1
|
Ni K, Lu X, Li S, Li F, Zhang Y, Cui R, Fan Y, Huang H, Chen X, Wang J, Wang S, Guo L, Zhao L, He Y, Ye W. GhLCYε-3 characterized as a lycopene cyclase gene responding to drought stress in cotton. Comput Struct Biotechnol J 2024; 23:384-395. [PMID: 38226314 PMCID: PMC10788185 DOI: 10.1016/j.csbj.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024] Open
Abstract
Drought stress significantly affects crop productivity. Carotenoids are essential photosynthetic pigment for plants, bacteria, and algae, with signaling and antioxidant functions. Lutein is a crucial branch product in the carotenoid synthesis pathway, which effectively improves the stress tolerance of higher plants. lycopene cyclase, a central enzyme for lutein synthesis, holds great significance in regulating lutein production. This research establishes a correlation between lutein content and stress resistance by measuring the drought resistance and lutein content of various cotton materials. To identify which crucial genes are associated with lutein, the lycopene cyclase family (LCYs) was analyzed. The research found that LCYs form a highly conserved family divided into two subfamilies, LCY-ε (lycopene ε-cyclase) and LCY-β (lycopene β-cyclase). Most members of the LCY family contain photoresponsive elements and abscisic acid elements. qRT-PCR demonstrates showed that most genes responded positively to drought stress, and GhLCYε-3 was expressed significantly differently under drought stress. Virus-induced gene silencing (VIGS) assay showed that the content of GhLCYε-3 was significantly increased with MDA and PRO, and the contents of chlorophyll and lutein were significantly decreased in pYL156 plants. The decrease in GhLCYε-3 expression is speculated to lead to reduced lutein content in vivo, resulting in the accumulation of reactive oxygen species (ROS) and decreased drought tolerance. This research enriched the understanding of LCY gene family and lutein function, and provided a new reference for cotton planting in arid areas. Synopsis Lycopene cyclase plays an important role in enhancing the ability of scavenging ROS and drought resistance of plants.
Collapse
Affiliation(s)
- Kesong Ni
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Shuyan Li
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Fei Li
- Hunan Institute of Cotton Science, Changde 415101, Hunan China
| | - Yuexin Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Ruifeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Hui Huang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Yunxin He
- Hunan Institute of Cotton Science, Changde 415101, Hunan China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| |
Collapse
|
2
|
Zhao H, Su J, Zhong Z, Xiong T, Dai W, Zhang D, Chang Y. Functional Identification and Regulatory Active Site Screening of the DfDXS Gene of Dryopteris fragrans. PLANTS (BASEL, SWITZERLAND) 2024; 13:2647. [PMID: 39339623 PMCID: PMC11435244 DOI: 10.3390/plants13182647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Dryopteris fragrans (L.) Schott has anti-inflammatory and antioxidant properties, and terpenoids are important components of its active constituents. The methyl-D-erythritol 4-phosphate (MEP) pathway is one of the major pathways for the synthesis of terpene precursors in plants, and 1-deoxy-D-xylulose-5-phosphate synthase (DXS) is the first rate-limiting enzyme in this pathway. DXS has been shown to be associated with increased stress tolerance in plants. In this experiment, two DXS genes were extracted from the D. fragrans transcriptome and named DfDXS1 and DfDXS2. Based on phylogenetic tree and conserved motif analyses, DXS was shown to be highly conserved evolutionarily and its localization to chloroplasts was determined by subcellular localization. Prokaryotic expression results showed that the number and growth status of recombinant colonies were better than the control under 400 mM NaCl salt stress and 800 mM mannitol-simulated drought stress. In addition, the DfDXS1 and DfDXS2 transgenic tobacco plants showed improved resistance to drought and salt stress. DfDXS1 and DfDXS2 responded strongly to methyl jasmonate (MeJA) and PEG-mimicked drought stress following exogenous hormone and abiotic stress treatments of D. fragrans. The transcriptional active sites were investigated by dual luciferase and GUS staining assays, and the results showed that the STRE element (AGGGG), the ABRE element (ACGTGGC), and the MYC element (CATTTG) were the important transcriptional active sites in the promoters of the two DXS genes, which were closely associated with hormone response and abiotic stress. These results suggest that the DfDXS gene of D. fragrans plays an important role in hormone signaling and response to stress. This study provides a reference for analyzing the molecular mechanisms of stress tolerance in D. fragrans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ying Chang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (H.Z.); (J.S.); (Z.Z.); (T.X.); (W.D.); (D.Z.)
| |
Collapse
|
3
|
Zhao L, Wang Y, Cui R, Cui Y, Lu X, Chen X, Wang J, Wang D, Yin Z, Wang S, Peng F, Guo L, Chen C, Ye W. Analysis of the histidine kinase gene family and the role of GhHK8 in response to drought tolerance in cotton. PHYSIOLOGIA PLANTARUM 2023; 175:e14022. [PMID: 37882310 DOI: 10.1111/ppl.14022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/27/2023] [Accepted: 08/29/2023] [Indexed: 10/27/2023]
Abstract
As an important member of the two-component system (TCS), histidine kinases (HKs) play important roles in various plant developmental processes and signal transduction in response to a wide range of biotic and abiotic stresses. So far, the HK gene family has not been investigated in Gossypium. In this study, a total of 177 HK gene family members were identified in cotton. They were further divided into seven groups, and the protein characteristics, genetic relationship, gene structure, chromosome location, collinearity, and cis-elements identification were comprehensively analyzed. Whole genome duplication (WGD) / segmental duplication may be the reason why the number of HK genes doubled in tetraploid Gossypium species. Expression analysis revealed that most cotton HK genes were mainly expressed in the reproductive organs and the fiber at initial stage. Gene expression analysis revealed that HK family genes are involved in cotton abiotic stress, especially drought stress and salt stress. In addition, gene interaction networks showed that HKs were involved in the regulation of cotton abiotic stress, especially drought stress. VIGS experiments have shown that GhHK8 is a negative regulatory factor in response to drought stress. Our systematic analysis provided insights into the characteristics of the HK genes in cotton and laid a foundation for further exploring their potential in drought stress resistance in cotton.
Collapse
Affiliation(s)
- Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Yongbo Wang
- Hunan Institute of Cotton Science, Changde, China
| | - Ruifeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Yupeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Zujun Yin
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Fanjia Peng
- Hunan Institute of Cotton Science, Changde, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Chao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization/National Engineering Research Center of Cotton Biology Breeding and Industrial Technology, Anyang, Henan, China
| |
Collapse
|
4
|
Cruz-Bautista R, Ruíz-Villafán B, Romero-Rodríguez A, Rodríguez-Sanoja R, Sánchez S. Trends in the two-component system's role in the synthesis of antibiotics by Streptomyces. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12623-z. [PMID: 37341754 DOI: 10.1007/s00253-023-12623-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023]
Abstract
Despite the advances in understanding the regulatory networks for secondary metabolite production in Streptomyces, the participation of the two-component systems (TCS) in this process still requires better characterization. These sensing systems and their responses to environmental stimuli have been described by evaluating mutant strains with techniques that allow in-depth regulatory responses. However, defining the stimulus that triggers their activation is still a task. The transmembrane nature of the sensor kinases and the high content of GC in the streptomycetes represent significant challenges in their study. In some examples, adding elements to the assay medium has determined the respective ligand. However, a complete TCS description and characterization requires specific amounts of the involved proteins that are most difficult to obtain. The availability of enough sensor histidine kinase concentrations could facilitate the identification of the ligand-protein interaction, and besides would allow the establishment of its phosphorylation mechanisms and determine their tridimensional structure. Similarly, the advances in the development of bioinformatics tools and novel experimental techniques also promise to accelerate the TCSs description and provide knowledge on their participation in the regulation processes of secondary metabolite formation. This review aims to summarize the recent advances in the study of TCSs involved in antibiotic biosynthesis and to discuss alternatives to continue their characterization. KEY POINTS: • TCSs are the environmental signal transducers more abundant in nature. • The Streptomyces have some of the highest number of TCSs found in bacteria. • The study of signal transduction between SHKs and RRs domains is a big challenge.
Collapse
Affiliation(s)
- Rodrigo Cruz-Bautista
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico.
| | - Beatriz Ruíz-Villafán
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico
| | - Alba Romero-Rodríguez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico.
| |
Collapse
|