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China
- PowerChina Zhongnan Engineering Corporation Limited, Changsha, 410004, People's Republic of China
| | - Qiqi Ou
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China
| | - Hanqing Wang
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China
| | - Xiangrong Dai
- PowerChina Zhongnan Engineering Corporation Limited, Changsha, 410004, People's Republic of China
| | - Yonghua Chen
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China.
| | - Yiting Luo
- Hunan First Normal University, Changsha, 410205, People's Republic of China
| | - Haisong Yao
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China
| | - Danxia Ouyang
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China
| | - Zishi Li
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China
| | - Zhixiang Wang
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China
| |
Collapse
|
5
|
Wang T, Li X, Zhang C, Xu J. Transcriptome analysis of Ganoderma lingzhi (Agaricomycetes) response to Trichoderma hengshanicum infection. Front Microbiol 2023; 14:1131599. [PMID: 36910175 PMCID: PMC9996313 DOI: 10.3389/fmicb.2023.1131599] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Green mold caused by Trichoderma spp. has become one of the most serious diseases which threatening the production of Ganoderma lingzhi. To understand the possible resistance mechanism of the G. lingzhi response to T. hengshanicum infection, we examined the G. lingzhi transcript accumulation at 0, 12, and 24 h after T. hengshanicum inoculation. The gene expression analysis was conducted on the interaction between G. lingzhi and T. hengshanicum using RNA-seq and digital gene expression (DGE) profiling methods. Transcriptome sequencing indicated that there were 162 differentially expressed genes (DEGs) at three infection time points, containing 15 up-regulated DEGs and 147 down-regulated DEGs. Resistance-related genes thaumatin-like proteins (TLPs) (PR-5s), phenylalanine ammonia-lyase, and Beta-1,3-glucan binding protein were significantly up-regulated. At the three time points of infection, the heat shock proteins (HSPs) genes of G. lingzhi were down-regulated. The down-regulation of HSPs genes led to the inhibition of HSP function, which may compromise the HSP-mediated defense signaling transduction pathway, leading to G. lingzhi susceptibility. Pathway enrichment analyses showed that the main enriched pathways by G. lingzhi after infection were sphingolipid metabolism, ether lipid metabolism, and valine, leucine and isoleucine degradation pathway. Overall, the results described here improve fundamental knowledge of molecular responses to G. lingzhi defense and contribute to the design of strategies against Trichoderma spp.
Collapse
Affiliation(s)
- Tiantian Wang
- Agricultural College, Yanbian University, Yanji, China
- Agricultural College, Jilin Agricultural Science and Technology University, Jilin, China
| | - Xiaobin Li
- Agricultural College, Yanbian University, Yanji, China
- Agricultural College, Jilin Agricultural Science and Technology University, Jilin, China
| | - Chunlan Zhang
- College of Landscape Architecture, Changchun University, Changchun, China
| | - Jize Xu
- Agricultural College, Yanbian University, Yanji, China
- Agricultural College, Jilin Agricultural Science and Technology University, Jilin, China
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
6
|
Yang M, Zhou C, Yang H, Kuang R, Liu K, Huang B, Wei Y. Comparative transcriptomics and genomic analyses reveal differential gene expression related to Colletotrichum brevisporum resistance in papaya ( Carica papaya L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1038598. [PMID: 36618670 PMCID: PMC9816866 DOI: 10.3389/fpls.2022.1038598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Colletotrichum brevisporum is an important causal pathogen of anthracnose that seriously affects the fruit quality and yield of papaya (Carica papaya L.). Although many genes and biological processes involved in anthracnose resistance have been reported in other species, the molecular mechanisms involved in the response or resistance to anthracnose in post-harvest papaya fruits remain unclear. In this study, we compared transcriptome changes in the post-harvest fruits of the anthracnose-susceptible papaya cultivar Y61 and the anthracnose-resistant cultivar G20 following C. brevisporum inoculation. More differentially expressed genes (DEGs) and differentially expressed long non-coding RNAs (DElnRNAs) were identified in G20 than in Y61, especially at 24 h post-inoculation (hpi), suggesting a prompt activation of defense responses in G20 in the first 24 h after C. brevisporum inoculation. These DEGs were mainly enriched in plant-pathogen interaction, phenylpropanoid biosynthesis/metabolism, and peroxisome and flavonoid biosynthesis pathways in both cultivars. However, in the first 24 hpi, the number of DEGs related to anthracnose resistance was greater in G20 than in Y61, and changes in their expression levels were faster in G20 than in Y61. We also identified a candidate anthracnose-resistant gene cluster, which consisted of 12 genes, 11 in G20 and Y61, in response to C. brevisporum inoculation. Moreover, 529 resistance gene analogs were identified in papaya genome, most of which responded to C. brevisporum inoculation and were genetically different between papaya cultivars and wild-type populations. The total expression dose of the resistance gene analogs may help papaya resist C. brevisporum infection. This study revealed the mechanisms underlying different anthracnose resistance between the anthracnose-resistant and anthracnose-susceptible cultivars based on gene expression, and identified some potential anthracnose resistance-related candidate genes/major regulatory factors. Our findings provided potential targets for developing novel genetic strategies to overcome anthracnose in papaya.
Collapse
Affiliation(s)
- Min Yang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chenping Zhou
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hu Yang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ruibin Kuang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Bingxiong Huang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuerong Wei
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|