1
|
Liu F, Sun X, Sheng O, Dou T, Yang Q, Hu C, Gao H, He W, Deng G, Dong T, Li C, Liu S, Yi G, Bi F. Genome-wide analysis of the trihelix gene family reveals that MaGT21 modulates fruit ripening by regulating the expression of MaACO1 in Musa acuminata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109089. [PMID: 39265241 DOI: 10.1016/j.plaphy.2024.109089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
The trihelix transcription factor (GT) gene family members play vital roles in plant growth and development, responses to abiotic or biotic stress, and fruit ripening. However, its role in banana fruit ripening remains unclear. Here, 59 MaGT gene members were identified in banana and clustered into five subfamilies, namely GT1, GT2, GTγ, SIP1, and SH4. This classification is completely supported by their gene structures and conserved motif analysis. Transcriptome data analysis indicated that MaGT14, MaGT21, and MaGT27 demonstrated significant differential expression during fruit ripening. Quantitative real-time PCR analysis revealed that these three genes were highly induced by ethylene treatment, responded to cold and heat stress, and had a high expression abundance in ripe fruit. Subcellular localization demonstrated that MaGT21 and MaGT27 functioned as nuclear proteins, while MaGT14 functioned as a nuclear and cell membrane protein. Further investigation indicated MaGT21 could positively stimulate the transcription of the key ethylene biosynthesis gene MaACO1 by directly targeting the GT motif in the promoter. MaGT21 transient overexpression in banana fruit upregulated MaACO1 and accelerated fruit ripening. Our findings provide comprehensive and valuable information for further functional studies of MaGT genes in banana, help to understand the roles of MaGTs during banana fruit ripening.
Collapse
Affiliation(s)
- Fan Liu
- College of Life Sciences, South China Agricultural University, Guangzhou, China; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Xueli Sun
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Ou Sheng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Tongxin Dou
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Qiaosong Yang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Chunhua Hu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Huijun Gao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Weidi He
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Guiming Deng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Tao Dong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Chunyu Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Siwen Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Ganjun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China.
| | - Fangcheng Bi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China.
| |
Collapse
|
2
|
Ma X, Ai X, Li C, Wang S, Zhang N, Ren J, Wang J, Zhong C, Zhao X, Zhang H, Yu H. A Genome-Wide Analysis of the Jasmonic Acid Biosynthesis Gene Families in Peanut Reveals Their Crucial Roles in Growth and Abiotic Stresses. Int J Mol Sci 2024; 25:7054. [PMID: 39000161 PMCID: PMC11241683 DOI: 10.3390/ijms25137054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Abiotic stress is a limiting factor in peanut production. Peanut is an important oil crop and cash crop in China. Peanut yield is vulnerable to abiotic stress due to its seeds grown underground. Jasmonic acid (JA) is essential for plant growth and defense against adversity stresses. However, the regulation and mechanism of the jasmonic acid biosynthesis pathway on peanut defense against abiotic stresses are still limitedly understood. In this study, a total of 64 genes encoding key enzymes of JA biosynthesis were identified and classified into lipoxygenases (AhLOXs), alleno oxide synthases (AhAOSs), allene oxide cyclases (AhAOCs), and 12-oxo-phytodienoic acid reductases (AhOPRs) according to gene structure, conserved motif, and phylogenetic feature. A cis-regulatory element analysis indicated that some of the genes contained stress responsive and hormone responsive elements. In addition to proteins involved in JA biosynthesis and signaling, they also interacted with proteins involved in lipid biosynthesis and stress response. Sixteen putative Ah-miRNAs were identified from four families targeting 35 key genes of JA biosynthesis. A tissue expression pattern analysis revealed that AhLOX2 was the highest expressed in leaf tissues, and AhLOX32 was the highest expressed in shoot, root, and nodule tissues. AhLOX16, AhOPR1, and AhOPR3 were up-regulated under drought stress. AhLOX16, AhAOS3, AhOPR1, and AhAOC4 had elevated transcript levels in response to cold stress. AhLOX5, AhLOX16, AhAOC3, AhOPR1, and AhOPR3 were up-regulated for expression under salt stress. Our study could provide a reference for the study of the abiotic stress resistance mechanism in peanut.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - He Zhang
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110161, China
| | - Haiqiu Yu
- Peanut Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110161, China
| |
Collapse
|
3
|
Lang Z, Xu Z, Li L, He Y, Zhao Y, Zhang C, Hong G, Zhang X. Comprehensive Genomic Analysis of Trihelix Family in Tea Plant ( Camellia sinensis) and Their Putative Roles in Osmotic Stress. PLANTS (BASEL, SWITZERLAND) 2023; 13:70. [PMID: 38202377 PMCID: PMC10780335 DOI: 10.3390/plants13010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
In plants, Trihelix transcription factors are responsible for regulating growth, development, and reaction to various abiotic stresses. However, their functions in tea plants are not yet fully understood. This study identified a total of 40 complete Trihelix genes in the tea plant genome, which are classified into five clades: GT-1 (5 genes), GT-2 (8 genes), GTγ (2 genes), SH4 (7 genes), and SIP1 (18 genes). The same subfamily exhibits similar gene structures and functional domains. Chromosomal mapping analysis revealed that chromosome 2 has the most significant number of trihelix family members. Promoter analysis identified cis-acting elements in C. sinensis trihelix (CsTH), indicating their potential to respond to various phytohormones and stresses. The expression analysis of eight representative CsTH genes from four subfamilies showed that all CsTHs were expressed in more tissues, and three CsTHs were significantly induced under ABA, NaCl, and drought stress. This suggests that CsTHs plays an essential role in tea plant growth, development, and response to osmotic stress. Furthermore, yeast strains have preliminarily proven that CsTH28, CsTH36, and CsTH39 can confer salt and drought tolerance. Our study provides insights into the phylogenetic relationships and functions of the trihelix transcription factors in tea plants. It also presents new candidate genes for stress-tolerance breeding.
Collapse
Affiliation(s)
- Zhuoliang Lang
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
| | - Zelong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Linying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
| | - Chi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
| | - Gaojie Hong
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China (L.L.)
| |
Collapse
|