1
|
Tartaglia M, Zuzolo D, Prigioniero A, Ranauda MA, Scarano P, Tienda-Parrilla M, Hernandez-Lao T, Jorrín-Novo J, Guarino C. Changes in the proteomics and metabolomics profiles of Cormus Domestica (L.) fruits during the ripening process. BMC PLANT BIOLOGY 2024; 24:945. [PMID: 39390371 PMCID: PMC11465947 DOI: 10.1186/s12870-024-05677-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Cormus domestica (L.) is a monophyletic wild fruit tree belonging to the Rosaceae family, with well-documented use in the Mediterranean region. Traditionally, these fruits are harvested and stored for at least 2 weeks before consumption. During this period, the fruit reaches its well-known and peculiar organoleptic and texture characteristics. However, the spread of more profitable fruit tree species, resulted in its progressive erosion. In this work we performed proteomic and metabolomic fruit analyses at three times after harvesting, to characterise postharvest physiological and molecular changes, it related to nutritional and organoleptic properties at consumption. RESULTS Proteomics and metabolomics analysis were performed on fruits harvested at different time points: freshly harvested fruit (T0), fruit two weeks after harvest (T1) and fruit four weeks after harvest (T2). Proteomic analysis (Shotgun Proteomic in LC-MS/MS) resulted in 643 proteins identified. Most of the differentially abundant proteins between the three phases observed were involved in the softening process, carbohydrate metabolism and stress responses. Enzymes, such as xyloglucan endotransglucosylase/hydrolase, pectin acetylesterase, beta-galactosidase and pectinesterase, accumulated during fruit ripening and could explain the pulp breakdown observed in C. domestica. At the same time, enzymes abundant in the early stages (T0), such as sucrose synthase and malic enzyme, explain the accumulation of sugars and the lowering of acidity during the process. The metabolites extraction from C. domestica fruits enabled the identification of 606 statistically significant differentially abundant metabolites. Some compounds such as piptamine and resorcinol, well-known for their antimicrobial and antifungal properties, and several bioactive compounds such as endocannabinoids, usually described in the leaves, accumulate in C. domestica fruit during the post-harvest process. CONCLUSIONS The metabolomic and proteomic profiling of the C. domestica fruit during the postharvest process, evaluated in the study, provides a considerable contribution to filling the existing information gap, enabling the molecular and phytochemical characterisation of this erosion-endangered fruit. Data show biochemical changes that transform the harvested fruit into palatable consumable product.
Collapse
Affiliation(s)
- Maria Tartaglia
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento, 82100, Italy
| | - Daniela Zuzolo
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento, 82100, Italy.
| | - Antonello Prigioniero
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento, 82100, Italy.
| | - Maria Antonietta Ranauda
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento, 82100, Italy
| | - Pierpaolo Scarano
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento, 82100, Italy
| | - Marta Tienda-Parrilla
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain
| | - Tamara Hernandez-Lao
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain
| | - Jesús Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain
| | - Carmine Guarino
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento, 82100, Italy
| |
Collapse
|
2
|
Chen X, Hou WX, Hu JL, Dong MD, Tan BM. Resurrection of Sorbustapashana (Rosaceae) based on molecular and morphological evidence. PHYTOKEYS 2024; 247:29-38. [PMID: 39398383 PMCID: PMC11467494 DOI: 10.3897/phytokeys.247.132538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024]
Abstract
Sorbustapashana (Rosaceae) from Taibai Shan, Qinling, China, has been treated as a synonym of S.tianschanica. Both species belong to a distinctive group characterized by white tomentose buds, relatively large flowers, and red fruits. However, these two species do not cluster together in the plastome-based phylogenetic analysis. Morphologically, S.tapashana differs from S.tianschanica by its persistent white tomentose on the peduncle, pedicels, rachis, both sides of the midrib on abaxial surface, its leaflets with 31-51 teeth on each side and much smaller corymbs and fruits. Therefore, S.tapashana is reinstated as a distinct species here.
Collapse
Affiliation(s)
- Xin Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, ChinaNanjing Forestry UniversityNanjingChina
| | - Wen-Xiang Hou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, ChinaNanjing Forestry UniversityNanjingChina
| | - Jun-Ling Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, ChinaNanjing Forestry UniversityNanjingChina
| | - Meng-Die Dong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, ChinaNanjing Forestry UniversityNanjingChina
| | - Bao-Mei Tan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, ChinaNanjing Forestry UniversityNanjingChina
| |
Collapse
|
3
|
Almerekova S, Yermagambetova M, Osmonali B, Vesselova P, Abugalieva S, Turuspekov Y. Characterization of the Plastid Genomes of Four Caroxylon Thunb. Species from Kazakhstan. PLANTS (BASEL, SWITZERLAND) 2024; 13:1332. [PMID: 38794403 PMCID: PMC11124919 DOI: 10.3390/plants13101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
The family Chenopodiaceae Vent. (Amaranthaceae s.l.) is known for its taxonomic complexity, comprising species of significant economic and ecological importance. Despite its significance, the availability of plastid genome data for this family remains limited. This study involved assembling and characterizing the complete plastid genomes of four Caroxylon Thunb. species within the tribe Salsoleae s.l., utilizing next-generation sequencing technology. We compared genome features, nucleotide diversity, and repeat sequences and conducted a phylogenetic analysis of ten Salsoleae s.l. species. The size of the plastid genome varied among four Caroxylon species, ranging from 150,777 bp (C. nitrarium) to 151,307 bp (C. orientale). Each studied plastid genome encoded 133 genes, including 114 unique genes. This set of genes includes 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Eight divergent regions (accD, atpF, matK, ndhF-ndhG, petB, rpl20-rpl22, rpoC2, and ycf3) were identified in ten Salsoleae s.l. plastid genomes, which could be potential DNA-barcoding markers. Additionally, 1106 repeat elements were detected, consisting of 814 simple sequence repeats, 92 tandem repeats, 88 forward repeats, 111 palindromic repeats, and one reverse repeat. The phylogenetic analysis provided robust support for the relationships within Caroxylon species. These data represent a valuable resource for future phylogenetic studies within the genus.
Collapse
Affiliation(s)
- Shyryn Almerekova
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (S.A.); (M.Y.); (S.A.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Moldir Yermagambetova
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (S.A.); (M.Y.); (S.A.)
| | - Bektemir Osmonali
- Institute of Botany and Phytointroduction, Almaty 050040, Kazakhstan; (B.O.); (P.V.)
| | - Polina Vesselova
- Institute of Botany and Phytointroduction, Almaty 050040, Kazakhstan; (B.O.); (P.V.)
| | - Saule Abugalieva
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (S.A.); (M.Y.); (S.A.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Yerlan Turuspekov
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (S.A.); (M.Y.); (S.A.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
4
|
Li QQ, Zhang ZP, Aogan, Wen J. Comparative chloroplast genomes of Argentina species: genome evolution and phylogenomic implications. FRONTIERS IN PLANT SCIENCE 2024; 15:1349358. [PMID: 38766467 PMCID: PMC11099909 DOI: 10.3389/fpls.2024.1349358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/25/2024] [Indexed: 05/22/2024]
Abstract
The genus Argentina Hill belongs to the tribe Potentilleae Sweet and contains approximately 75 species predominantly distributed in the Sino-Himalayan region and the Malesian archipelago. So far we have less knowledge on the phylogenetic relationships within Argentina owing to limited sampling of Argentina taxa or gene fragments in previous studies. Moreover, to date there is no phylogenetic study on Argentina from the perspective of comparative chloroplast (cp) genomics. Here we performed comparative genomic analyses on the cp genomes of 39 accessions representing 18 taxa of Argentina. The Argentina cp genomes presented the typical quadripartite structure, with the sizes ranging from 155 096 bp to 157 166 bp. The 39 Argentina cp genomes contained a set of 112 unique genes, comprising four ribosomal RNA (rRNA) genes, 30 transfer RNA (tRNA) genes, as well as 78 protein-coding genes (PCGs). The cp genome organization, gene content and order in Argentina were highly conserved, but some visible divergences were present in IR/SC boundary regions. Ten regions (trnH-GUG-psbA, trnG-GCC-trnfM-CAU, trnD-GUC-trnY-GUA, rpl32-trnL-UAG, atpH-atpI, rps16-trnQ-UUG, trnS-GCU-trnG-UCC, ndhF-rpl32, trnR-UCU-atpA, and accD-psaI) were identified as excellent candidate DNA markers for future studies on species identification, population genetics and phylogeny of Argentina. Our results indicated that Argentina is monophyletic. In the current sampling, the A. smithiana - A. anserina clade was sister to the remainder of Argentina. Our results corroborated the previous taxonomic treatments to transfer A. phanerophlebia and A. micropetala from the genus Sibbaldia L. to Argentina. Our results showed close relationships among A. stenophylla, A. microphylla, A. taliensis, and A. tatsienluensis, congruent with previous studies based on the morphology of these species. Twenty-six genes (rps3, rps15, rps16, rps19, rpl16, rpl20, rpl22, rpoA, rpoB, rpoC1, rpoC2, atpA, atpF, psbB, psbF, ndhA, ndhB, ndhC, ndhD, ndhF, rbcL, accD, ccsA, matK, ycf1, ycf2) were with sites under positive selection, and adaptive evolution of these genes might have played crucial roles in Argentina species adaptation to the harsh mountain environment. This study will facilitate future work on taxonomy, phylogenetics, and adaptive evolution of Argentina.
Collapse
Affiliation(s)
- Qin-Qin Li
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot, China
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Zhi-Ping Zhang
- College of Computer Science and Technology, Inner Mongolia Normal University, Hohhot, China
| | - Aogan
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| |
Collapse
|
5
|
Wang J, Wang J, Shang M, Dai G, Liao B, Zheng J, Hu Z, Duan B. Comparatively analyzing of chloroplast genome and new insights into phylogenetic relationships regarding the genus Stephania. Gene 2024; 893:147931. [PMID: 37898453 DOI: 10.1016/j.gene.2023.147931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The medicinal plant of the genus Stephania holds significant economic importance in the pharmaceutical industry. However, accurately classifying and subdividing this genus remains a challenge. Herein, the chloroplast (cp) genomes of Stephania and Cyclea were sequenced, and the primary characteristics, repeat sequences, inverted repeats regions, simple sequence repeats, and codon usage bias of 17 species were comparatively analyzed. Twelve markers were identified through genome alignment and sliding window analysis. Moreover, a molecular clock analysis revealed the divergence between subgenus (subg.) Botryodiscia and the combined Cyclea, subg. Stephania and Tuberiphania during the early Oligocene epoch. Notably, the raceme-type inflorescence represents the ancestral state of the Stephania and Cyclea. The genetic relationships inferred from the cp genome and protein-coding genes exhibited similar topologies. Additionally, the paraphyletic relationship between the genera Cyclea and Stephania was confirmed. Bayesian inference, maximum likelihood, and neighbor-joining trees consistently showed that section Tuberiphania and Transcostula were non-monophyletic. In conclusion, this research provides valuable insights for further investigations into species identification, evolution, and phylogenetics within the Stephania genus.
Collapse
Affiliation(s)
- Jiale Wang
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Jing Wang
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Mingyue Shang
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Guona Dai
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Binbin Liao
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Jiamei Zheng
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Zhigang Hu
- College of Pharmaceutical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| |
Collapse
|
6
|
Xie J, Miao Y, Zhang X, Zhang G, Guo B, Luo G, Huang L. Comparative complete chloroplast genome of Geum japonicum: evolution and phylogenetic analysis. JOURNAL OF PLANT RESEARCH 2024; 137:37-48. [PMID: 37917204 DOI: 10.1007/s10265-023-01502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
Geum japonicum (Rosaceae) has been widely used in China as a traditional herbal medicine due to its high economic and medicinal value. However, the appearance of Geum species is relatively similar, making identification difficult by conventional phenotypic methods, and the studies of genomics and species evolution are lacking. To better distinguish the medicinal varieties and fill this gap, we carried out relevant research on the chloroplast genome of G. japonicum. Results show a typical quadripartite structure of the chloroplast genome of G. japonicum with a length of 156,042 bp. There are totally 131 unique genes in the genome, including 87 protein-coding genes, 36 tRNA genes, and 8 rRNA genes, and there were also 87 SSRs identified and mostly mononucleotide Adenine-Thymine. We next compared the plastid genomes among four Geum species and obtained 14 hypervariable regions, including ndhF, psbE, trnG-UCC, ccsA, trnQ-UUG, rps16, psbK, trnL-UAA, ycf1, ndhD, atpA, petN, rps14, and trnK-UUU. Phylogenetic analysis revealed that G. japonicum is most closely related to Geum aleppicum, and possibly has some evolutionary relatedness with an ancient relic plant Taihangia rupestris. This research enriched the genome resources and provided fundamental insights for evolutionary studies and the phylogeny of Geum.
Collapse
Affiliation(s)
- Junbo Xie
- Key Laboratory of Chinese Medicine Resources Conservation, Institute of Medicinal Plant Development, State Administration of Traditional Chinese Medicine of China, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330000, China
| | - Yujing Miao
- Key Laboratory of Chinese Medicine Resources Conservation, Institute of Medicinal Plant Development, State Administration of Traditional Chinese Medicine of China, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Xinke Zhang
- Key Laboratory of Chinese Medicine Resources Conservation, Institute of Medicinal Plant Development, State Administration of Traditional Chinese Medicine of China, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Guoshuai Zhang
- Key Laboratory of Chinese Medicine Resources Conservation, Institute of Medicinal Plant Development, State Administration of Traditional Chinese Medicine of China, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Baolin Guo
- Key Laboratory of Chinese Medicine Resources Conservation, Institute of Medicinal Plant Development, State Administration of Traditional Chinese Medicine of China, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Guangming Luo
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330000, China.
| | - Linfang Huang
- Key Laboratory of Chinese Medicine Resources Conservation, Institute of Medicinal Plant Development, State Administration of Traditional Chinese Medicine of China, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
7
|
Niu Z, Lin Z, Tong Y, Chen X, Deng Y. Complete plastid genome structure of 13 Asian Justicia (Acanthaceae) species: comparative genomics and phylogenetic analyses. BMC PLANT BIOLOGY 2023; 23:564. [PMID: 37964203 PMCID: PMC10647099 DOI: 10.1186/s12870-023-04532-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Justicia L. is the largest genus in Acanthaceae Juss. and widely distributed in tropical and subtropical regions of the world. Previous phylogenetic studies have proposed a general phylogenetic framework for Justicia based on several molecular markers. However, their studies were mainly focused on resolution of phylogenetic issues of Justicia in Africa, Australia and South America due to limited sampling from Asia. Additionally, although Justicia plants are of high medical and ornamental values, little research on its genetics was reported. Therefore, to improve the understanding of its genomic structure and relationships among Asian Justicia plants, we sequenced complete chloroplast (cp.) genomes of 12 Asian plants and combined with the previously published cp. genome of Justicia leptostachya Hemsl. for further comparative genomics and phylogenetic analyses. RESULTS All the cp. genomes exhibit a typical quadripartite structure without genomic rearrangement and gene loss. Their sizes range from 148,374 to 151,739 bp, including a large single copy (LSC, 81,434-83,676 bp), a small single copy (SSC, 16,833-17,507 bp) and two inverted repeats (IR, 24,947-25,549 bp). GC contents range from 38.1 to 38.4%. All the plastomes contain 114 genes, including 80 protein-coding genes, 30 tRNAs and 4 rRNAs. IR variation and repetitive sequences analyses both indicated that Justicia grossa C. B. Clarke is different from other Justicia species because its lengths of ndhF and ycf1 in IRs are shorter than others and it is richest in SSRs and dispersed repeats. The ycf1 gene was identified as the candidate DNA barcode for the genus Justicia. Our phylogenetic results showed that Justicia is a polyphyletic group, which is consistent with previous studies. Among them, J. grossa belongs to subtribe Tetramerinae of tribe Justicieae while the other Justicia members belong to subtribe Justiciinae. Therefore, based on morphological and molecular evidence, J. grossa should be undoubtedly recognized as a new genus. Interestingly, the evolutionary history of Justicia was discovered to be congruent with the morphology evolution. CONCLUSION Our study not only elucidates basic features of Justicia whole plastomes, but also sheds light on interspecific relationships of Asian Justicia plants for the first time.
Collapse
Affiliation(s)
- Zhengyang Niu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheli Lin
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Yi Tong
- School of Chinese Materia Medica Medical, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xin Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yunfei Deng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
8
|
Li H, Wu M, Lai Q, Zhou W, Song C. Complete chloroplast of four Sanicula taxa (Apiaceae) endemic to China: lights into genome structure, comparative analysis, and phylogenetic relationships. BMC PLANT BIOLOGY 2023; 23:444. [PMID: 37730528 PMCID: PMC10512634 DOI: 10.1186/s12870-023-04447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND The genus Sanicula comprises ca. 45 taxa, widely distributed from East Asia to North America, which is a taxonomically difficult genus with high medicinal value in Apiaceae. The systematic classification of the genus has been controversial for a long time due to varied characters in key morphological traits. China is one of the most important distributed centers, with ca. 18 species and two varieties. At present, chloroplast genomes are generally considered to be conservative and play an important role in evolutionary relationship study. To investigate the plastome evolution and phylogenetic relationships of Chinese Sanicula, we comprehensively analyzed the structural characteristics of 13 Chinese Sanicula chloroplasts and reconstructed their phylogenetic relationships. RESULTS In present study, four newly complete chloroplast genome of Sanicula taxa by using Illumina sequencing were reported, with the typical quadripartite structure and 155,396-155,757 bp in size. They encoded 126 genes, including 86 protein-coding genes, 32 tRNA genes and 8 rRNA genes. Genome structure, distributions of SDRs and SSRs, gene content, among Sanicula taxa, were similar. The nineteen intergenic spacers regions, including atpH-atpI, ndhC-trnM, petB-petD, petD-rpoA, petN-psbM, psaJ-rpl33, rbcL-accD, rpoB-trnC, rps16-trnQ, trnE-psbD, trnF-ndhJ, trnH-psbA, trnN-ndhF, trnS-psbZ, trnS-trnR, trnT-trnF, trnV-rps12, ycf3-trnS and ycf4-cemA, and one coding region (ycf1 gene) were the most variable. Results of maximum likelihood analysis based on 79 unique coding genes of 13 Chinese Sanicula samples and two Eryngium (Apiaceae-Saniculoideae) species as outgroup taxa revealed that they divided into four subclades belonged to two clades, and one subclade was consistent with previously traditional Sanicula section of its system. The current classification based on morphology at sect. Sanicla and Sect. Tuberculatae in Chinese Sanicula was not supported by analysis of cp genome phylogeny. CONCLUSIONS The chloroplast genome structure of Sanicula was similar to other angiosperms and possessed the typical quadripartite structure with the conserved genome arrangement and gene features. However, their size varied owing to expansion/contraction of IR/SC boundaries. The variation of non-coding regions was larger than coding regions of the chloroplast genome. Phylogenetic analysis within these Chinese Sanicula were determined using the 79 unique coding genes. These results could provide important data for systematic, phylogenomic and evolutionary research in the genus for the future studies.
Collapse
Affiliation(s)
- Huimin Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, Jiangsu, China
| | - Mingsong Wu
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, 570311, China
| | - Qiang Lai
- Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610065, China
| | - Wei Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, Jiangsu, China
| | - Chunfeng Song
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
9
|
Characterization of the Plastid Genome of the Vulnerable Endemic Indosasa lipoensis and Phylogenetic Analysis. DIVERSITY 2023. [DOI: 10.3390/d15020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Indosasa lipoensis, an ornamental garden plant, belongs to the Indosasa genus of the subfamily Bambooaceae within Poaceae. Indosasa lipoensis is endangered and requires protection owing to its relatively narrow distribution area. Chloroplast (cp) genome offers a novel awareness of the evolutionary and genetic variation of higher plants. Herein, we assembled and elucidated the complete cp genome of I. lipoensis, and compared it with four previously published cp genomes from this genus. The I. lipoensis cp genome was 139,655 bp in size, with a typical quadripartite structure, encompassing a large single-copy region (LSC, 83,256 bp), a small single-copy region (SSC, 12,809 bp), and a pair of inverted repeat regions (IR, 21,795 bp). The cp genome consisted of 130 genes with 84 protein-coding genes (CDS), 38 tRNA genes, and 8 rRNA genes. The plastomes were highly conservative, compared to other bamboo species, and exhibited similar patterns of codon usage, number of repeat sequences, and expansion and contraction of the IR boundary. Five hypervariable hotspots were identified as potential DNA barcodes, namely rbcL, petA, petB, trnL-UAG, and ndhE-ndhI, respectively. Phylogenetic analysis based on the complete cp genomes revealed, with high resolution, that I. lipoensis and I. gigantea were most closely related. Overall, these results provided valuable characterization for the future conservation, genetic evaluation, and the breeding of I. lipoensis.
Collapse
|
10
|
Feng J, Xiong Y, Su X, Liu T, Xiong Y, Zhao J, Lei X, Yan L, Gou W, Ma X. Analysis of Complete Chloroplast Genome: Structure, Phylogenetic Relationships of Galega orientalis and Evolutionary Inference of Galegeae. Genes (Basel) 2023; 14:176. [PMID: 36672917 PMCID: PMC9859028 DOI: 10.3390/genes14010176] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Galega orientalis, a leguminous herb in the Fabaceae family, is an ecologically and economically important species widely cultivated for its strong stress resistance and high protein content. However, genomic information of Galega orientalis has not been reported, which limiting its evolutionary analysis. The small genome size makes chloroplast relatively easy to obtain genomic sequence for phylogenetic studies and molecular marker development. Here, the chloroplast genome of Galega orientalis was sequenced and annotated. The results showed that the chloroplast genome of G. orientalis is 125,280 bp in length with GC content of 34.11%. A total of 107 genes were identified, including 74 protein-coding genes, 29 tRNAs and four rRNAs. One inverted repeat (IR) region was lost in the chloroplast genome of G. orientalis. In addition, five genes (rpl22, ycf2, rps16, trnE-UUC and pbf1) were lost compared with the chloroplast genome of its related species G. officinalis. A total of 84 long repeats and 68 simple sequence repeats were detected, which could be used as potential markers in the genetic studies of G. orientalis and related species. We found that the Ka/Ks values of three genes petL, rpl20, and ycf4 were higher than one in the pairwise comparation of G. officinalis and other three Galegeae species (Calophaca sinica, Caragana jubata, Caragana korshinskii), which indicated those three genes were under positive selection. A comparative genomic analysis of 15 Galegeae species showed that most conserved non-coding sequence regions and two genic regions (ycf1 and clpP) were highly divergent, which could be used as DNA barcodes for rapid and accurate species identification. Phylogenetic trees constructed based on the ycf1 and clpP genes confirmed the evolutionary relationships among Galegeae species. In addition, among the 15 Galegeae species analyzed, Galega orientalis had a unique 30-bp intron in the ycf1 gene and Tibetia liangshanensis lacked two introns in the clpP gene, which is contrary to existing conclusion that only Glycyrrhiza species in the IR lacking clade (IRLC) lack two introns. In conclusion, for the first time, the complete chloroplast genome of G. orientalis was determined and annotated, which could provide insights into the unsolved evolutionary relationships within the genus Galegeae.
Collapse
Affiliation(s)
- Junjie Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Academy of Grassland Science, Chengdu 611130, China
| | - Yi Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoli Su
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianqi Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanli Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiong Lei
- Sichuan Academy of Grassland Science, Chengdu 611130, China
| | - Lijun Yan
- Sichuan Academy of Grassland Science, Chengdu 611130, China
| | - Wenlong Gou
- Sichuan Academy of Grassland Science, Chengdu 611130, China
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|