1
|
Chandra T, Jaiswal S, Tomar RS, Iquebal MA, Kumar D. Realizing visionary goals for the International Year of Millet (IYoM): accelerating interventions through advances in molecular breeding and multiomics resources. PLANTA 2024; 260:103. [PMID: 39304579 DOI: 10.1007/s00425-024-04520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
MAIN CONCLUSION Leveraging advanced breeding and multi-omics resources is vital to position millet as an essential "nutricereal resource," aligning with IYoM goals, alleviating strain on global cereal production, boosting resilience to climate change, and advancing sustainable crop improvement and biodiversity. The global challenges of food security, nutrition, climate change, and agrarian sustainability demand the adoption of climate-resilient, nutrient-rich crops to support a growing population amidst shifting environmental conditions. Millets, also referred to as "Shree Anna," emerge as a promising solution to address these issues by bolstering food production, improving nutrient security, and fostering biodiversity conservation. Their resilience to harsh environments, nutritional density, cultural significance, and potential to enhance dietary quality index made them valuable assets in global agriculture. Recognizing their pivotal role, the United Nations designated 2023 as the "International Year of Millets (IYoM 2023)," emphasizing their contribution to climate-resilient agriculture and nutritional enhancement. Scientific progress has invigorated efforts to enhance millet production through genetic and genomic interventions, yielding a wealth of advanced molecular breeding technologies and multi-omics resources. These advancements offer opportunities to tackle prevailing challenges in millet, such as anti-nutritional factors, sensory acceptability issues, toxin contamination, and ancillary crop improvements. This review provides a comprehensive overview of molecular breeding and multi-omics resources for nine major millet species, focusing on their potential impact within the framework of IYoM. These resources include whole and pan-genome, elucidating adaptive responses to abiotic stressors, organelle-based studies revealing evolutionary resilience, markers linked to desirable traits for efficient breeding, QTL analysis facilitating trait selection, functional gene discovery for biotechnological interventions, regulatory ncRNAs for trait modulation, web-based platforms for stakeholder communication, tissue culture techniques for genetic modification, and integrated omics approaches enabled by precise application of CRISPR/Cas9 technology. Aligning these resources with the seven thematic areas outlined by IYoM catalyzes transformative changes in millet production and utilization, thereby contributing to global food security, sustainable agriculture, and enhanced nutritional consequences.
Collapse
Affiliation(s)
- Tilak Chandra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Rukam Singh Tomar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, 110012, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| |
Collapse
|
2
|
Zhang Y, Li Q, Jiang M, Tian H, Khalid MHB, Wang Y, Yu H. The Small Auxin-Up RNA 50 (SAUR50) Gene from Ammopiptanthus nanus Negatively Regulates Drought Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2512. [PMID: 39273996 PMCID: PMC11397199 DOI: 10.3390/plants13172512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024]
Abstract
Drought stress is a primary abiotic stress that causes significant losses to forestry and agricultural production. Therefore, exploring drought-responsive genes and their regulatory mechanism is crucial for plant molecular breeding for forestry and agriculture production safety. Small auxin-up RNA (SAUR) proteins are essential in plant growth and development but show functional diversity in stress response. In this study, the transcriptome sequencing data of Ammopiptanthus nanus seedlings revealed that the expression of AnSAUR50 was continuously downregulated under drought stress. Hence, the AnSAUR50 gene was cloned and functionally analyzed in drought response. The results showed that the coding sequence of AnSAUR50 was 315 bp in length and encoded 104 amino acids. The AnSAUR50 protein showed high conservation, possessed a SAUR-specific domain, and localized in the nucleus and cell membrane. The heterologous expression of the AnSAUR50 gene enhanced the drought sensitivity of the transgenic Arabidopsis with a lower survival rate, biomass, and higher malondialdehyde content and relative electrolyte leakage. Moreover, transgenic plants showed shorter root lengths and bigger stomatal apertures, resulting in facilitating water loss under drought stress. The study indicates that AnSAUR50 negatively regulates drought tolerance by inhibiting root growth and stomatal closure, which provides insights into the underlying function and regulatory mechanism of SAURs in plant stress response.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Ecological Security and Protection Key Laboratory of Sichuan Province, College of Life Science & Biotechnology, Mianyang Normal University, Mianyang 621000, China
| | - Qi Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengyang Jiang
- Ecological Security and Protection Key Laboratory of Sichuan Province, College of Life Science & Biotechnology, Mianyang Normal University, Mianyang 621000, China
| | - Hui Tian
- Ecological Security and Protection Key Laboratory of Sichuan Province, College of Life Science & Biotechnology, Mianyang Normal University, Mianyang 621000, China
| | - Muhammad Hayder Bin Khalid
- National Research Centre of Intercropping, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Yingge Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoqiang Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Dai Y, Chen H, Li Y, Hui R, Zhang Z. Promising New Methods Based on the SOD Enzyme and SAUR36 Gene to Screen for Canola Materials with Heavy Metal Resistance. BIOLOGY 2024; 13:441. [PMID: 38927321 PMCID: PMC11200428 DOI: 10.3390/biology13060441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Canola is the largest self-produced vegetable oil source in China, although excessive levels of cadmium, lead, and arsenic seriously affect its yield. Therefore, developing methods to identify canola materials with good heavy metal tolerance is a hot topic for canola breeding. In this study, canola near-isogenic lines with different oil contents (F338 (40.62%) and F335 (46.68%) as the control) and heavy metal tolerances were used as raw materials. In an experiment with 100 times the safe standard values, the superoxide dismutase (SOD) and peroxidase (POD) activities of F335 were 32.02 mmol/mg and 71.84 mmol/mg, while the activities of F338 were 24.85 mmol/mg and 63.86 mmol/mg, exhibiting significant differences. The DEGs and DAPs in the MAPK signaling pathway of the plant hormone signal transduction pathway and other related pathways were analyzed and verified using RT-qPCR. SAUR36 and SAUR32 were identified as the key differential genes. The expression of the SAUR36 gene in canola materials planted in the experimental field was significantly higher than in the control, and FY958 exhibited the largest difference (27.82 times). In this study, SOD and SAUR36 were found to be closely related to heavy metal stress tolerance. Therefore, they may be used to screen for new canola materials with good heavy metal stress tolerance for canola breeding.
Collapse
Affiliation(s)
- Yue Dai
- College of Agriculture, Agricultural University of Hunan, 1 Agricultural Road, Changsha 410128, China; (Y.D.); (H.C.)
| | - Hao Chen
- College of Agriculture, Agricultural University of Hunan, 1 Agricultural Road, Changsha 410128, China; (Y.D.); (H.C.)
| | - Yufang Li
- Hunan Cotton Science Institute, No. 3036 Shanjuan Road, Changde 415101, China;
| | - Rongkui Hui
- Hunan Province Institute of Agricultural Science, South of Hongyuan East Road, Changsha 410125, China
| | - Zhenqian Zhang
- College of Agriculture, Agricultural University of Hunan, 1 Agricultural Road, Changsha 410128, China; (Y.D.); (H.C.)
| |
Collapse
|
4
|
Wang W, Zheng Y, Qiu L, Yang D, Zhao Z, Gao Y, Meng R, Zhao H, Zhang S. Genome-wide identification of the SAUR gene family and screening for SmSAURs involved in root development in Salvia miltiorrhiza. PLANT CELL REPORTS 2024; 43:165. [PMID: 38861173 DOI: 10.1007/s00299-024-03260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
KEY MESSAGE SmSAUR4, SmSAUR18, SmSAUR28, SmSAUR37, and SmSAUR38 were probably involved in the auxin-mediated root development in Salvia miltiorrhiza. Salvia miltiorrhiza is a widely utilized medicinal plant in China. Its roots and rhizomes are the main medicinal portions and are closely related to the quality of this herb. Previous studies have revealed that auxin plays pivotal roles in S. miltiorrhiza root development. Whether small auxin-up RNA genes (SAURs), which are crucial early auxin response genes, are involved in auxin-mediated root development in S. miltiorrhiza is worthy of investigation. In this study, 55 SmSAUR genes in S. miltiorrhiza were identified, and their physical and chemical properties, gene structure, cis-acting elements, and evolutionary relationships were analyzed. The expression levels of SmSAUR genes in different organs of S. miltiorrhiza were detected using RNA-seq combined with qRT‒PCR. The root development of S. miltiorrhiza seedlings was altered by the application of indole-3-acetic acid (IAA), and Pearson correlation coefficient analysis was conducted to screen SmSAURs that potentially participate in this physiological process. The diameter of primary lateral roots was positively correlated with SmSAUR4. The secondary lateral root number was positively correlated with SmSAUR18 and negatively correlated with SmSAUR4. The root length showed a positive correlation with SmSAUR28 and SmSAUR37 and a negative correlation with SmSAUR38. The fresh root biomass exhibited a positive correlation with SmSAUR38 and a negative correlation with SmSAUR28. The aforementioned SmSAURs were likely involved in auxin-mediated root development in S. miltiorrhiza. Our study provides a comprehensive overview of SmSAURs and provides the groundwork for elucidating the molecular mechanism underlying root morphogenesis in this species.
Collapse
Affiliation(s)
- Wei Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yuwei Zheng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Lin Qiu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Dongfeng Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Ziyang Zhao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yuanyuan Gao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Ru Meng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hongguang Zhao
- Shaanxi Tasly Plants Pharmaceutical Co., Ltd., Shangluo, 726000, Shaanxi, China
| | - Shuncang Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
5
|
Chu NTB, Le MT, La HV, Le QTN, Le TD, Tran HTT, Tran LTM, Le CT, Nguyen DV, Cao PB, Chu HD. Genome-wide identification, characterization, and expression analysis of the small auxin-up RNA gene family during zygotic and somatic embryo maturation of the cacao tree (Theobroma cacao). Genomics Inform 2024; 22:2. [PMID: 38907330 PMCID: PMC11184954 DOI: 10.1186/s44342-024-00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/12/2023] [Indexed: 06/23/2024] Open
Abstract
Small auxin-up RNA (SAUR) proteins were known as a large family that supposedly participated in various biological processes in higher plant species. However, the SAUR family has been still not explored in cacao (Theobroma cacao L.), one of the most important industrial trees. The present work, as an in silico study, revealed comprehensive aspects of the structure, phylogeny, and expression of TcSAUR gene family in cacao. A total of 90 members of the TcSAUR gene family have been identified and annotated in the cacao genome. According to the physic-chemical features analysis, all TcSAUR proteins exhibited slightly similar characteristics. Phylogenetic analysis showed that these TcSAUR proteins could be categorized into seven distinct groups, with 10 sub-groups. Our results suggested that tandemly duplication events, segmental duplication events, and whole genome duplication events might be important in the growth of the TcSAUR gene family in cacao. By re-analyzing the available transcriptome databases, we found that a number of TcSAUR genes were exclusively expressed during the zygotic embryogenesis and somatic embryogenesis. Taken together, our study will be valuable to further functional characterizations of candidate TcSAUR genes for the genetic engineering of cacao.
Collapse
Affiliation(s)
- Ngoc Thi Bich Chu
- Faculty of Natural Sciences, Hung Vuong University, Viet Tri City, Phu Tho Province, 35000, Vietnam
| | - Man Thi Le
- Faculty of Natural Sciences, Hung Vuong University, Viet Tri City, Phu Tho Province, 35000, Vietnam
| | - Hong Viet La
- Institute of Research and Application, Hanoi Pedagogical University 2, Phuc Yen City, Vinh Phuc Province, 280000, Vietnam
| | - Quynh Thi Ngoc Le
- Department of Biotechnology, Thuyloi University, Hanoi City, 116830, Vietnam
| | - Thao Duc Le
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Hanoi City, 143330, Vietnam
| | - Huyen Thi Thanh Tran
- Faculty of Biology, Hanoi National University of Education, Xuan Thuy Road, Cau Giay District, Hanoi City, 122300, Vietnam
| | - Lan Thi Mai Tran
- Faculty of Natural Sciences, Hung Vuong University, Viet Tri City, Phu Tho Province, 35000, Vietnam
| | - Chi Toan Le
- Faculty of Biology and Agricultural Engineering, Hanoi Pedagogical University 2, Phuc Yen City, Vinh Phuc Province, 280000, Vietnam
| | - Dung Viet Nguyen
- Faculty of Natural Sciences, Hung Vuong University, Viet Tri City, Phu Tho Province, 35000, Vietnam
- Thanh Thuy Junior High School, Thanh Thuy District, Phu Tho Province, 35850, Vietnam
| | - Phi Bang Cao
- Faculty of Natural Sciences, Hung Vuong University, Viet Tri City, Phu Tho Province, 35000, Vietnam.
| | - Ha Duc Chu
- Faculty of Agricultural Technology, University of Engineering and Technology, Vietnam National University Hanoi, Xuan Thuy Road, Cau Giay District, Hanoi City, 122300, Vietnam.
| |
Collapse
|
6
|
Luan J, Xin M, Qin Z. Genome-Wide Identification and Functional Analysis of the Roles of SAUR Gene Family Members in the Promotion of Cucumber Root Expansion. Int J Mol Sci 2023; 24:ijms24065940. [PMID: 36983023 PMCID: PMC10053606 DOI: 10.3390/ijms24065940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Auxin serves as an essential regulator of the expression of many different genes in plants, thereby regulating growth and development. The specific functional roles of members of the SAUR (small auxin-up RNA) auxin early response gene family in the development of cucumber plants, however, remain to be fully clarified. Here, 62 SAUR family genes were identified, followed by their classification into 7 groups that included several functionally associated cis-regulatory elements. Phylogenetic tree and chromosomal location-based analyses revealed a high degree of homology between two cucumber gene clusters and other plants in the Cucurbitaceae family. These findings, together with the results of an RNA-seq analysis, revealed high levels of CsSAUR31 expression within the root and male flower tissues. Plants overexpressing CsSAUR31 exhibited longer roots and hypocotyls. Together, these results provide a basis for further efforts to explore the roles that SAUR genes play in cucumber plants, while also expanding the pool of available genetic resources to guide research focused on plant growth and development.
Collapse
Affiliation(s)
- Jie Luan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Ming Xin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Zhiwei Qin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|